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Housekeeping and excess entropy production for general nonlinear dynamics
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We propose a housekeeping/excess decomposition of entropy production for general nonlinear dynamics in a
discrete space, including chemical reaction networks and discrete stochastic systems. We exploit the geometric
structure of thermodynamic forces to define the decomposition; this does not rely on the notion of a steady state,
and it even applies to systems that exhibit multistability, limit cycles, and chaos. In the decomposition, distinct
aspects of the dynamics contribute separately to entropy production: the housekeeping part stems from a cyclic
mode that arises from external driving, generalizing Schnakenberg’s cyclic decomposition to nonsteady states,
while the excess part stems from an instantaneous relaxation mode that arises from conservative forces. Our
decomposition refines previously known thermodynamic uncertainty relations and speed limits. In particular, it
not only improves an optimal-transport-theoretic speed limit, but it also extends the optimal transport theory of
discrete systems to nonlinear and nonconservative settings.
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I. INTRODUCTION

The notion of “nonequilibrium” has two aspects:
breaking of detailed balance, and nonstationarity. The
housekeeping/excess decomposition of entropy production
rate (EPR) is a way to deal with these two aspects of nonequi-
librium systems [1–4]. Such a decomposition has previously
been formulated based on steady states: the housekeeping
EPR characterizes how detailed balance is broken in a steady
state, while the excess part quantifies the additional dissipa-
tion that is needed to transition between steady states. The best
known decomposition of this kind was proposed by Hatano
and Sasa (HS) [2] (also known as the adiabatic/nonadiabatic
decomposition [3]), while an important alternative decompo-
sition was proposed by Maes and Netočný (MN) [4]. The
practical utility of these decompositions is that they provide
meaningful thermodynamic bounds for nonequilibrium sys-
tems where the integrated entropy production (EP) diverges
by discounting the housekeeping EP, which also diverges, to
give a finite excess EP [1].

However, previously known decompositions have a crucial
limitation. Namely, they are not defined for general nonlinear
dynamics, such as general chemical reaction networks. Such
systems are not always globally stable and can exhibit various
nontrivial phenomena such as limit cycles, bifurcations, and
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multistability, in contrast to existing EPR decompositions,
which assume global stability. More precisely, the HS decom-
position has been generalized to chemical reaction networks
only if there is a special steady state, called a complex bal-
anced steady state [5,6], which is always globally stable [7].
However, even if a chemical reaction network has a stable
steady state, it may not be complex balanced. In that case,
it is possible for the HS decomposition to give a negative
value of excess EPR, which makes it difficult to interpret
the decomposition physically. Because a complex balanced
steady state is “almost detailed balanced” in the sense that
it always shows global stability and cannot exhibit genuine
nonlinear phenomena such as multistability or chaos [8], this
particular generalization does not help us to understand the
various physically interesting situations that play a key role in
biology and other complex chemical systems [9].

In this paper, we propose an EPR decomposition that ap-
plies to general nonlinear dynamics in a discrete space, which
includes Markov jump processes and chemical reaction net-
works as special cases (Fig. 1). Because the decomposition is
defined based on the geometric structure of thermodynamic
forces, it does not require any information about the steady
state or even its existence. Since it is not related to steady
states, the decomposition is not only applicable to a wider
range of dynamics, but it also provides crucial insights into
the physical meaning of the individual terms: it allows us to
interpret each term of the decomposition based on physical
modes of dynamics, beyond the notion of stationarity. The
housekeeping part reflects a cyclic mode on the graph of states
that does not affect the apparent dynamics, and it quantifies
how external driving breaks detailed balance at a given instant
of time. As a result, we generalize Schnakenberg’s cyclic
decomposition of steady-state dissipation into contributions
stemming from cycles in the graph of states [10]. On the
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FIG. 1. We propose a decomposition of (a) the total entropy pro-
duction rate (EPR) in general nonlinear dynamics in a discrete space
(e.g., a chemical reaction network, and a Markov jump process)
into (b) the excess part that reflects a relaxation mode, and (c) the
housekeeping part that reflects a cyclic mode. The total EPR σ is
expressed as the square norm of the thermodynamic force F ∈ RE

with the metric L. The projection of the force onto the space of
conservative forces {STψ | ψ ∈ RS} ⊂ RE defined in Eq. (31) de-
termines the conservative force F ∗ that provides the Onsager excess
EPR σ ex. The difference F − F ∗ gives the Onsager housekeeping
EPR σ hk, which can be expressed as the sum of cyclic contributions
as in Eq. (43). Because F ∗ and F − F ∗ are orthogonal with respect to
the inner product given by L, σ ex and σ hk decompose the total EPR,
σ = σ ex + σ hk.

other hand, the excess term expresses a “pseudorelaxation”
mode even if the system does not relax to a steady state by
extracting a conservative component of the thermodynamic
force. Because a conservative force is given by a potential
difference of the internal states, it represents an internal free-
energy-like contribution to dissipation. Using a corresponding
instantaneous “pseudoequilibrium,” we obtain a gradient-flow
form of an equation of motion, which was previously used
to describe the relaxation to an equilibrium state [11,12]. In
summary, our result allows us not only to decompose the EPR
in general nonlinear dynamics in a discrete space, but also to
separate the effects on dissipation stemming from the external
cyclic mode and the internal relaxation mode.

While this physical interpretation of our decomposition is
different from previous results, it is also consistent with exist-
ing theory of nonequilibrium thermodynamics and effectively
refines several results. It gives much tighter thermodynamic
uncertainty relations (TURs) and speed limits, which is con-
cordant with the original philosophy of EPR decomposition
[1] and strengthens its physical validity. Concretely, we de-
rive refined versions of short-time and finite-time TURs
for Markov jump processes [13–29], and a short-time TUR
for chemical reaction networks [30]. We also generalize an
optimal-transport-theoretic speed limit derived in [31] to gen-
eral nonequilibrium systems.

More generally, we discuss connections between our de-
composition and optimal transport theory. Optimal transport
theory interprets the minimum transportation cost from one

probability distribution to another as a distance between them
[32], providing a natural geometry for probability distri-
butions. Recent studies have revealed that one can obtain
thermodynamic bounds in continuous systems through this
geometrical approach, associating thermodynamic costs with
the optimal-transport-theoretic distance [28,29,33–40]. In par-
ticular, a distance called L2-Wasserstein distance provides a
very intuitive type of speed limit τ � W2/�, with τ being
the time the system takes to change, W is the L2-Wasserstein
distance between the initial and final state, and � is the
integrated EP. However, such a simple bound has not been
known for general discrete systems, except for a result re-
stricted to detailed balanced stochastic systems [41], because
the discretized L2-Wasserstein distance has only been defined
for such systems [42–44]. In this paper, we show that the lo-
cal geometrical structure that defines our EPR decomposition
reveals the physical meaning of the discrete L2-Wasserstein
distance as minimum excess EP, and it allows us to generalize
it to general nonlinear dynamics in a discrete space. As a
result, we obtain a simple speed limit for general nonlinear
dynamics in a discrete space, in which the total integrated EP
is replaced by the integrated excess EP, tightening the bound.

The paper is organized as follows. In Sec. II, we introduce
basic concepts of nonlinear dynamics in a discrete space,
which we characterize as a graph, and we propose a gen-
eral equation of motion that contains master equations and
chemical rate equations as special cases. We also define the
edgewise Onsager coefficients and the induced inner product,
which determine the aforementioned geometrical structure of
thermodynamic forces. In addition, we review some relevant
previous studies. In Sec. III, we derive the decomposition
of the EPR, and we examine the properties of the excess
and housekeeping EPRs, in particular the cyclic decompo-
sition of the housekeeping EPR and a connection between
gradient flow and the excess EPR. In Sec. IV, we apply this
decomposition to derive refined versions of several TURs. In
Sec. V, we introduce the generalized L2-Wasserstein distance
and examine its mathematical and physical features. We relate
it to the excess EPR in Sec. V B, and we obtain the speed
limit in Sec. V C. Section VI is devoted to the study of two
examples that demonstrate how the decomposition of the EPR
is obtained and characterize the distinct dynamical modes sep-
arately, both analytically and numerically. The first example
is a two-level system attached to two heat baths at different
temperatures, where the relaxation mode is described by a
“mean” temperature of the two. The second example is the
Brusselator model of chemical oscillation, which exhibits a
limit cycle. The Appendixes contain mathematical details of
the derivations and results.

II. GENERAL FORMALISM OF DYNAMICS
AND THERMODYNAMICS

A. Dynamics

Let us consider general nonlinear Markovian dynamics
on a graph whose nodes may include several “states” or
“species.” It will be shown that the dynamics can lead to
master equations and rate equations. Graph theoretical notions
introduced below are summarized in Figs. 2 and 3 through
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FIG. 2. Graph theoretical concepts are shown. (a) An example of
a graph. There are N = 4 nodes and E = 5 directed edges. Each edge
indicates a pair of reversible transitions or reactions. The incidence
matrix B encodes the structural information of the graph. (b) In a
Markov jump process, where each node is identified with a physical
state, we define a cycle as a chain of transitions that leaves the system
unchanged. Now there are two independent cycles, C1 and C2, whose
corresponding vectors S(C1) and S(C2) span linear space ker B. The
other cycles, such as C ′, are given by superposing the two cycles. The
notion of a cycle differs a bit in a chemical reaction network, as we
explain in the next figure.

examples of Markov jump process and chemical reaction net-
work respectively.

We consider a directed graph with nodes {1, 2, . . . , N} and
edges {1, 2, . . . , E}. The stoichiometry of state or species
α ∈ {1, 2, . . . , S} at node i is indicated by ναi ∈ Z�0. The
distribution (concentration vector or statistical state) of the
system at time t is indicated by a vector x(t ) = [xα (t )] ∈ RS

�0.
An edge represents a pair of reversible transitions or reac-

tions and connects two nodes. We denote the starting node of
edge e ∈ {1, . . . , E} as ι(e) and its ending node by ι′(e). The
reversed direction of edge e is indicated by −e. The structure
of the graph is expressed by the incidence matrix B = (Bie)
defined by

Bie =
⎧⎨
⎩

1 if ι′(e) = i,
−1 if ι(e) = i,
0 otherwise.

(1)

We write the possibly nonlinear and time-dependent flux of
ι(e) → ι′(e) as Ke(x) and ι′(e) → ι(e) as K−e(x). We assume
the fluxes are always positive, K±e(x) > 0. The current Je(x)
on edge e is given by Je(x) = Ke(x) − K−e(x). Therefore, the
net inflow to node i amounts to

∑
e BieJe(x). Defining S = νB,

where ν = (ναi ), we obtain a continuity equation

dx

dt
= SJ (x(t )). (2)

Throughout this paper, we consider general Markovian dy-
namics of a distribution x governed by this equation. It can

FIG. 3. An example of a graph theoretic description of a chem-
ical reaction network. Note that although each edge has a specific
direction, it represents a set of reversible reactions. The reaction
network is the Brusselator, a paradigmatic model of chemical oscilla-
tion, which we consider as an example in Sec. VI B. Unlike Markov
jump processes, a node in a chemical reaction network represents a
so-called complex that contains some chemical species as represented
by ν. Complex ∅ corresponds to external species whose concentra-
tions are kept constant. Here we cannot find a “cycle” by just looking
at the diagram, or equivalently, the incidence matrix B. However, the
stoichiometric coefficient matrix S, which governs the dynamics, has
a nonempty kernel, which proves that there exists a cycle of reactions
that does not change the system.

represent Markov jump processes and deterministic chemical
reaction networks, as we show below. We sometimes assume
that the flux is given by the law of mass action,

Ke(x) = ke

∏
α

xναι(e)
α , (3)

which, however, is not essential to our general results. Below,
we explicitly note whenever we make the assumption of mass
actions kinetics. In addition, when mass action is used, the
coefficients ke(t ) > 0 may depend on time.

We sometimes abbreviate the dependence of some quantity
f (x(t ), t ) on the state x(t ) at time t and the explicit depen-
dence on time t as f (t ) if there is no ambiguity; we make the
dependence implicit in the majority of the paper.

1. Example: Markov jump process

Consider the case in which each node i is identified with a
state α, so ν = I , the identity. Then, by writing x as p and
assuming the mass action law, Eq. (2) becomes the master
equation

d pi

dt
=

∑
e

Bie(ke pι(e) − k−e pι′(e) ), (4)

where pi can be interpreted as the occupation probability of
state i if normalized

∑
i pi = 1, and k±e is the transition rate

along edge ±e. It can be written as

d pi

dt
=

∑
j( �=i)

(k j→i p j − ki→ j pi ) (5)
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because if e = i → j, Bie = −1 and if e = j → i, Bie =
1, and only one of the two directions is contained in the
summation in Eq. (4). We note that the linear form of flux
is an example of mass action kinetics since

Ke(p) = ke

∏
α

pδαι(e)
α = ke pι(e), (6)

where δ is Kronecker’s delta.

2. Example: Chemical reaction network

The general equation (2) can represent an open chem-
ical reaction network by interpreting x as a concentration
distribution c [5]. A node is interpreted as an aggregate of
chemical species, technically called complex, which contains
ναi molecules of chemical species α and appears on the left-
or right-hand side of a chemical equation. Because the (α, e)-
element of S = νB reads∑

i

ναiBie = ναι′(e) − ναι(e), (7)

S is the conventional stoichiometric matrix.
When we consider chemical reaction networks, we do not

assume the mass action kinetics in general so that we can
treat a broad class of nonideal chemical reaction networks
[45]. We put the assumption only when (i) we review previous
studies that require it, e.g., gradient flow equations [11] and
the HS decomposition [5,6], or (ii) we illustrate our results
numerically where we need to provide a concrete form of K.

