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The spectrum of Markov generators encodes physical information beyond simple decay and oscillation,
which reflects irreversibility and governs the structure of correlation functions. In this Letter, we prove an
ellipse theorem that provides a universal thermodynamic geometric constraint on the spectrum of Markov
rate matrices. The theorem states that all eigenvalues lie within a specific ellipse in the complex plane.
In particular, the imaginary parts of the spectrum, which indicate oscillatory modes, are bounded by the
maximum thermodynamic force associated with individual transitions. This spectral bound further
constrains the initial short-time behavior of correlation functions between two arbitrary observables.
Finally, we compare our result with a previously proposed conjecture, which remains an open problem and

warrants further investigation.
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The spectral properties of linear operators are funda-
mental to the analysis of physical systems. In open classical
and quantum systems, the eigenvalues of the dynamical
generator directly govern relaxation and oscillations [1-3]:
The real parts of the eigenvalues, being negative, govern the
exponential decay of the eigenmodes, whereas the imagi-
nary parts encode the frequencies of the oscillatory modes.

A particularly important class of generators is the rate
matrix of a continuous-time Markov jump process. In graph
theory, such matrices appear as the Laplacian matrices
of weighted graphs [4—6]. Rate matrices play a crucial role
in the stochastic thermodynamics of discrete-state systems
[7-30] and find broad applications in complex networks
[31,32], chemical reaction networks [33,34], biology
[35-37], and economics [38,39].

The spectrum of Markov generators encodes rich physi-
cal information that goes beyond simple decay rates and
oscillatory behavior [40-44]. It captures the degree of
irreversibility in the system [45-51] and governs the
structure of correlation functions [52-56]. As an extension
of the conjecture proposed only for the second eigenvalue
[46], recent work by Ohga et al [52] shows that the
spectrum exactly lies within a sector in the complex plane,
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with the opening angle determined by the maximal
thermodynamic force of a cycle. This spectral constraint
also follows from a thermodynamic bound on cross-
correlation functions. A key insight is that oscillatory
modes and asymmetric correlations appear only in non-
equilibrium systems.

While the sector bound captures certain aspects of
irreversibility, a deeper geometric understanding of the
spectrum remains elusive. This naturally raises two funda-
mental questions. (i) Can we identify a universal constraint
on the geometry of the spectrum that arises from irrevers-
ibility? and (ii) How is this spectral geometry quantitatively
connected to the (initial) time derivative of correlation
functions?

In this Letter, we establish a unified framework address-
ing the above questions by revealing the intrinsic con-
nection between the spectrum and correlation functions
through the mathematical concept of the numerical range.
Inspired by Uhl and Seifert’s conjecture [45], we derive an
ellipse theorem that provides a universal thermodynamic
bound on the spectrum of Markov rate matrices. Our
theorem states that the spectrum lies within a specific
ellipse in the complex plane, as illustrated in Fig. 1. The
vertical semiaxis of the ellipse depends on the degree of
irreversibility, which vanishes for the detailed balance
condition and reaches the circular limit in the case of
infinite irreversibility.

Our result reveals a fundamental thermodynamic con-
straint on the spectrum of Markov generators that goes
beyond the Gershgorin circle theorem [57,58]. The
Gershgorin circle theorem is a well-known result in matrix
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FIG. 1. Bounds on the spectrum of Markov rate matrices. The
blue line shows the elliptical bound derived in this Letter, and
the open circles denote the eigenvalues. Our theorem states that
the spectrum is contained within this ellipse. The major axis lies
along the real axis and spans the interval from —2max;|R;;| to 0,
where |R;| is the escape rate. The minor axis has length
2 max; |R;;| with = tanh (max, F,/2), where F, denotes the
thermodynamic force on edge e. The black dashed lines corre-
spond to the sectorial bound reported by Ohga et al. in Ref. [52].
The opening angle of the sector is bounded above by 2 arctan C,
where C = max, {tanh[F./(2n.)]/tan(z/n.)} < max.F./(2x)
with F . and n. denoting the thermodynamic force and the length
of cycle c, respectively. Therefore, the spectrum is restricted to
the blue shaded region. The red circle represents the Gershgorin
circle bound, and the green dashed ellipse represents the bound
numerically conjectured by Uhl and Seifert [45]. Here, the
vertical extents of the Gershgorin circle and the ellipse conjec-
tured by Uhl and Seifert are 2max; |R;| and 24 max;|R;
respectively, where ' = tanh (max.{F./(2n,.)}).

s

analysis that bounds the location of eigenvalues within
certain disks determined purely by the matrix entries,
independent of any physical considerations. Unlike this
purely algebraic and general bound, our ellipse incorpo-
rates thermodynamic considerations and directly reflects
the irreversibility inherent to nonequilibrium dynamics.
This connection indicates that the mathematical structure of
the spectrum is not merely a consequence of abstract
algebraic properties but is fundamentally shaped and con-
strained by physical laws.