When we discuss a result particular to a Markov jump
process, we use the variable as p instead of x to indicate that
the variable is a probability distribution; on the other hand,
when we focus on a chemical reaction network, we will use c
to indicate a concentration distribution.

B. Thermodynamics

Let us define the thermodynamic force on edge e by

Fe(x) := ln
Ke(x)

K−e(x)
. (8)

We assume the local detailed balance condition, namely that
Fe gives the total change of the reduced entropy on the process
that edge e represents [5,10,45], where “reduced” means that
it is divided by a physical constant, the Boltzmann constant kB

for Markov jump processes, or the gas constant R for chemical
reaction networks. We do not distinguish the entropy and the
reduced one by setting the constant we consider to 1. Then,
we obtain the following form of the entropy production rate
(EPR):

σ (x) =
∑

e

Je(x)Fe(x). (9)

For simplicity, hereafter we do not write the argument x ex-
plicitly.

In the seminal paper [10], Schnakenberg obtained an ex-
pression of the EPR by decomposing the network into cycles.
He introduced the fundamental set of cycles {Cμ}μ=1,...,M

of the graph defined by states and transitions in a Markov
jump process. Each cycle corresponds to a vector S(Cμ) =
[Se(Cμ)]e=1,...,E ∈ ker B, and the set {S(Cμ)}μ=1,...,M forms a

basis of ker B, where ker indicates the kernel of the matrix.
Such a set of vectors can also be introduced for a chemical
reaction network, where it spans ker S [46]. In general, we
refer to a basis of ker S rooted in the cycles of a graph as a
cycle basis. A cycle basis is not unique in general; hereafter,
we fix some choice of the basis. See also Figs. 2 and 3, where
we provide concrete examples of cycles and clarify the slight
difference between Markov jump processes and chemical re-
action networks.

When the system is in a steady state, the current Jst is in
the kernel of S, so it can be expanded in the cycle basis as

Jst
e =

∑
μ

Se(Cμ)Jμ. (10)

Note that the superscript st is used to indicate the value of
a quantity in the steady state. Each expansion coefficient Jμ

quantifies the current flowing in the cycle Cμ. The conjugated
cyclic forces are defined by

Fμ :=
∑

e

Se(Cμ)F st
e . (11)

In terms of the currents and forces, we obtain the expression
of the EPR as in Refs. [10,46],

σ st =
∑

μ

JμFμ, (12)

which shows that the steady-state EPR can be divided into
contributions from cycles, whose dissipation can be analyzed
separately [47–49]. We will generalize this expression out of
steady states in Sec. III A.

C. Edgewise Onsager coefficient, gradient flow,
and Wasserstein distance

We define the edgewise Onsager coefficient by


e(x) := Ke(x) − K−e(x)

ln (Ke(x)/K−e(x))
= Je(x)

Fe(x)
(13)

and the diagonal matrix L(x) := diag(
e(x)). When Ke(x) =
K−e(x), by continuity we see 
e(x) is given by Ke(x). It is
also easy to see that 
e(x) > 0 and L(x) is positive-definite.
For simplicity, we make L and 
’s dependence on x implicit,
but we stress that we always choose the current distribution x
as the argument. We write L1/2 = diag(

√

e). For notational

convenience, we define an inner product 〈u, v〉L := uTLv and
the corresponding norm ‖u‖L := √〈u, u〉L. We can use this
inner product to express the EPR as

σ = ‖F‖2
L, (14)

which will be the starting point of our results [50]. Note that if
we choose any other state like a steady state as the argument
of L(·), then we can no longer give the EPR as a squared norm
with L being the metric.

We remark that as a general property of the logarith-
mic mean, 
e(x) is sandwiched between arithmetic mean
[Ke(x) +K−e(x)]/2 and geometric mean

√
Ke(x)K−e(x) as√

Ke(x)K−e(x) � 
e(x) � Ke(x) + K−e(x)

2
, (15)

where the equalities hold if and only if Ke(x) = K−e(x).
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In Ref. [10], Schnakenberg introduced a symmetric matrix
L and the reciprocal relation

Jμ =
∑
μ′

Lμμ′Fμ′ (16)

for the steady-state cycle current and force defined in Eqs. (10)
and (11). By the definitions of J and F , we find that

L̃ee′ :=
∑
μ,μ′

Se(Cμ)Lμμ′Se′ (Cμ′ ) (17)

connects Jst and F st as Jst = L̃F st. However, L̃ is not diagonal
in general and does not coincide with Lst.

Nevertheless, the edgewise Onsager coefficient is useful to
rewrite the equation of motion (2) into a gradient flow [11,12],
which we review here. This is possible when there exists an
equilibrium steady state xeq that satisfies the detailed balance
condition

Ke(xeq ) = K−e(xeq ), (18)

and the flux K is given by the mass action law (3). Then the
thermodynamic force is given by

F = −ST∇D(x‖xeq ), (19)

where ∇ = (∂/∂xα ) is a column vector of the partial differen-
tial operators, and D(·‖·) is the generalized Kullback–Leibler
(KL) divergence,

D(x‖x′) :=
∑

α

(
xα ln

xα

x′
α

− xα + x′
α

)
, (20)

which reduces to the usual KL divergence in the Markov jump
case. Let us prove Eq. (19). The detailed balance condition
leads to

ke

k−e
=

∏
α

(
xeq
α

)ναι′ (e)∏
α

(
xeq
α

)ναι(e)
. (21)

Substituting this into the definition of the thermodynamic
force (8), we have

Fe =
∑

α

(ναι(e) − ναι′(e) ) ln
xα

xeq
α

= −[ST�]e (22)

with � = ln(x/xeq ), where we define the log of a vector as
the vector of the logs of the elements. The proof ends by
calculating the derivative of the KL divergence to show

∂

∂xα

D(x‖xeq ) = ln
xα

xeq
α

= �α. (23)

Because LF = J , by substituting Eq. (19) into Eq. (2), we
obtain the gradient flow expression [11,42]

dx

dt
= −SLST∇D(x‖xeq ). (24)

Note that the matrix SLST is positive-semidefinite. When we
consider a Markov jump process, SLST reads BLBT, which is
called the Laplacian matrix of a weighted graph [51].

A consequence of the above is that the KL divergence is a
Lyapunov function when the system is autonomous, thus xeq

is time-invariant. The divergence decreases monotonically as

d

dt
D(x‖xeq ) =

(
dx

dt

)T

∇D(x‖xeq )

= −‖ST∇D(x‖xeq )‖2
L � 0. (25)

Using Eqs. (14) and (19), we can confirm that the time deriva-
tive of the KL divergence is equal to the negative of the EPR.

For autonomous Markovian dynamics with a detailed bal-
anced steady state, the gradient flow structure has also been
utilized to measure the distance between two states. Maas
proposed in Ref. [42] an L2-Wasserstein distance measure

W (p(0), p(1) ) := inf
p,ψ

(∫ 1

0
dt ‖BTψ (t )‖2

L(p(t ))

)1/2

, (26)

where the infimum is taken under the conditions
d p

dt
= BL(p)BTψ, p(t = 0) = p(0), p(t = 1) = p(1). (27)

We can change the time interval from the unit one into an
arbitrary one [0, T ] as

W (p(0), p(1) ) = inf
p,ψ

(
T

∫ T

0
dt ‖BTψ (t )‖2

L(p(t ))

)1/2

, (28)

with the last condition of Eq. (27) replaced with p(T ) = p(1)

[52]. Note that the distance is a dynamics-wise measure be-
cause L depends not only on the current state but also on the
given kinetics as in Eq. (13), or more explicitly as


e(p) = ke pι(e) − k−e pι′(e)

ln(ke pι(e)/k−e pι′(e) )
.

Our definition looks unlike the original one [42], but the
equivalence is easily proved (see Appendix A for the proof).

Vu and Hasegawa [31] found a speed limit by using the
Wasserstein distance as

τ � W (p(0), p(τ ))2∫ τ

0 dt σ
, (29)

where σ is the EPR of the solution of a master equa-
tion {p(t )}t∈[0,τ ]. The speed limit is obtained because the
solution of a master equation satisfies the first condition in
Eq. (27) as

d p

dt
= BL(p)BT� (30)

with �i = −(∂/∂ pi)D(p‖peq ). Since Eq. (28) involves min-
imization with respect to p and ψ , the Wasserstein distance
is smaller than the corresponding expression evaluated for
the original dynamics. By choosing the time interval of the
solution τ as the time interval in Eq. (28), we obtain the lower
bound.

III. ONSAGER-PROJECTIVE DECOMPOSITION OF EPR

We state our main result, a decomposition of the EPR
in Markov jump processes and chemical reaction networks,
which can be seen as the generalization of the Maes–Netočný
decomposition to such systems [4]. Because we define the
decomposition in a geometrical way by using a projection
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FIG. 4. Schematic diagrams of the decomposition of force,
which is central to the decomposition of entropy production rate
(34). (a) Geometrical illustration of decomposing force F . Projector
P onto the space of conservative forces im S is given in Eq. (31). The
projected force F ∗ is orthogonal to the remainder F − F ∗ under the
inner product 〈·, ·〉L introduced in Sec. II C. The remaining current
Jcyc = L(F − F ∗) belongs to ker ST, therefore it is cyclic and can
be expanded in a cyclic basis as in Eq. (41). (b) The decomposition
of force is exemplified on edge e = 2 in the system considered in
Fig. 2. The conservative force F ∗ is given by the difference of φ∗

which is assigned a value on each node. On the other hand, the
remaining force F − F ∗ is associated with the coefficients of the
linear combination of cycles.

operator and the edgewise Onsager coefficient (13), we term
it the Onsager-projective decomposition. The basic idea of the
technical details discussed in the following two paragraphs is
summarized in Fig. 4.

Let us consider a matrix P that is the projection onto
the image of ST and orthogonal with respect to the matrix
L. Formally, this means that for any f , g ∈ RE , P satisfies
〈P f , (I − P)g〉L = 0, where I is the identity. This projection
matrix is given by [53]

P = ST(SLST )−SL, (31)

with A− denoting the generalized inverse of a matrix A. Since
S does not have full rank in general, we need to consider a
generalized inverse. Nevertheless, we may set it to a theoreti-
cally tractable one, like the Moore–Penrose inverse, because P
does not depend on the choice of the generalized inverse [53].
To be more concrete, let the eigendecomposition of SLST

be U�U −1 with orthogonal matrix U and diagonal matrix
� = diag(λ1, . . . , λr, 0 . . . , 0), where λα �= 0 and r = rankS.
Then, the Moore–Penrose inverse of SLST can be computed
as U�+U −1 with �+ = diag(λ−1

1 , . . . , λ−1
r , 0 . . . , 0), which

is the Moore–Penrose inverse of �.
For any f ∈ RE , P f is also characterized by

P f = arg min
g∈imST

‖ f − g‖2
L. (32)

Because P f ∈ im ST, there exists φ( f ) ∈ RS , which satisfies
−STφ( f ) = P f . The solution φ( f ) is not unique in general
because the transformation φ( f ) → φ( f ) + c, where c is a
left null vector of S, does not change −STφ( f ). If S is the

incidence matrix B of a connected graph, c is given by a vector
of 1’s times any scalar. When we consider chemical reaction
networks, such a null vector is called a conservation law [5].
Nonetheless, P f is unique, so we can consider φ( f ) as fixed.

Now, we can define the conservative force that plays a
central role in the Onsager-projective decomposition. De-
fine F ∗ := PF and φ∗ = φ(F ) such that F ∗ = −STφ∗. The
force F ∗ can be seen as a conservative force that reproduces
the original (possibly nonconservative) dynamics because
SLF ∗ = SLF = SJ = dt x. This can be shown as follows.
First, we have a decomposition

SLF = SL(P + I − P)F

= SLF ∗ + SL(I − P)F. (33)

The second term SL(I − P) is zero because P is the orthog-
onal projection onto im ST with respect to the metric L, i.e.,
for any ϕ ∈ RS and f ∈ RE , P satisfies 〈STϕ, (I − P) f 〉L =
ϕTSL(I − P) f = 0. Because ϕ is now arbitrary, by setting
f = F , we obtain SL(I − P)F = 0. Thus dt x = SLF ∗ holds.

Using the conservative force F ∗, we find a decomposi-
tion of the EPR that can be regarded as a generalization
of the Maes–Netočný decomposition in Langevin systems to
Markov jump processes and chemical reaction networks [4].
We define the Onsager excess and housekeeping EPR by

σ ex := ‖F ∗‖2
L, σ hk := ‖F − F ∗‖2

L, (34)

respectively. These terms give a non-negative decomposition
of the EPR,

σ = σ ex + σ hk, (35)

σ ex, σ hk � 0 (36)

for both Markov jump processes and CRNs. They are always
non-negative because L is positive-definite. From the orthog-
onality relation

〈F ∗, F − F ∗〉L = 〈PF, (I − P)F 〉L = 0, (37)

the decomposition is proved as follows:

σ = 〈F ∗ + (F − F ∗), F ∗ + (F − F ∗)〉L

= 〈F ∗, F ∗〉L + 〈F − F ∗, F − F ∗〉L. (38)

The two orthogonal components F ∗ and F − F ∗ of the ther-
modynamic force allow us to interpret the decomposition in
a geometrical way; see Figs. 1 and 4. This is similar to the
interpretation in the Langevin case [28,29].

In a steady state, where SJst = 0 holds, the excess EPR
vanishes and σ = σ hk because

σ ex = 〈F ∗, F ∗〉Lst =−(φ∗)TSLstF ∗ = −(φ∗)TSJst = 0. (39)

On the other hand, the housekeeping EPR is identically zero
if and only if the steady state is detailed balanced [54]. There-
fore, the decomposition (35) separates the EPR into a transient
contribution σ ex and a contribution σ hk required to sustain a
nonequilibrium steady state if a steady state exists.

Given the eigendecomposition SLST = U�U −1 discussed
earlier, we can write down the excess and housekeeping
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TABLE I. Summary of consequences of the Onsager-projective
decomposition discussed in Sec. III.

Generalization of Schnakenberg decomposition Eq. (43)

Generalization of MN decomposition Eq. (45)

Variational formulas Eqs. (48)–(50)

Operational implications Eq. (57)

Gradient flow Eq. (59)

EPR as

σ ex =
r∑

α=1

λ−1
α |[U −1SLF ]α|2,

σ hk = σ −
r∑

α=1

λ−1
α |[U −1SLF ]α|2. (40)

In what follows in this section, we discuss several prop-
erties and consequences of the decomposition, which we
summarize in Table I with corresponding equation numbers.
Except for the operational implications discussed in Sec. III D
using the variational formulas from Sec. III C, these results are
basically independent from each other.

A. Generalization of Schnakenberg’s cyclic decomposition

Our decomposition leads to a generalization of Schnaken-
berg’s cyclic decomposition of the steady-state EPR (12) to
nonsteady states. Consider the current corresponding to F −
F ∗, that is, Jcyc := L(F − F ∗). This current is in the kernel of
S because SLF = SLF ∗, therefore it is a cyclic current and
can be expanded in the cycle basis as

Jcyc
e =

∑
μ

Se(Cμ)J †
μ. (41)

This expansion is available whether the system is in a steady
state or not. The conjugated force is also given by

F†
μ :=

∑
e

Se(Cμ)(Fe − F ∗
e ) =

∑
e

Se(Cμ)Fe, (42)

where we used
∑

e Se(Cμ)F ∗
e = −(φ∗)TSS(Cμ) = 0. Thus,

we have generalized the decomposition in Eq. (11), which
applies only in a steady state, to arbitrary states. Importantly,
these cycle quantities allow us to write the Onsager house-
keeping EPR as

σ hk =
∑

μ

J †
μF†

μ (43)

because∑
μ

J †
μF†

μ =
∑

μ

J †
μ

∑
e

Se(Cμ)(Fe − F ∗
e )

=
∑

e

Jcyc
e (Fe − F ∗

e ) = ‖F − F ∗‖2
L. (44)

Therefore, our decomposition generalizes Schnakenberg’s
cyclic decomposing of the steady-state EPR [10] to a cyclic
decomposition of the housekeeping EPR in non-steady-state
systems.

B. Generalization of Maes–Netočný decomposition

Next, we show that the decomposition can also be un-
derstood as a generalization of the MN decomposition [4].
In their paper, Maes and Netočný regarded the EPR as a
functional of the potential landscape, and they minimized it
by changing the landscape. The result is the following min-
imum EP principle: the potential landscape minimizing the
EPR is the one for which the instantaneous distribution is a
steady state. In our case, using the minimizing property of the
projection operator (32), we have the expression

σ hk = inf
ψ

‖F − (−STψ )‖2
L. (45)

In a Markov jump process, F is written as F = −BT(u +
ln p) + F nc, where u is some potential landscape and F nc is a
nonconservative driving force. We define J (v) := −LBT(v +
ln p) + LF nc as a function of the potential landscape. Using
these expressions, we find a formulation resembling Ref. [4],

σ hk = inf
v

J (v)TL−1J (v). (46)

Minimization leads to the condition

BJ (v) = 0. (47)

Thus, among all potential landscapes with Onsager matrix L,
the entropy is minimized for the one in which the instanta-
neous distribution p is a steady state. This is the analog of
Maes and Netočný’s minimum EP principle [4]. We remark
that fixing L is connected to fixing the diffusion matrix in the
Langevin case (see Appendix B).

C. Variational formulas

We can also extend other results derived in the Langevin
case [28,29] to discrete dynamics. First, the following varia-
tional expressions hold:

σ ex = sup
ψ

(〈STψ, F 〉L )2

〈STψ,STψ〉L
, (48)

= inf
F ′∈kerSL

〈F − F ′, F − F ′〉L, (49)

σ hk = sup
F ′∈kerSL

(〈F ′, F 〉L

)2

〈F ′, F ′〉L
. (50)

Note that SL is the adjoint of ST with respect to the inner
product 〈·, ·〉L. As an important example, F − F ∗ is in its
kernel because SLF = SLF ∗. This space can be interpreted
as the space of forces that do not contribute to the dynamics if
we regard LF ′ as a probability current for any force F ′.

The first expression (48) is obtained by combining the
Cauchy–Schwarz inequality

(〈STψ, F ∗〉L )2 � 〈STψ,STψ〉L〈F ∗, F ∗〉L, (51)

and the following equality:

〈STψ, F ∗〉L = ψTSLF ∗ = ψTSLF = 〈STψ, F 〉L. (52)

Equality is obtained in (51) when STψ is parallel to F ∗. The
infimum representation (49) for the excess EPR is proven by
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the following calculation: When F ′ ∈ ker SL,

〈F − F ′, F − F ′〉L

= 〈F ∗ + F − F ∗ − F ′, F ∗ + F − F ∗ − F ′〉L

= 〈F ∗, F ∗〉L + 〈F − F ∗ − F ′, F − F ∗ − F ′〉L, (53)

because

〈F ∗, F − F ∗ − F ′〉L = (φ∗)TSL(F − F ∗ − F ′) = 0. (54)

The second term in the third line of Eq. (53) is non-negative
and vanishes when F ′ = F − F ∗ ∈ ker SL; thus the minimum
value gives the excess EPR.

The supremum formula (50) of the housekeeping EPR
can be shown in a parallel way to the excess case. For F ′ ∈
ker SL, we have (〈F ′, F − F ∗〉L )2 � 〈F ′, F ′〉L〈F − F ∗, F −
F ∗〉L and 〈F ′, F − F ∗〉L = 〈F ′, F 〉L. The latter equality is
because

〈F ′, F ∗〉L = −(φ∗)TSLF ′ = 0. (55)

Thus, the inequality

σ hk � (〈F ′, F 〉L )2

〈F ′, F ′〉L
(56)

is obtained for any F ′ ∈ ker SL. The equality is attained when
F ′ is proportional to F − F ∗, which also belongs to ker SL.

D. Minimum entropy production

The variational formula (49) allows us to interpret the
excess EPR as a minimum EPR. In this section, we focus
on Markov jump processes. In general, when we control rate
constants to minimize the EPR with the dynamics dt p un-
changed, the EPR can be made arbitrarily small unless we
make further assumptions [55]. To consider minimum EPR
under additional constraints, recent studies have proposed to
fix the geometrical mean of the transition rates

√
kek−e on

each edge [56], or to fix the backward rates k−e [57]. They
found that such constraints lead to nonconservative optimal
forces. On the other hand, the excess EPR can be interpreted
as the minimum EPR when we change transition rates while
keeping the value of L(p) fixed, since Eq. (49) can be rewritten
as

σ ex = inf
F ′|dt p=BLF ′

〈F ′, F ′〉L

= inf
k′|dt p=BLFk′ ,Lk′=L

〈Fk′ , Fk′ 〉L

= inf
k′|dt p=BLFk′ ,Lk′=L

σk′ , (57)

where Fk′ , Lk′ , and σk′ are the force, the Onsager matrix, and
the EPR given by transition rates k′ instead of the actual
dynamics k, which provides L. The definition of the excess
EPR (34) also shows that we can obtain a conservative optimal
force in this minimization. Quite recently, a similar study [58]
discussed minimization of integrated EP by fixing the time
average of the sum of the edgewise coefficients, not the in-
stantaneous coefficients. We summarize these minimizations
in Table II.

Although the minimization is mathematically well defined,
fixing the Onsager coefficients is not always interpretable

TABLE II. Comparison of dynamical constraints and optimal
thermodynamic forces that minimize the EPR (or integrated EP).
Here, NC and C stand for nonconservative and conservative. Vu [58]
did not mention whether the optimal force is conservative or not.

Ours Remlein [56] Ilker [57] Vu [58]

Constraint 
e(p)
√

kek−e k−e τ−1
∫ τ

0 
e(p)dt
Force C NC NC ?

from a physical point of view. Nonetheless, we can find a
concrete meaning of this constraint in the continuum limit. In
this limit, the edgewise Onsager coefficient becomes 
e(p) ≈
De(ι(e))pι(e)/(�x)2 with �x being the distance between
nearest sites going to zero, and De(i) a kind of “diffusion
coefficient”.1 Therefore, fixing L(p) is equivalent to assum-
ing that the diffusion coefficients are constant, which is a
natural assumption when we consider Langevin dynamics.
For more detailed discussion on the asymptotic relation, see
Appendix B.

E. Gradient flow

We now generalize Eqs. (24) and (25) using the Onsager-
projective decomposition. Let φ∗(t ) be the potential that gives
F ∗(t ) = −STφ∗(t ) at time t , and define a pseudocanonical
distribution xpcan(t ) by

xpcan
α (t ) = 1

Zα (t )
xα (t )e−φ∗

α (t ). (58)

In a Markov jump process, Zα (t ) = ∑
i pi(t )e−φ∗

i (t ) is a nor-
malization constant that does not depend on α. In a chemical
reaction network, Z (t ) is any vector whose log becomes a
conservation law, i.e., ln Z (t ) = [ln Zα (t )] ∈ ker ST holds. If
there is no conservation law, Z (t ) will be the vector of 1’s.
Then, we have the relation

σ ex = − d

dt
D(x(t )‖xpcan(s))

∣∣∣∣
s=t

. (59)

This result follows because

d

dt
D(x(t )‖xpcan(s))

∣∣∣∣
s=t

=
∑

α

dxα

dt
(φ∗

α + ln Zα )

= JTSTφ∗ = −〈F, F ∗〉L = −〈F ∗, F ∗〉L, (60)

where the second equality follows from
∑

i Bie = 0 for
Markov jump processes and from ST ln Z = 0 for chemical
reaction networks. In particular, in a Markov jump process,
by the decomposition φ∗ = ε∗ + ln p, the pseudocanonical
distribution reads

ppcan
i = 1

Z
e−ε∗

i . (61)

If F ∗ = F , the pseudoenergy level ε∗ becomes the actual
energy level of each state. The expression (61) is the reason
why we refer to xpcan as the pseudocanonical distribution.

1This relation was proved for one-dimensional systems in [59]. In
Appendix B, we generalized it to multidimensional cases.
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Although this pseudocanonical distribution depends on the
instantaneous state, it indicates the momentary “goal” of the
dynamics, even if the system is attracted to a limit cycle.

Along with the pseudocanonical distribution xpcan, we can
formally obtain a gradient flow representation of the continu-
ity equation (2) even without detailed balance because

ST∇D(x‖xpcan ) = ST ln
x

xpcan

= ST(φ∗ + ln Z )

= −F ∗, (62)

so that

−SLST∇D(x‖xpcan ) = SLF ∗ = dx

dt
. (63)

This is a generalization of the gradient flow (24). We remark
that, even if the rates entering the dynamics via (3) are time-
independent, xpcan generally depends on time; see Eq. (58).

F. Brief comparison with Hatano–Sasa decomposition

There are other ways to decompose the EPR into excess
and housekeeping contributions. One well-known approach
is the Hatano–Sasa (HS) decomposition [2], also called the
adiabatic–nonadiabatic decomposition [3], which is given by

σ = σ ex
HS + σ hk

HS, (64)

σ ex
HS = JT(F − F st ), (65)

σ hk
HS = JTF st. (66)

If the flux is written in mass action form, the difference
between the forces becomes

Fe − F st
e =

∑
α

(ναι(e) − ναι′(e) ) ln
xα

xst
α

= −[ST�]e (67)

with �α = ln(xα/xst
α ). Then, we obtain another expression for

the HS excess EPR,

σ ex
HS = −JTST�, (68)

� = ln
x

xst
, (69)

which is similar to the expression σ ex = −JTSTψ∗ that
follows from the definition (34) and −SLSTφ∗ = SJ . The
non-negativity of the HS excess and housekeeping EPR can
be proven only when the steady state satisfies BJst = 0. For a
Markov-jump process, this condition is precisely the steady-
state condition. For a chemical reaction network, however,
this condition is called the complex balance condition and
is stricter than the steady-state condition SJst = νBJst = 0
[5,6]. On the other hand, the Onsager excess EPR is defined
even in the absence of a stable steady state, which we will
show in Sec. VI A through the Brusselator model that exhibits
a limit cycle. For a more detailed discussion about the re-
lation between our approach and the HS decomposition, see
Appendix C.

TABLE III. Summary of TURs we derive in Sec. IV. Unless
noted, the result is obtained only for Markov jump processes. Here,
CRN stands for chemical reaction network.

Short time Finite time

Eq. (76)Excess Eq. (92)For CRN, Eq. (81)
Housekeeping Eq. (88) Eq. (87)

IV. THERMODYNAMIC UNCERTAINTY RELATIONS

A. Short-time TUR: Markov jump process

The variational expression (48) allows us to obtain a set
of refined short-time TURs (Table III). In this section, we
focus on Markov jump processes. We define the edgewise
dynamical activity (traffic) χe by [60]

χe := ke pι(e) + k−e pι′(e). (70)

From the inequality in Eq. (15), we have


e = Je

Fe
� 1

2
χe. (71)

The equality holds if and only if p satisfies ke pι(e) = k−e pι′(e),
i.e., in the equilibrium state.

The numerator of the right-hand side in Eq. (48),
〈STψ, F 〉L, which reads 〈BTψ, F 〉L now, is the time derivative
of the expectation value 〈ψ〉 = ∑

i piψi because

d

dt
〈ψ〉 = ψTBJ = ψTBLF = 〈BTψ, F 〉L. (72)

Note that here we assume that ψ does not have any time
dependence. Thus, from the variational formula (48), we have
a TUR

(dt 〈ψ〉)2

〈BTψ, BTψ〉L
� σ ex (73)

for any observable ψ . Therefore, as long as we know the
edgewise Onsager matrix L, we can estimate the excess EPR
by measuring the rate of change of the average 〈ψ〉.

Because of the inequality in Eq. (71), the denominator is
bounded from above by the short-time limit of the variance as

〈BTψ, BTψ〉L � lim
τ→0

Var(�τψ )

2τ
=:

1

2
Dψ, (74)

where �τψ = ψi(t+τ ) − ψi(t ) and the variance is asymptoti-
cally given by [23]

Var (�τψ ) = τ
∑

e

χe([BTψ]e)2 + o(τ ). (75)

This inequality shows a weaker bound,

2(dt 〈ψ〉)2

Dψ

� σ ex. (76)

Although equality can only be achieved in equilibrium, where
we trivially have σ ex = 0, the inequality can be tight near
equilibrium, where the difference between the arithmetic and
logarithmic mean in Eq. (71) is small. Moreover, Eq. (76)
does not require information about the Onsager matrix L.
Therefore, it is much more tractable than Eq. (73) and gives
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an estimate of the excess EPR that depends only on the rate of
change of the average and the short-time fluctuations of some
observable. This inequality partly generalizes the short-time
TUR derived in Ref. [23] for the case in which currents are
expressed as changes of observables as above.

While the interpretation of the inequalities derived from
Eq. (48) as TURs was straightforward, we need to develop a
trajectory level description to understand the meaning of the
inequality suggested by Eq. (50). This is done later when we
discuss finite-time TURs.

B. Short-time TUR: Chemical reaction network

Next, we consider chemical reaction networks. Because of
the inequality between logarithmic mean and arithmetic mean
(15), we have

〈STψ,STψ〉L =
∑

e

([STψ]e)2 Je

Fe

� 1

2

∑
e

([STψ]e)2[Ke(c) + K−e(c)]. (77)

The scaled diffusion coefficient of a chemical reaction net-
work is defined by [6,30]

D̃αβ := 1

2

∑
e

SαeSβe[Ke(c) + K−e(c)]. (78)

Using this quantity, the right-hand side of Eq. (77) becomes

1

2

∑
e

([STψ]e)2[Ke(c) + K−e(c)] = ψTD̃ψ. (79)

Moreover, because

〈STψ, F 〉L = ψTSJ = d

dt
(ψTc), (80)

we obtain a TUR for a chemical reaction network

1

ψTD̃ψ

(
d

dt
(ψTc)

)2

� σ ex. (81)

This inequality generalizes the previous result in Ref. [30]:
because σ ex � σ ,

max
α

1

D̃αα

(
dcα

dt

)2

� σ (82)

follows by setting ψα′ = δα′α .

C. Finite-time TURs

The above results relate the excess EPR to the short-time
fluctuations of observables. In the following, we obtain finite-
time TURs for Markov jump process. Proofs of these relations
are found in Appendix D. Note that these proofs rely on the
expression for the path probability of the system, so their
generalization to chemical reaction networks is challenging,
and we leave it for future work.

In general, we consider a stochastic current observable Jw

with weight we(t ),

Jw =
∑

k

wek (tk ) (83)

for a stochastic trajectory with jumps ek at time tk (k =
1, 2, . . . ). We assume the weight satisfies we = −w−e. The
average during a time interval [0, τ ] is given by

〈Jw〉τ =
∫ τ

0
dt

∑
e

we(t )Je(t ). (84)

We introduce a decomposition of the current observable into
the excess and the housekeeping contribution [29] as〈

J ex
w

〉
τ

:=
∫ τ

0
dt

∑
e

we(t )J∗
e (t ), (85)

〈
J hk

w

〉
τ

:=
∫ τ

0
dt

∑
e

we(t )[Je(t ) − J∗
e (t )], (86)

where we defined J∗
e (t ) := 
e(t )F ∗

e (t ). As shown above, these
currents induce the same time evolution as J , since BJ∗ =
BLF ∗ = BJ .

By using the housekeeping component of a current observ-
able, we can show the TUR for the Onsager housekeeping EP,(〈

J hk
w

〉
τ

)2

Var(Jw )
� 1

2

∫ τ

0
dt σ hk, (87)

with variance Var(Jw ) := 〈(Jw − 〈Jw〉τ )2〉τ . Unlike the
short-time TURs discussed above, this relation is valid for
any finite time duration. It states that the conventional form
of the steady-state TUR remains valid if we consider the
respective housekeeping contributions for both the current and
the entropy production.

Now, we can derive a short-time TUR for the housekeep-
ing EPR. Since the time interval [0, τ ] can be replaced with
[t, t + �t], by taking the limit �t → 0, we obtain the short-
time TUR

2
(
dt

〈
J hk

w

〉
t

)2

Dw

� σ hk (88)

with

Dw =
∑

e

χew
2
e = lim

�t→0

Var(Jw )

�t
(89)

because

dt
〈
J hk

w

〉
t =

∑
e

we(t )[Je(t ) − J∗
e (t )]

= lim
�t→0

1

�t

∫ t+�t

t
dt ′ ∑

e

we(t ′)[Je(t ′) − J∗
e (t ′)].

(90)

When we assume the weight satisfies w = (we)e=1,...,E ∈
ker SL, we see that wTJ∗ = wTLF ∗ = 0 because F ∗ ∈ im ST.
Thus, we find another TUR,

2(dt 〈Jw〉t )2

Dw

� σ hk (91)

for w ∈ ker SL. Because dt 〈Jw〉t = wTJ = 〈w, F 〉L, this is
derived from Eq. (50) in the same way as we did in Sec. IV A.
What is important here is that, by introducing a current ob-
servable, we can interpret the inequality we get as a TUR.

If we change the time interval as in Refs. [29,61], we
can also derive a finite-time TUR for the Onsager excess
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EP. We assume that the transition rates ke(t ) depend on t
and τ in the form of t/τ only. For example, with k0 con-
stant, ke(t ) = k0 exp(t/τ ) is acceptable but ke(t ) = k0 exp(t )
and ke(t ) = τ−1 exp(t/τ ) are not. Physically, this assumption
means that any external operation on the system is accelerated
when τ becomes smaller, and vice versa. We put the same
assumption on the time dependence of the weight w. Under
these assumptions, we can prove the finite-time TUR(

τ∂τ 〈Jw〉τ − 〈
J hk

w

〉
τ

)2

Var(Jw )
� 1

2

∫ τ

0
dt σ ex, (92)

where ∂τ is taken while holding fixed the normalized time
t/τ that defines ke (and enters into the definition of 〈Jw〉τ ,
Eq. (84), via Je).

When the weight is given by a scalar time-dependent
observable ψ (t/τ ) as w = BTψ , Jw becomes the change
�τψ = ψ (1) − ψ (0) and we have the relations

〈Jw〉τ =
∫ τ

0
dt ψTBJ =

∫ τ

0
dt

d

dt
〈ψ〉

= 〈ψ (1)〉t=τ − 〈ψ (0)〉t=0 (93)

〈
J hk

w

〉
τ

=
∫ τ

0
dt ψTB(J − J∗) = 0. (94)

Then, Eq. (92) reads

[τdτ 〈ψ (1)〉t=τ ]2

Var(�τψ )
� 1

2

∫ τ

0
dt σ ex. (95)

This can be understood as a refinement of the TUR for time-
dependent driving derived in Ref. [61]. In particular, when
one considers the change of scalar observables, rather than
currents, the resulting TUR can only estimate the excess part
of the entropy production. By taking the limit τ → 0, we
recover the short-time TUR (76).

Since the proofs of the finite-time TURs are lengthy
and technically similar to existing results, we give them in
Appendix D, only explaining their underlying idea briefly at
this point. The structures of the proofs are essentially the
same. The first step is to parametrize the rate constant and
compare the two path probabilities for two close parameters.
The difference between the two path probabilities is mea-
sured by a KL divergence that bounds from above the ratio
of two quantities: (i) the difference between the averages of
the current observable given by the different parameters, and
(ii) the variance of the current observable. This inequality is
obtained from the fluctuation-response inequality [26]. The
difference between the observables can be shown to be equal
to 〈J hk

w 〉 or τ∂τ 〈Jw〉τ − 〈J hk
w 〉 depending on the way the rates

are parametrized. At the same time, the KL divergence bounds
from below the Onsager excess or housekeeping EP. Combin-
ing the two inequalities, we obtain the uncertainty relations.

V. WASSERSTEIN GEOMETRY

A. Generalization of the Wasserstein distance

In our final set of main theoretical results, we provide a
generalization of the Wasserstein distance measure (26) and
the speed limit (29) (see Table IV). In this section, we assume
that the kinetics K do not depend on time explicitly.

TABLE IV. Summary of the main results we obtain in Sec. V.
Here “distance” means Wasserstein distance. The first three are math-
ematically novel, while the last two reveal physical relations between
the Wasserstein geometry and the excess EP(R).

Generalization of distance Eq. (100)
Constant speed property Eq. (104)
Duality formula Eq. (105)
Connection between distance and excess EPR Eq. (110)
Speed limit with excess EP Eq. (116)

As we reviewed in Sec. II C, the Wasserstein distance
has been defined for Markov jump processes with detailed
balanced steady states. Now, we find a general definition ap-
plicable to both Markov jump processes and chemical reaction
networks:

W (x(0), x(1) ) := inf
x, f

(∫ 1

0
dt ‖ f (t )‖2

L(x(t ))

)1/2

(96)

under the following conditions:

dx

dt
= SL(x) f , x(t = 0) = x(0), x(t = 1) = x(1). (97)

As in Eq. (28), the unit time interval can be replaced with an
arbitrary one [0, T ], and we have

W (x(0), x(1) ) = inf
x, f

(
T

∫ T

0
dt ‖ f (t )‖2

L(x(t ))

)1/2

(98)

for any T > 0, with the last condition of Eq. (97) replaced
with x(T ) = x(1). Because L(x) = diag(
e(x)) is defined by


e(x) = Ke(x) − K−e(x)

ln (Ke(x)/K−e(x))
, (99)

W is defined in reference to some kinetics K. Here, x(t )
and f (t ) are taken as independent variables in the minimiza-
tion, which are related by dt x = SL(x) f ; in particular, f (t )
is not necessarily equal to the original thermodynamic force
F (x(t )). If there is no pair of x and f that satisfies the con-
tinuity equation in Eq. (97) for a given (x(0), x(1) ), we may
let W = ∞. However, we do not consider such a situation,
because if (x(0), x(1) ) are realized as the initial and final state
of the dynamics (2), then x(t ) and F (x(t )) are a solution.

We can show that the optimal force that provides the value
of W is conservative. That is, we have the formula

W (x(0), x(1) ) = inf
x,ψ

(
T

∫ T

0
dt ‖STψ (t )‖2

L(x(t ))

)1/2

(100)

with the conditions

dx

dt
= SL(x)STψ, x(t = 0) = x(0), x(t = T ) = x(1).

(101)

We give the proof of this formula in Appendix E.
The mathematical features of the generalized Wasserstein

distance are expected to be similar to those of Maas’s distance
[42]. In this paper, we demonstrate two important properties
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of the Wasserstein distance, namely the constant speed prop-
erty of a geodesic [43] and the Kantorovich duality [44].

We first explain that a geodesic with respect to the Wasser-
stein distance has constant speed. In Ref. [43], the authors
proved that there exists a geodesic p∗ accompanied by po-
tential ψ∗ with respect to their original definition of the
Wasserstein distance (26). This geodesic has constant speed,
meaning that ‖BTψ∗(t )‖L(p∗(t )) = const. As we show, the
proof is also valid if we assume there is a geodesic x∗ with
potential ψ∗ for the generalized Wasserstein distance (100).
Because of the Cauchy–Schwarz inequality, for an arbitrary
{x, ψ}, we have

T
∫ T

0
dt ‖STψ (t )‖2

L(x(t )) �
(∫ T

0
dt ‖STψ (t )‖L(x(t ))

)2

.

(102)

Moreover, using a reparametrization discussed in Ref. [62],
we can also prove the opposite inequality,

T
∫ T

0
dt ‖STψ∗(t )‖2

L(x∗(t )) �
(∫ T

0
dt ‖STψ∗(t )‖L(x∗(t ))

)2

(103)

for the geodesic pair {x∗, ψ∗}. We provide the details of this
technique in Appendix F. Because the equality of the Cauchy–
Schwarz inequality (102) is attained only if ‖STψ (t )‖L(x(t )) is
constant, the geodesic has the constant speed

‖STψ∗(t )‖L(x∗(t )) = W (x(0), x(1) )

T . (104)

Next, for a Markov jump process, we prove the Kan-
torovich duality representation [32] of the Wasserstein dis-
tance as in Ref. [44]:

1

2T W (p(0), p(1) )2 = sup
ψ

(〈ψ (T )〉1 − 〈ψ (0)〉0), (105)

where ψ (t ) ∈ RS (t ∈ [0, T ]) has to satisfy

qTdtψ (t ) + 1

2
‖BTψ (t )‖2

L(q) � 0 (106)

for any probability distribution q, and 〈·〉i (i = 0, 1) is the
expectation value under p(i). The maximizer ψ∗∗ of Eq. (105)
and the minimizer {p∗, ψ∗} of Eq. (100) provide the same
conservative force, BTψ∗ = BTψ∗∗. Furthermore, it can be
shown that ψ∗∗ and p∗ attain the equality in Eq. (106) as

[p∗(t )]Tdtψ
∗∗(t ) + 1

2
‖BTψ∗∗(t )‖2

L(p∗(t )) = 0, (107)

which can be seen as a generalization of the Hamilton–Jacobi
equation. While the duality representation characterizes the
Wasserstein distance as the maximum potential difference
without considering the time evolution of the distribution, we
can use the Hamilton–Jacobi equation with the differential
equation in Eq. (101) to obtain the optimal solution. We pro-
vide a proof of the duality formula (105) in Appendix G; there,
we assume the existence of an optimal time evolution of p
and ψ , that is, a geodesic. A proof that is more rigorous but
restricted to systems with detailed balanced steady states can
be found in Ref. [44].

B. Wasserstein distance and Onsager excess EPR

Here we show that, analogously to the continuous case
[28,29,34,36,39], the Wasserstein distance is connected with
the excess entropy production. To this end, we employ the
definition given in Eqs. (98) and (97).

Let {x̂(t )}t∈[0,τ ] be a solution of the continuity equation (2).
Note that τ indicates the physical time interval we focus on
while T is an arbitrary time parameter. If we set x(0) = x̂(t ),
x(1) = x̂(t + dt ), and T = dt in Eq. (98), condition (97) reads

x(dt ) − x(0) = SL(x̂(t )) f (0)dt + o(dt ),

x(0) = x̂(t ), x(dt ) = x̂(t + dt ). (108)

Hence for an infinitesimal time interval dt , the Wasserstein
distance can be expanded as

W (x̂(t ), x̂(t + dt ))2

= dt2 inf
f |dt x̂(t )=SL(x̂(t )) f

‖ f ‖2
L(x̂(t )) + o(dt2). (109)

The condition of minimization can be translated into { f |
F (x̂(t )) − f ∈ ker SL}, hence the leading term is identified
with the excess EPR σ ex from Eq. (49). We finally obtain the
relation (

lim
dt→0

W (x̂(t ), x̂(t + dt ))
dt

)2

= σ ex. (110)

Intuitively, in the definition of the Wasserstein distance
Eq. (98), we optimize over the thermodynamic forces and the
corresponding evolution of the state connecting the initial and
final state. By contrast, in computing the excess EPR, we re-
strict the evolution of the state to that of the original dynamics
and only optimize over the forces. In the short-time limit of
a single time-step, there is no evolution of the state, so both
problems are equivalent and we can identify the Wasserstein
distance and the excess EPR with each other.

C. Speed limit

We define l̇ and l by

l̇ (t ) := lim
dt→0

W (x̂(t ), x̂(t + dt ))
dt

, l :=
∫ τ

0
dt l̇ (t ). (111)

While W (x̂(0), x̂(τ )) gives the shortest length between the
initial state x̂(0) and the final state x̂(t ), l quantifies the length
of the path {x̂(t )}t∈[0,τ ] in terms of the Wasserstein metric.
Using l , we have the speed limit, as in Ref. [39],

l2 � τ

∫ τ

0
dt σ ex. (112)

This is because of the Cauchy–Schwarz inequality l2 =
(
∫ τ

0 dt l̇ )2 � (
∫ τ

0 dt )(
∫ τ

0 dt l̇2) and the equality (110).
By the constant speed property, the following triangle in-

equality is proven for any t1, t2, t3 ∈ [0, τ ]:

W (x̂(t1), x̂(t3)) � W (x̂(t1), x̂(t2)) + W (x̂(t2), x̂(t3)). (113)

This relation leads to an inequality between the two distance
measures as

W (x̂(0), x̂(τ )) �
∫ τ

0
dt l̇ (t ) = l. (114)
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The equality holds only when the distribution changes at the
constant speed

l̇ (t ) = W (x̂(0), x̂(τ ))
τ

. (115)

By combining Eqs. (112) and (114), we obtain the speed limit

W (x̂(0), x̂(τ ))2 � τ

∫ τ

0
dt σ ex. (116)

This generalizes the Vu and Hasegawa speed limit (29), which
was introduced in Ref. [31] for systems with detailed balanced
steady states, to general Markovian dynamics on a graph that
may have no stable steady state.

D. Relation to L1-Wasserstein distance

Another distance that has been considered in the theory of
optimal transport is the L1-Wasserstein distance [32,55]. This
distance is defined by

W1(p(0), p(1) ) := inf
�

∑
i, j

di j�i j, (117)

where the infimum is taken over the couplings between the
probability distributions p(0) and p(1), that is,

�i j � 0,
∑

j

�i j = p(0)
i ,

∑
i

�i j = p(1)
j , (118)

and di j is a weight that satisfies the axioms of distance: di j =
d ji � 0, di j = 0 if and only if i = j, and di j � dik + dk j . The
(i, j)-element of a coupling represents how much of the mass
on i is moved to j, and d evaluates the cost of the transporta-
tion. Here we set di j = 1 if i and j are directly connected, and
we assume that the graph of states is connected.

In Ref. [55], one of us derived the Kantorovich duality for
this L1-Wasserstein distance,

W1(p(0), p(1) ) =
∑

i

ξi
(
p(1)

i − p(0)
i

)
, (119)

where ξ is a potential that satisfies ξ j − ξi = di j = 1 if and
only if the optimal coupling �∗ is positive on (i, j), �∗

i j > 0.
Using this formula, we can prove the following relation be-
tween the L2- and L1-Wasserstein distance:

Ā[p∗]

2
W2(p(0), p(1) )2 � W1(p(0), p(1) )2, (120)

where we write the L2-Wasserstein distance as W2, and Ā[p∗]
is the time-averaged dynamical activity of the minimizer p∗ of
the L2-Wasserstein distance,

Ā[p∗] = 1

τ

∫ τ

0
dt

∑
e

(ke p∗
ι(e) + k−e p∗

ι′(e) ). (121)

This is similar to the inequality W2(p0, pτ ) � W1(p0, pτ ) for
the L2- and L1- Wasserstein distances of continuous probabil-
ity distributions [32], apart from the prefactor that represents
how frequently transitions occur in the optimal path on aver-
age. We provide the proof in Appendix H. We remark that in
the discrete case, the L2-distance defined above is a dynamics-
wise measure and depends on the concrete values of the rates.
By contrast, the L1-distance depends only on the connectivity
of the state network. This differs from the continuous case,

FIG. 5. Conceptional diagram of example VI A. A two-level sys-
tem is attached to two heat reservoirs at different temperatures. The
total dissipation (EPR) σ can be divided into excess EPR σ ex and
housekeeping EPR σ hk. Both are clearly interpreted as follows: σ ex

corresponds to a relaxation caused by a single reservoir at the “mean”
temperature β̄, while σ hk is attributed to heat transfer that does not
change the state.

where both distances are defined in terms of the Euclidean
distance.

VI. EXAMPLES

In this section, we discuss two examples. One clearly
shows how the Onsager-projective decomposition works and
separates the two aspects of dynamics into excess and house-
keeping terms. It illustrates that the short-time TUR (76)
improves the bound given in Ref. [23]. The other demonstrates
that the decomposition can also be obtained for a nonlinear
chemical reaction network that exhibits a limit cycle. We
numerically show that in such a system, the conventional HS
decomposition fails. On the other hand, we do not discuss
other results such as the generalization of finite-time TURs
and the Wasserstein speed limit because they have been well
studied in [25,61] and [58], respectively.

A. Two-level system attached to two reservoirs

We illustrate our results in a simple two-level stochastic
system. Consider a two-level system attached to two heat
reservoirs at inverse temperatures βh and βc, respectively. We
can calculate the analytical forms of the excess and house-
keeping EPR. Let the energy of state i be εi for i = 1, 2 and
ε2 > ε1. There are two kinds of transition associated with the
distinct reservoirs. We label each transition with the reservoir
at inverse temperature βe by e = h or c, instead of 1 or 2, to
avoid confusion. The incidence matrix is then given by

B =
(−1 −1

1 1

)
. (122)

This setup is illustrated in Fig. 5.
By using the eigendecomposition of BLBT and formula

(31), we can find the projection matrix

P = 1


h + 
c

(

h 
c


h 
c

)
, (123)

where 
e denotes the Onsager coefficient associated with a
transition driven by heat bath e. It leads to the conservative
force F ∗ as

F ∗ = PF = 
hFh + 
cFc


h + 
c

(
1
1

)

= −BTφ∗, (124)

013017-13



YOSHIMURA, KOLCHINSKY, DECHANT, AND ITO PHYSICAL REVIEW RESEARCH 5, 013017 (2023)

where, up to an additive constant,

φ∗ = −
hFh + 
cFc


h + 
c

(
0
1

)
. (125)

The choice of φ∗ is not unique, but φ∗
2 − φ∗

1 = −F ∗
h = −F ∗

c
is uniquely determined, so we write φ∗

2 − φ∗
1 as �φ∗. If we do

not consider any explicit external force, the forces read

Fe = −βe�ε − � ln p (126)

for e = h, c, where �ε = ε2 − ε1 and � ln p = ln p2 − ln p1.
Then, we obtain the expression

�φ∗ = β̄�ε + � ln p (127)

with

β̄ = 
hβh + 
cβc


h + 
c
. (128)

Therefore, φ∗ can be thought of as a mean potential of the sys-
tem attached with a single bath at inverse temperature β̄. The
excess EPR is then interpreted as the dissipation due to the
relaxation to the pseudocanonical distribution ppcan

i ∝ e−β̄εi ,
in view of Eq. (59).

On the other hand, F − F ∗ is written as

F − F ∗ = �ε�β


h + 
c

(

c

−
h

)
, (129)

where �β := βc − βh. Then, the corresponding current

Jcyc := L(F − F ∗) = 
h
c�ε�β


h + 
c

(
1

−1

)
(130)

is cyclic (BJcyc = 0). Moreover, the housekeeping EPR reads

σ hk = 
h
c


h + 
c
(�ε)2(�β )2. (131)

From this expression, we can see that the (inverse) tempera-
ture difference leads to a nonequilibrium steady state with a
positive rate of dissipation.

We illustrate the TUR of Eq. (76) and compare our decom-
position with the HS decomposition in Fig. 6. We plot the time
evolution of the ratios

η = 2(dt 〈ψ〉)2

Dψσ ex
� 1, η′ = 2(dt 〈ψ〉)2

Dψσ
� 1, (132)

where we choose the observable ψ = (1, 0)T. Note, however,
that in this case η and η′ do not depend on the choice of
ψ , as long as it is nonzero. We find that η′ has a maxi-
mum value of t � 0.3 and cannot attain the upper bound
1, while η approaches 1 as t → ∞ (even though σ ex van-
ishes at the same time). This calculation was done with
parameters βh = 1, βc = 2, ε2 − ε1 = 1, k−h = k−c = 1, and
p0(0)/p1(0) = 103.

The inset shows the time evolution of the excess and
housekeeping EPR for the two decompositions. Both decom-
positions give almost the same values in this system. We
note that we can also express the HS housekeeping EPR with
another mean temperature ¯̄β, which can be defined by

−�ε ¯̄β := ln
k+

h + k+
c

k−
h + k−

c

. (133)

FIG. 6. Verification of the short-time TUR of Eq. (76). The ratios
between the lower bound 2(dt 〈ψ〉)2/Dψ vs EPR σ and excess EPR
σ ex are shown. η corresponds to σ ex and η′ to σ . We choose the
observable ψ = (1, 0)T but, in this system, the lower bound does not
depend on the choice of ψ �= 0. η′ decreases and tends to zero after
its peak because σ does not vanish when t → ∞. On the other hand,
η approaches the upper bound of 1, although σ ex diminishes at the
same time. In the inset, we compare our decomposition with the HS
decomposition. In this example, where a stable steady state exists,
they behave in almost the same way.

It satisfies βh � ¯̄β � βc if βh � βc and lets us rewrite the HS
housekeeping EPR as

σ hk
HS = �ε[( ¯̄β − βh )Jh + ( ¯̄β − βc)Jc]. (134)

However, the definition of ¯̄β is not straightforward, and this
expression is less easy to interpret than Eq. (131).

B. Brusselator model of chemical oscillation

Let us consider the Brusselator model of a chemical oscil-
lation. This model consists of three reactions,

∅ � X, X � Y, 2X + Y � 3X. (135)

We assume the mass action law and set the rate constants
k1 = k3 = k−1 = k−3 = 1, k2 = 10, and k−2 = 0.1. The con-
centrations of X and Y obey the following rate equation:

dcX

dt
= 1 − cX − 10cX + 0.1cY + c2

X cY − c3
X ,

dcY

dt
= 10cX − 0.1cY − c2

X cY + c3
X . (136)

Here we denote the concentrations by c rather than x. This
equation admits an unstable steady state (cX , cY ) = (1, 10)
and has a limit cycle. The time evolution is shown in the
uppermost panel of Fig. 7. In the smaller inset, we show the
oscillation of the concentrations cX and cY . The bigger graph
shows its cyclic behavior. The blue star indicates the unstable
fixed point.

We show the behavior of the EPRs along with ‖ċ‖2 =
ċ2

X + ċ2
Y in the middle panel. ‖ċ‖2 is normalized so that it fits

in the graph with the EPRs. This figure shows the correlation
between σ ex and ‖ċ‖2. In this model, the faster the concen-
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FIG. 7. Housekeeping/excess EPR decomposition in the Brus-
selator model of chemical oscillations. We show the time evolution
of the concentration c = (cX , cY ) from Eq. (136) in the inset of the
uppermost panel. The uppermost panel shows the trajectory of c,
which starts from c(0) = (3, 8) and rapidly converges to the limit
cycle. The blue star indicates the unstable fixed point c = (1, 10).
A point in the trajectory is yellower (brighter) when σ ex is large
relative to σ hk. The middle figure shows EPRs and the squared norm
‖ċ‖2 = ċ2

X + ċ2
Y as a function of time. The norm is normalized so that

it fits in the graph with EPRs, thus the value is in arbitrary units. Note
the correlation between the Onsager excess EPR σ ex and the speed
of the concentration vector ‖ċ‖2 in the middle panel. As shown in the
lowermost panel, in this system with an unstable steady state, the HS
excess EPR can be negative.

tration changes, the bigger the Onsager excess EPR becomes.
The color of the dots in the uppermost panel indicates the size
of σ ex relative to σ hk. The yellow (bright) color corresponds
to parts of the trajectory where σ ex is large. This situation
corresponds to around t � 25.8 in the middle panel.

Below the middle figure, we show that the HS excess EPR
can be negative if one defines it using the unstable steady state
xst. Let us prove this fact in the general case. σ ex

HS is given by

the time derivative of the KL divergence as

d

dt
D(x‖xst ) = −σ ex

HS (137)

when the flux obeys the mass action law [3,5,6]. For a cyclic
solution x with a period T > 0, we have∫ T

0
dt σ ex

HS = D(x(0)‖xst ) − D(x(T )‖xst ) = 0. (138)

This implies that, unless σ ex
HS vanishes identically, it has to take

negative values at some times during the cycle. We stress that
this is in contrast to the Onsager projective decomposition,
whose excess part is positive by construction.

VII. DISCUSSION

In this paper, we developed a geometrical perspective
on dissipation in general Markovian dynamics on networks.
In particular, we found a geometrical excess/housekeeping
decomposition of the entropy production rate that helps us
to understand dynamics in terms of dissipation. Our de-
composition leads to refinements of several thermodynamic
uncertainty relations. We have also generalized the L2-
Wasserstein geometry of a Markovian dynamics on a network,
which allows us to derive the thermodynamic speed limit.
Because our results are valid for very general dynamics, we
expect that they will offer novel insights in various concrete
systems.

The geometrical decomposition given by the projection in
(31) shows how dynamics can be divided into two modes,
one being cyclic and one being a relaxation driven by a
conservative force, which can be written as a gradient flow.
Even if a stable steady state does not exist, we can identify an
instantaneous target of the relaxation mode as in Eq. (58). The
Onsager excess entropy production quantifies the dissipation
due to this relaxation. On the other hand, the cyclic mode
keeps the system out of equilibrium. The size of the cyclic
mode defines the Onsager housekeeping entropy production,
which can be further decomposed into contributions from in-
dividual cycles, generalizing Schnakenberg’s decomposition
as in Eq. (43). Because these interpretations apply to both
Markov jump processes and chemical reaction networks, our
decomposition provides a clear and general thermodynamic
separation of motion.

We note that one may define a decomposition of the EPR
using an orthogonal projection onto the image of BT instead of
ST as we have done. For a Markov jump process, it provides
the same results, while for a chemical reaction network it
gives a different decomposition. The excess part of this de-
composition vanishes in a steady state only if the steady state
is complex balanced, but both parts are always non-negative
in contrast to the HS decomposition, thus this decomposition
could provide another perspective to chemical reaction net-
works. However, it may be argued that the projection onto
the image of ST, as investigated here, is more physically
meaningful. This is because it corresponds to conservative
forces defined in terms of the stoichiometric coefficients of the
reactions, as is standard in chemical thermodynamics, rather
than forces that depend explicitly on the reactant and product
chemical complexes.
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From the experimental point of view, the edgewise Onsager
coefficient, and therefore the Onsager excess and housekeep-
ing EPRs, require information about the kinetics. For this
reason, it may be difficult to access them experimentally.
However, recent studies have shown that TURs can be utilized
to obtain estimates of the entropy production [23,24]. In a
similar manner, we can use the refined TURs to estimate the
excess and housekeeping EPR using measurable quantities.
Although we cannot generally attain equality in the TUR
for a discrete system out of equilibrium, since part of the
estimation error stems from the log mean inequality between
the edgewise Onsager coefficient and the edgewise activity
[63], this error gets smaller as the system gets closer to a
steady state. In a two-level system, we can approach equality,
as shown in Fig. 6 of Sec. VI A, because the steady state is
“detailed balanced” in the sense that there is no net current
between the states, even though there is a steady flux between
the reservoirs.

We have also extended Maas’s definition of L2-Wasserstein
distance to a general Markovian dynamics on a network.
A mathematical advantage of Maas’s distance is that it can
be related to master equation dynamics via the Wasserstein
gradient flow [42], compared with other optimal transport
theoretical distances between two discrete distributions, e.g.,
the L1-Wasserstein distance [32,55] and another discretization
of the L2-Wasserstein distance [64]. We expect that a deter-
ministic rate equation with a detailed-balanced steady state
is also characterized as a Wasserstein gradient flow with the
aid of our generalized Wasserstein distance, beyond the usual
gradient flow expression as in Eq. (24) [11].

The relation between the geometrical decomposition and
the generalized Wasserstein distance presented in Eq. (110)
is parallel to recent results for Langevin systems [28,29].
Therefore, our generalization of Maas’s L2-Wasserstein dis-
tance is not only important from a mathematical point of
view, but it also has a physical interpretation as the minimum
excess entropy of a process connecting the initial and final
state. As discussed above, obtaining a meaningful “minimum
entropy production” requires a constraint, that is, keeping
some quantity fixed during the minimization [55–58,65]. In
the present study, we fix the Onsager coefficients, whereas
in previous studies [56,57,65] the symmetric parts or one of
the two directions of the transition rates were fixed. While the
latter may be the intuitive choice from an operational point of
view, our approach establishes the connection between min-
imum entropy production, conservative forces, and optimal
transport. Although we have shown how the excess EPR can
be understood as a minimum EPR at each time point, further
study is needed to investigate how the finite-time optimization
of the Wasserstein distance works practically and how the
different approaches are related to each other.

One drawback of the discrete L2-Wasserstein distance is
that it needs a kinetics to refer to. Since the reference kinetics
has to be time-independent, we cannot obtain the Wasserstein
speed limit in externally driven systems. Note that we can-
not naively generalize the Wasserstein distance to the case
in which the reference kinetics is time-dependent. While in
the original definition the time interval is not definite, we
should care about how to define the time integral for a time-
dependent reference. Whichever way we choose, we cannot

use the conventional reparametrization technique, which is
well described in Appendix F, because it requires the refer-
ence kinetics to be time-independent. As a result, it becomes
difficult to prove several properties, such as the triangle in-
equality and constant speed property of a geodesic.

Let us mention a complementary study that we have
recently done. In this paper, we considered an EPR de-
composition by studying the space of thermodynamic forces
using Euclidean geometry. However, it is also possible to
define such a decomposition using the non-Euclidean infor-
mation geometry. We develop this perspective in Ref. [66],
where we derive several thermodynamic bounds based on an
information-geometric excess/housekeeping decomposition.

Finally, we remark about a missing piece: nonlinear sys-
tems in continuous space. Two of the present authors, with
another coauthor, presented a geometric decomposition of
the EPR for linear stochastic systems in continuous space
[28,29]. In this work, we developed it for Markov jump
processes (linear stochastic system) and chemical master
equations (nonlinear deterministic systems) in discrete space.
The story remains to be written for nonlinear systems in
continuous space, such as reaction-diffusion chemical systems
and hydrodynamic systems. For such systems, geometric tech-
niques for decomposing EPR may shed light on new kinds of
thermodynamic constraints and tradeoffs.
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APPENDIX A: EQUIVALENCE OF DEFINITIONS
OF WASSERSTEIN DISTANCE

Let us show that our definitions of the Wasserstein dis-
tance (26) and (100) are consistent with previous studies, e.g.,
Ref. [42]. That is, the approach from [42] is equivalent to ours
if detailed balance holds. In Ref. [42], the author defines the
relative distribution

ρi := pi

peq
i

(A1)

and defines the Wasserstein distance by

W ′(p(0), p(1) )

:= inf
p,ψ

⎛
⎝∫ 1

0
dt

1

2

∑
i, j

(ψi − ψ j )
2ki→ j peq

i L(ρi, ρ j )

⎞
⎠

1/2

(A2)

with conditions

d

dt
ρi +

∑
j

(ψ j − ψi )ki→ jL(ρi, ρ j ) = 0, (A3)

p(t = 0) = p(0), p(t = 1) = p(1), (A4)
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where L is the logarithmic mean

L(a, b) := a − b

ln a − ln b
. (A5)

First, by symmetry, the integrand is rewritten as

1

2

∑
i, j

(ψi − ψ j )
2ki→ j peq

i L(ρi, ρ j )

=
∑

e

([BTψ]e)2ke peq
ι(e)L(ρι(e), ρι′(e) ), (A6)

where we used the detailed balance condition ke peq
ι(e) =

k−e peq
ι′(e). Moreover, the numerator of the logarithmic mean

times ke peq
ι(e) gives Je because

ke peq
ι(e)ρι(e) = ke pι(e), (A7)

ke peq
ι(e)ρι′(e) = k−e peq

ι′(e)ρι′(e) = k−e pι′(e). (A8)

Furthermore, the denominator reads

ln ρι(e) − ln ρι′(e) = ln
ke pι(e)

k−e pι′(e)
= Fe (A9)

due to the detailed balance condition. Therefore, we have

ke peq
ι(e)L(ρι(e), ρι′(e) ) = Je

Fe
= 
e, (A10)

and the integrand is equal to∑
e

([BTψ]e)2
e = ‖BTψ‖2
L. (A11)

We next consider the conditions for minimization. From
Eq. (A10), we find that condition (A3) is equivalent to

d

dt
pi +

∑
j

(ψ j − ψi )
i→ j = 0, (A12)

where 
i→ j = 
e if the edge e corresponding to the transition
i → j is in the set of edges {1, . . . , E}, and 
i→ j = 0 if not
(so ki→ j = k j→i = 0). Due to the symmetry 
i→ j = 
 j→i, we
have ∑

j

(ψ j − ψi )
i→ j

=
∑

e:i→∗

e

∑
j

B jeψ j −
∑

e:∗→i


e

∑
j

B jeψ j

= −
∑

e

Bie
e

∑
j

B jeψ j = −[BLBTψ]i, (A13)

therefore the conditions are equivalent to ours in Eq. (27).
Finally, we complete proving the equivalence

inf
p,ψ

⎛
⎝1

2

∫ 1

0
dt

∑
i, j

(ψi − ψ j )
2ki→ j peq

i L(ρi, ρ j )

⎞
⎠

1/2

= inf
p,ψ

(∫ 1

0
dt ‖BTψ‖2

L

)1/2

(A14)

with equivalent conditions

d

dt
ρi +

∑
j

(ψ j − ψi )ki→ jL(ρi, ρ j ) = 0, (A15)

p(t = 0) = p(0), p(t = 1) = p(1) (A16)

for the left-hand side and

d

dt
p = BLBTψ, p(t = 0) = p(0), p(t = 1) = p(1) (A17)

for the right-hand side.

APPENDIX B: ONSAGER COEFFICIENT AND DIFFUSION
COEFFICIENT

We discuss how the Onsager coefficients are connected
to the diffusion coefficient in Langevin systems when we
consider a Markov jump process on a square lattice that ap-
proximates a continuous space. The result here was obtained
in Ref. [58] for one-dimensional cases, and we generalize it to
n-dimensional systems for an arbitrary dimension n.

Let i denote a point on an n-dimensional square lattice with
the lattice constant �x � 1. The discrete probability distri-
bution pi can be approximated by a smooth density function
P(x) as pi � P(i)(�x)n. A transition can be designated by its
starting point and the direction d = ±1, . . . ,±n. With w

(d )
i

being the transition rate of the jump from i in direction d , we
have the master equation

d pi

dt
=

±n∑
d=±1

(
w

(−d )
i+d pi+d − w

(d )
i pi

)
, (B1)

where we make the time dependence implicit and i + d is the
point next to i in the direction of d . Note that now each edge
is determined by the combination of the starting point and the
direction of movement.

As in previous work [58,67], we assume the transition rates
are expanded as the series

w
(d )
i = Dd (i)

�x2
+ fd (i)

�x
+ o(1). (B2)

Here, we assume Dd (x) to be a symmetric function [D−d (x) =
Dd (x)] and fd (x) antisymmetric [ f−d (x) = − fd (x)]. Then the
master equation reads

d pi

dt
= 1

�x2

±n∑
d=±1

[D−d (i + d )pi+d − Dd (i)pi]

+ 1

2�x

±n∑
d=±1

[ f−d (i + d )pi+d − fd (i)pi] + o(1)

=
n∑

d=1

Dd (i + d )pi+d + Dd (i − d )pi−d − 2Dd (i)pi

�x2

−
n∑

d=1

fd (i + d )pi+d − fd (i − d )pi−d

2�x
+ o(1). (B3)
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By taking the limit �x → 0, we have the Fokker–Planck
equation

∂

∂t
P(x) = −

n∑
d=1

∂

∂xd
( fd (x)P(x)) +

n∑
d=1

∂2

∂x2
d

(Dd (x)P(x)).

(B4)

Now, we can show that to the leading order, the current and
the force on edge (i, d ) are given as

Jd (i) � fd (i)pi

�x
− ∂d (Dd (i)pi )

�x
, (B5)

Fd (i) � fd (i)

Dd (i)
�x − ∂d (Dd (i)pi )

Dd (i)pi
�x, (B6)

where ∂d (Dd (i)pi ) stands for [Dd (i + d )pi+d − Dd (i)pi]/�x.
Thus we have


d (i) = Dd (i)pi

�x2
+ o(�x−2), (B7)

which shows that fixing the functional form of the Onsager
coefficients is similar to fixing the diffusion coefficient in a
Langevin system.

APPENDIX C: DETAILED COMPARISON WITH HS
DECOMPOSITION

In addition to the discussion given in Sec. III F, we can
further establish a connection between the HS decomposition
and Onsager-projective decomposition. Let P� be the orthog-
onal projection operator onto the vector ST� with respect to
the metric L, with � given by Eq. (69),

P� := ST��TS

‖ST�‖2
L

L. (C1)

We define the pseudo-HS decomposition by

σ ex
pHS := ‖P�F‖2

L, (C2)

σ hk
pHS := ‖(I − P� )F‖2

L. (C3)

Because P� is an orthogonal projection operator, the sum of
the two terms is equal to the total EPR:

σ = σ ex
pHS + σ hk

pHS. (C4)

Since PP� = P� , we have the inequality

σ ex
pHS � σ ex, (C5)

which allows us to define a coupling term as in Refs. [28,29],

σ cpl := σ ex − σ ex
pHS � 0, (C6)

and decompose the EPR into three positive contributions

σ = σ ex
pHS + σ cpl + σ hk. (C7)

However, the pseudo-HS decomposition does not generally
coincide with the genuine HS decomposition. A straightfor-
ward calculation reveals their connection,

σ ex
pHS =

(
σ ex

HS

)2

‖ST�‖2
L

. (C8)

If σ ex
HS = ‖ST�‖2

L holds, the two give the same value, but it is
not the case in general.

Moreover, the difference between σ ex
HS and ‖ST�‖2

L is of
the same order as each individual term even when the system
is near a steady state; in other words, it is not small. Let
supα |xα − xst

α | = ε be very small, with xst a steady state and
assume dt x = SJ is of the same order. Then, σ ex

HS and ‖ST�‖2
L

are of order of ε2 because � and SJ are both of order ε. On
the other hand, because SLstF st = SJst = 0, the difference
between σ ex

HS and ‖ST�‖2
L becomes

σ ex
HS − ‖ST�‖2

L = −�TS(J + LST�)

= −�TSL(F + ST�)

= −�TSLF st

= −�TS(L − Lst )F st, (C9)

where the third line comes from Eq. (67). Here, � and L − Lst

are of the order of ε, while F st is generally of the order of 1, so
that we see the difference is of the order of ε2, just as σ ex

HS and
‖ST�‖2

L. The equality only holds when we have the detailed
balance condition, that is, for conservative forces. In this case,
we find σ = σ ex

HS = σ ex
pHS.

APPENDIX D: DERIVATIONS OF FINITE-TIME TURs

1. Housekeeping TUR

To prove the housekeeping TUR (87), let us consider a
parametrization of transition rates by introducing the interpo-
lated force F θ

e = F ∗
e + θ (Fe − F ∗

e ) as

kθ
e pι(e) = 
eg

(
F θ

e

)
, (D1)

with g(x) = x

1 − e−x
, (D2)

where θ ∈ R is an interpolation parameter. We also define
Jθ

e := kθ
e pι(e) − kθ

−e pι′(e). One can easily show that Jθ
e = 
eF θ

e

and Jθ
e = J∗

e + θ (Je − J∗
e ) hold. Because BJθ = BJ for any

θ and any time, the solution of the original (θ = 1) master
equation {p(t )}t∈[0,τ ] solves dt p(t ) = BJθ (t ).

In general, we denote the path probability for the master
equation by P and that for the master equation with modified
rate constants kθ , such as those defined in Eq. (D1), by P θ .
The KL divergence between P θ and P θ ′

is given by

D(P θ‖P θ ′
) =

∫
d� P θ (�) ln

P θ (�)

P θ ′ (�)

=
∫ τ

0
dt

∑
±e

(
ln

kθ
e

kθ ′
e

+ kθ ′
e

kθ
e

− 1

)
kθ

e pθ
ι(e), (D3)

where � indicates a path,
∑

±e denotes the summation over
both directions of edges, and pθ is the solution of the master
equation given by kθ . We always assume that the initial dis-
tribution does not depend on parameter θ . The KL divergence
can also be expressed as

D(P θ‖P θ ′
) =

∫ τ

0
dt D(kθ pθ ||kθ ′

pθ ), (D4)

where D(kθ pθ ||kθ ′
pθ ) is the generalized KL divergence

between the two “distributions” {kθ
e pθ

ι(e)}e=±1,±2,... and
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{kθ ′
e pθ

ι(e)}e=±1,±2,..., that is,

D(kθ pθ ||kθ ′
pθ )

=
∑
±e

[
kθ

e pθ
ι(e) ln

kθ
e pθ

ι(e)

kθ ′
e pθ

ι(e)

− kθ
e pθ

ι(e) + kθ ′
e pθ

ι(e)

]
. (D5)

When we consider θ ′ = θ + dθ with a very small dθ , the KL
divergence becomes

D(P θ‖P θ+dθ ) =
∫ τ

0
dt D(kθ pθ ||kθ+dθ pθ )

= dθ2

2

∫ τ

0
dt

∑
±e

kθ
e pθ

ι(e)

(
∂θ ln kθ

e

)2 + o(dθ2).

(D6)

In the parametrization (D1), the relation

∂θ ln kθ
e = (Fe − F ∗

e )
d

dx
ln g(x)

∣∣∣∣
x=F θ

e

(D7)

holds. Thus, the KL divergence becomes

D(P θ‖P θ+dθ )

= dθ2

2

∫ τ

0
dt

∑
±e


e(Fe − F ∗
e )2h

(
F θ

e

) + o(dθ2), (D8)

with

h(x) = g(x)

(
d

dx
ln g(x)

)2

= x

1 − e−x

(
ex − x − 1

x(ex − 1)

)2

. (D9)

One can easily show that h(x) + h(−x) � 1/2. Therefore, we
have the following inequality regardless of the value of θ :

D(P θ‖P θ+dθ ) � dθ2

4

∫ τ

0
dt σ hk. (D10)

The fluctuation-response inequality (12) of Ref. [26] tells us
that for any current observable Jw defined in Sec. IV C,

(〈Jw〉θ+dθ
τ − 〈Jw〉θτ )2

2 Varθ+dθ (Jw )
� D(P θ‖P θ+dθ ), (D11)

where 〈·〉θτ and Varθ (·) are the average and variance regarding
P θ . Because

〈Jw〉θτ = 〈
J ex

w

〉
τ
+ θ

〈
J hk

w

〉
τ
, (D12)

setting θ = 1 in Eq. (D11) and combining with Eq. (D10), we
obtain the desired inequality in Eq. (87).

2. Excess TUR

Let us prove the relation (92). We separate the time depen-
dence as t = τ s, so that s ∈ [0, 1], and write f̄ (s; τ ) = f (τ s)
for any function of time f . The assumption on the functional
form of the transition rate k leads to the conclusion that k̄ only

depends on s. The master equation reads

∂s p̄(s; τ ) = τBJ̄ (s; τ ), (D13)

J̄e(s; τ ) = k̄e(s) p̄ι(e)(s; τ ) − k̄−e(s) p̄ι′(e)(s; τ ). (D14)

It is a natural assumption that the initial distribution p̄(0; τ )
does not depend on τ .

We first consider the tilting of the transition rates with τ

fixed,

k̄θ
e (s; τ ) = k̄e(s) exp

(
J̄∗

e (s; τ )

χ̄e(s; τ )
θ

)
, (D15)

where θ is the parameter of the tilted transition rate. From the
general formula (D6), the KL divergence between P 0 and P dθ

given by the tilting (D15) can be calculated as

D(P 0‖P dθ ) = τ

2
dθ2

∫ 1

0
ds

∑
e

[J̄∗
e (s; τ )]2

χ̄e(s; τ )
+ o(dθ2) (D16)

because ∂θ ln k̄θ
e (s) = J̄∗

e (s; τ )/χ̄e(s; τ ). From the log mean
inequality, we also have

τ

2

∫ 1

0
ds

∑
e

[J̄∗
e (s; τ )]2

χ̄e(s; τ )
� τ

4

∫ 1

0
ds

∑
e

[J̄∗
e (s; τ )]2


̄e(s; τ )

= 1

4

∫ τ

0
dt

∑
e

[J∗
e (t )]2


e(t )

= 1

4

∫ τ

0
dt σ ex. (D17)

Thus, the fluctuation-response inequality provides(
∂θ 〈Jw〉θτ

∣∣
θ=0

)2

Var(Jw )
� 1

2

∫ τ

0
dt σ ex. (D18)

Next, we identify the quantity ∂θ 〈Jw〉θτ |θ=0. Let
{ p̄θ (s; τ )}s∈[0,1] be the solution of the master equation given
by k̄θ

e (s; τ ),

∂s p̄θ (s; τ ) = τBJ̄θ (s; τ ), (D19)

J̄θ
e (s; τ ) = k̄θ

e (s; τ ) p̄θ
ι(e)(s; τ ) − k̄θ

−e(s; τ ) p̄θ
ι′(e)(s; τ ), (D20)

where θ = 0 reproduces the original dynamics Eqs. (D13) and
(D14). If we use the notation

∂θ p̄θ
i (s; τ )|θ=0 = ri(s; τ ), (D21)

a straightforward calculation shows

∂θ J̄θ
e (s; τ )|θ=0

= J̄∗
e (s; τ ) + [k̄e(s)rι(e)(s; τ ) − k̄−e(s)rι′(e)(s; τ )]. (D22)

Because τBJ̄∗ = τBL̄F̄ ∗ = τBJ̄ = ∂s p̄(s; τ ), we find that r
satisfies

∂sri(s; τ ) − ∂s p̄i(s; τ )

= τ
∑

e

Bie[k̄e(s)rι(e)(s; τ ) − k̄−e(s)rι′(e)(s; τ )]. (D23)

We also consider another infinitesimal perturbation by chang-
ing τ to θτ where θ = 1 also reproduces the original dynamics
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Eqs. (D13) and (D14). The master equation reads

∂s p̄(s; θτ ) = θτBJ̄ (s; θτ ). (D24)

By calculating

∂θ∂s p̄(s; θτ )|θ=1 = ∂θ [θτBJ̄ (s; θτ )]
∣∣
θ=1, (D25)

we find

∂s[τ∂τ p̄i(s; τ )] − ∂s p̄i(s; τ ) = τ
∑

e

Bieτ∂τ J̄e(s; τ )

= τ
∑

e

Bie
[
k̄e(s)

[
τ∂τ p̄ι(e)(s; τ )

] − k̄−e(s)[τ∂τ p̄ι′(e)(s; τ )]
]
.

(D26)

It is the same equation as Eq. (D23). Because τ∂τ p̄(s; τ ) and
r(s; τ ) satisfy the same first-order differential equation and
they share the initial condition τ∂τ p̄(0; τ ) = r(0; τ ) = 0, we
conclude that r(s; τ ) = τ∂τ p̄(s; τ ) and

k̄e(s)rι(e)(s; τ ) − k̄−e(s)rι′(e)(s; τ ) = τ∂τ J̄e(s; τ ). (D27)

Thus, Eq. (D22) reads

∂θ J̄θ
e (s; τ )|θ=0 = J̄∗

e (s; τ ) + τ∂τ J̄e(s; τ ), (D28)

and the current observable changes by tilting as

∂θ 〈Jw〉θτ
∣∣
θ=0 = τ

∫ 1

0
ds

∑
e

we(s)∂θ J̄θ
e (s; τ )

∣∣
θ=0

= 〈
J ex

w

〉
τ
+ τ

∫ 1

0
ds

∑
e

we(s)τ∂τ J̄e(s; τ )

= 〈
J ex

w

〉
τ
+ τ∂τ 〈Jw〉τ − 〈Jw〉τ

= τ∂τ 〈Jw〉τ − 〈
J hk

w

〉
τ
. (D29)

Therefore, Eq. (D18) finally leads to the TUR,(
τ∂τ 〈Jw〉τ − 〈

J hk
w

〉
τ

)2

Var(Jw )
� 1

2

∫ τ

0
dt σ ex. (D30)

APPENDIX E: DERIVATION OF EQ. (100)

We prove that W provided in Eq. (98) is also given by
Eq. (100). Let us introduce the functional

I[x, f , ψ] =
∫ T

0
dt

(
1

2
‖ f (t )‖2

L(x(t ))

+ ψ (t )T[dt x(t ) − SL(x(t )) f (t )]

)
. (E1)

With ψ being a Lagrange multiplier, Eq. (98) is rewritten as

1

2T W (x(0), x(1) )2 = inf
x, f

sup
ψ

I[x, f , ψ]. (E2)

We assume that there exists a triple (x∗, f ∗, ψ∗) that provides
the optimal value of the right-hand side. Then, it satisfies

δI
δ fe(t )

= 
e(x∗(t )) f ∗
e (t ) − [ψ∗(t )TS]e
e(x∗(t )) = 0, (E3)

so we have

f ∗(t ) = STψ∗(t ). (E4)

Therefore, the optimal force is conservative, and it is suffi-
cient to consider conservative forces when we calculate the
Wasserstein distance.

APPENDIX F: DERIVATION OF EQ. (103)

Here we prove the inequality in Eq. (103) by tracing the
proof of Theorem 5.4 in Ref. [62]. Let {x∗, ψ∗} be a minimizer
of the Wasserstein distance (100). We define a function with
sufficiently small ε > 0 as

s̃ε (t ) :=
∫ t

0
dt ′ [ε + ‖STψ∗(t ′)‖2

L(x∗(t ′ ))]
1/2. (F1)

Then, dt s̃ε (t ) > ε, and its inverse t̃ε = s̃−1
ε : [0, s̃ε (T )] →

[0, T ] is well defined; thus, s̃ε works as a time coordinate.
The functions satisfy

dt̃ε
ds

(s̃ε (t )) =
(

ds̃ε

dt
(t )

)−1

= 1

[ε + ‖STψ∗(t )‖2
L(x∗(t ))]

1/2
.

(F2)

If we change the time variable as x̃(s) := x∗(t̃ε (s)) and
ψ̃ (s) := (dst̃ε (s))ψ∗(t̃ε (s)), we find

dsx̃(s) = dst̃ε (s)dt x
∗(t̃ε (s)) = dst̃ε (s)SL(x̃(s))STψ∗(t̃ε (s))

= SL(x̃(s))STψ̃ (s), (F3)

so that (x̃, ψ̃ ) falls in the feasible set of the minimization (100)
with time duration s̃ε (T ). Therefore, we have

W (x(0), x(1) )2

� s̃ε (T )
∫ s̃ε (T )

0
ds ‖STψ̃ (s)‖2

L(x̃(s))

= s̃ε (T )
∫ T

0
dt

ds̃ε

dt
(t ) ×

(
dt̃ε
ds

(s̃ε (t ))
)2

‖STψ∗(t )‖2
L(x∗(t ))

= s̃ε (T )
∫ T

0
dt

‖STψ∗(t )‖2
L(x∗(t ))

ε + ‖STψ∗(t )‖2
L(x∗(t ))

× [ε + ‖STψ∗(t )‖2
L(x∗(t ))]

1/2

� s̃ε (T )2. (F4)

By taking the limit ε → 0, we obtain the inequality

W (x(0), x(1) ) � s̃0(T ) =
∫ T

0
dt ‖STψ∗(t )‖L(x∗(t )). (F5)

APPENDIX G: DERIVATION OF EQ. (105)

We give a proof of the duality formula (105). We first
prepare some relations regarding the functional I defined
in Appendix E. Here, we concentrate on probability distri-
butions, so the argument of the functional is (p, f , ψ ). We
again assume there exists an optimal solution (p∗, f ∗, ψ∗) that
provides the Wasserstein distance as

1

2T W (p(0), p(1) )2 = I[p∗, f ∗, ψ∗]

= 1

2

∫ T

0
dt ‖BTψ∗(t )‖2

L(p∗(t )), (G1)
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where we used the relation f ∗(t ) = BTψ∗(t ), which was de-
rived in Appendix E. Consider the functional derivative

δI
δpi(t )

= 1

2

∑
e

∂
e

∂ pi
(p(t ))| fe(t )|2 − dtψi(t )

− ∂

∂ pi
ψT(t )BL(p(t )) f (t ). (G2)

It vanishes when (p, f , ψ ) = (p∗, f ∗, ψ∗), so we have

dtψ
∗
i (t ) + 1

2

∂

∂ pi
‖ f ∗(t )‖2

L(p∗(t )) = 0. (G3)

Combining it with f ∗(t ) = BTψ∗(t ), we find the equation

dtψ
∗
i (t ) + 1

2

∂

∂ pi
‖BTψ∗(t )‖2

L(p∗(t )) = 0. (G4)

We next show that ψ∗ gives the distance by the duality
formula. Because of the equality for the log mean

a
∂

∂a
L(a, b) + b

∂

∂b
L(a, b) = L(a, b) (G5)

shown in Ref. [43], we have the relation∑
i

pi
∂

∂ pi

e(p)

= We pι(e)
∂

∂u1
L(We pι(e),W−e pι′(e) )

+ W−e pι′(e)
∂

∂u2
L(We pι(e),W−e pι′(e) ) = 
e(p), (G6)

where u1 and u2 denote the first and second argument of L.
Combining it with Eq. (G4), we obtain the Hamilton–Jacobi
equation

p∗(t )Tdtψ
∗(t ) + 1

2‖BTψ∗(t )‖2
L(p∗(t )) = 0. (G7)

Then, the Wasserstein distance becomes

1

T W (p(0), p(1) )2

=
∫ T

0
dt ‖BTψ∗(t )‖2

L(p∗(t )) =
∫ T

0
dt ψ∗(t )Tdt p∗(t )

= 〈ψ∗(T )〉1 − 〈ψ∗(0)〉0 −
∫ T

0
dt [dtψ

∗(t )]T p∗(t )

= 〈ψ∗(T )〉1 − 〈ψ∗(0)〉0 + 1

2

∫ T

0
dt ‖BTψ∗(t )‖2

L(p∗(t )),

(G8)

where we used the continuity equation dt p∗ = BL(p)BTψ∗
in the second equality of the second line, and we did the
integration by parts in the second line. Recall that 〈·〉i indi-
cates the expectation value under p(i). Therefore, we have the
formula

1

2T W (p(0), p(1) )2 = 〈ψ∗(T )〉1 − 〈ψ∗(0)〉0. (G9)

Finally, we prove that ψ∗ provides the maximum under the
condition in Eq. (106) [also shown in Eq. (G13) below]. To
show that ψ∗ satisfies the condition, let g(p) := pTdtψ

∗(t ) +
(1/2)‖BTψ∗(t )‖2

L(p). Then,

∂g

∂ pi
(p∗) = dtψ

∗
i + 1

2

∂

∂ pi
‖BTψ∗‖2

L(p∗ ), (G10)

and it is zero because ψ∗ satisfies Eq. (G4). As we will show
later, since 
e(p) is a concave function, g(p) is also concave,
so p∗ gives the maximum value of g(p) [69]. Therefore, we
conclude that g(p) � 0, and ψ∗ satisfies the condition. Let ψ ′
also satisfy the condition. Then,

〈ψ ′(T )〉1 − 〈ψ ′(0)〉0

=
∫ T

0
dt dt [(p∗)Tψ ′]

=
∫ T

0
dt ((ψ ′)TBL(p∗)BTψ∗ + (p∗)Tdtψ

′)

�
∫ T

0
dt

(
〈BTψ ′, BTψ∗〉L(p∗ ) − 1

2
‖BTψ ′‖2

L(p∗ )

)

=
∫ T

0
dt

(
1

2
‖BTψ∗‖2

L(p∗ ) − 1

2
‖BT(ψ∗ − ψ ′)‖2

L(p∗ )

)

� 1

2

∫ T

0
dt ‖BTψ∗‖2

L(p∗ ) = 〈ψ∗(T )〉1 − 〈ψ∗(0)〉0,

(G11)

where the fourth line follows from the condition (106), and
the fifth line is derived from a general property of an inner
product. Therefore, we obtain the expression

1

2T W (p(0), p(1) )2 = sup
ψ

(〈ψ (T )〉1 − 〈ψ (0)〉0) (G12)

s.t. qTdtψ (t ) + 1

2
‖BTψ (t )‖2

L(q) � 0

for any probability distribution q. (G13)

The concavity of 
e(p) follows from the concavity of the
log mean because the map p �→ (We pι(e),W−e pι′(e) ) is linear.
Let us prove that the log mean is concave. The log mean has
an integral form

L(x, y) =
∫ 1

0
dt xt y1−t . (G14)

Then, the Hessian H is given as

Hxx = ∂2

∂x2
L(x, y) =

∫ 1

0
dt t (t − 1)xt−2y1−t , (G15)

Hyy = ∂2

∂y2
L(x, y) =

∫ 1

0
dt t (t − 1)xt y−1−t , (G16)

Hxy = Hyx = ∂2

∂x∂y
L(x, y) =

∫ 1

0
dt t (1 − t )xt−1y−t . (G17)
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The determinant of the Hessian is positive because

det H = HxxHyy − H2
xy

=
∫ 1

0
dt t (t − 1)xt−2y1−t

∫ 1

0
dt t (t − 1)xt y−1−t

−
(∫ 1

0
dt t (t − 1)xt−1y−t

)2

=
∫ 1

0
dt t (1 − t )xt−2y1−t

∫ 1

0
dt t (1 − t )xt y−1−t

−
(∫ 1

0
dt

√
t (1 − t )xt−2y−1−t

√
t (1 − t )xt y1−t

)2

,

� 0, (G18)

where we used the Cauchy–Schwarz inequality in the last line.
The trace is shown to be negative because t (t − 1) � 0 and
x, y are positive by definition, so Hxx and Hyy are negative.
Therefore, the Hessian H is negative-semidefinite and the log
mean is concave.

APPENDIX H: DERIVATION OF EQ. (120)

In this Appendix, we provide the proof of the inequality in
Eq. (120). First, we characterize the L2-Wasserstein distance
by a functional slightly different from what we used in the pre-
vious Appendixes. Next, we show relations between the L2-
and L1-Wasserstein distance by using the derived expression.

Let F be the functional,

F[q, ψ] =
∫ τ

0
dt

(−‖BTψ (t )‖2
L(q(t )) + 2ψ (t )Tdt q(t )

)
.

(H1)

Completing the square shows that this functional is maxi-
mized with respect to ψ when dt q(t ) = BL(q(t ))BTψ (t ), and
then

F ′[q] := sup
ψ

F[q, ψ] =
∫ τ

0
dt ‖BTψ (t )‖2

L(q(t )). (H2)

If we choose a solution of the master equation p̂ as q, this
amounts to the Onsager excess EP, F ′[ p̂] = ∫ τ

0 dt σ ex. The
L2-Wasserstein distance is given by

W2( p̂(0), p̂(τ ))2 = τ inf
q

sup
ψ

F[q, ψ] (H3)

with q satisfying the initial and final conditions, q(0) = p̂(0)
and q(τ ) = p̂(τ ). We write the minimizer as p∗, so that
W2( p̂(0), p̂(τ ))2 = τF ′[p∗].

Let (q, ψ ) satisfy the continuity equation dt q =
BL(q)BTψ , so that F ′[q] = F[q, ψ]. We now do not assume
q is a solution of the master equation. The Cauchy–Schwarz
inequality leads to(∫ τ

0
dt ϕ(t )Tdt q(t )

)2

=
( ∫ τ

0
dt 〈BTϕ(t ), BTψ (t )〉L(q(t ))

)2

�
∫ τ

0
dt ‖BTϕ(t )‖2

L(q(t ))

∫ τ

0
dt ‖BTψ (t )‖2

L(q(t )) (H4)

for an arbitrary ϕ. Hence, by choosing ϕ(t ) = ξ (t ), the poten-
tial of the duality in Eq. (119) between q(t ) and q(t + dt ) with
dt an infinitesimal time interval, we have

F ′[q] �
(∫ τ

0 dt ξ (t )Tdt q(t )
)2∫ τ

0 dt ‖BTξ (t )‖2
L(q(t ))

. (H5)

According to the duality (119), if we assume q(0) = p̂(0) and
q(τ ) = p̂(τ ), the numerator reads∫ τ

0
dt ξ (t )Tdt q(t ) =

∫ τ

0
dt lim

�t→0

W1(q(t ), q(t + �t ))
�t

� W1( p̂(0), p̂(τ )), (H6)

where we used the triangle inequality in the last inequality.
The denominator is also bounded as

‖BTξ (t )‖2
L(q(t )) =

∑
e


e(q(t ))(ξι′(e) − ξι(e) )
2 �

∑
e


e(q(t ))

� 1

2

∑
e

χe(q(t )), (H7)

where we used |ξi − ξ j | � 1. Recall that χe(q(t )) =
keqι(e)(t ) + k−eqι′(e)(t ) is the edgewise dynamical activity and
the log mean inequality 
e(q(t )) � (1/2)χe(q(t )). Therefore,
we obtain

F ′[q] � W1( p̂(0), p̂(τ ))2

τ Ā[q]/2
(H8)

for an arbitrary q with the appropriate initial and final con-
ditions. If we choose q = p∗, the minimizer of F ′ with
the initial and final states (p(0), p(τ )), we have the desired
inequality

Ā[p∗]

2
W2( p̂(0), p̂(τ ))2 � W1( p̂(0), p̂(τ ))2. (H9)

We also find a lower bound for the Onsager excess EP as∫ τ

0
dt σ ex � W1( p̂(0), p̂(τ ))2

τ Ā[ p̂]/2
. (H10)
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