Numerical range and  correlation  functions—
Mathematically, the rate matrix (or generator) R € RV*V
of a continuous-time Markov process on a finite state space
of size N satisfies R;; > Ofori # jand ) ; R;; = Oforall ;.
We consider a rate matrix R with a strictly positive steady
state 7, satisfying Rz = 0 [59].

We introduce the matrix [42,51]

R :=TI"'/2R11'/2, (1)

where 1 = diag(m,n,...,my). The numerical range

W(R) of the matrix R is defined as the set of

complex numbers [60],

(x|R[x)

wiR) = {0

By introducing x = I1'/?(a + ib), where a and b are two
arbitrary state observables, we show that W(R) is given by
the correlation functions

|XEC",X¢O}. (2)

(x|R|x)
(x[x)

a'RIla +b"RIIb + i(aTRIIb — b RI1a)
a'Ila+ b IIb
Cua (0) + Chh (0) + i[Cab (O) - Cba(o)}

- Coal0) + Cpy(0) RS

where C,,(t) == a'e®TIb, and C,,(f) denotes the time
derivative. Interestingly, W(R) encodes the correlation
structure: its imaginary part captures the asymmetry in
cross-correlations, while its real part reflects the decay of
autocorrelations. Thus, our results provide a precise con-
straint on the short-time behavior of C,;,. For finite times
t > 0, bounds on the decay of autocorrelation functions can
be obtained via a numerical range interpretation. We return
to this point at the end of the Letter.

Note that the eigenvalues of R (or R) can be obtained by
considering the specific observables a and b as discussed
in Ref. [52] (see the End Matter). These observables
correspond to special cases where the vector x becomes
an eigenvector of R. By definition, the numerical range
satisfies 6(R) C W(R), where o(R) is the spectrum of the
matrix R defined as

Rl el b HﬂeC,Rﬁ:Aﬁ,ﬁeC",ﬁ;éO}.

Since R is defined as a similarity transformation of R,
they have the same spectra ¢(R) = o(R), and therefore
o(R) C W(R). Thus, the numerical range W (R) bridges the
spectral properties of the rate matrix R with the possible
values of the correlation functions.

Ellipse theorem—The numerical range W(R) is con-
tained within an ellipse EL in the complex plane, i.e.,
W(R) C EL, where

EL = {zeC‘(quL (I‘“—Z)z < 1}.
a aff

Here, @ = max; |R;;| denotes the largest escape rate from
a state, # = tanh (max, F,/2) < 1 quantifies the degree of
irreversibility, and F, is the thermodynamic force associ-
ated with the transition (edge) e = j — i:

R..x:
F,=In—4" (4)
Rjim;
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The maximum in the definition of f is taken over all
edges with R;; > 0 and Rj; > 05 if there exists any edge
with a finite rate in one direction and zero in the other,
we set = 1.

A direct consequence of the ellipse theorem is that the
spectrum of R is constrained within the ellipse, 6(R) C EL,
because o(R) = o(R) c W(R). Physically, the ellipse theo-
rem implies that the emergence of complex eigenvalues,
which indicate oscillations, and asymmetric correlations is
fundamentally limited by the degree of irreversibility.

Consider a complex eigenvalue 4, = Rel, +iImA4,.
The corresponding eigenmode u,,, satisfying Ru, =4,u,,
contributes to the time evolution of the probability dis-
tribution. Suppose that the initial state is given by p(0) =
>, k,(0)u, where k,(0) are determined by the initial
condition. Since the dynamics of the continuous-time
Markov processes follows dp/dr = Rp, the time evolution
of the probability is given by p(7) = >, k,(¢)u, with
k,(t) = exp[(ReA,)t + i(Im4,)t]k,(0) [61]. Here, the
imaginary part Im4, determines the frequency of the
oscillation, |Im4,| = w,. Consequently, the frequency of
any oscillation mode in a Markov jump process is bounded
by the maximum thermodynamic force in the system,

max®, < atanh (maxF,/2), (5)
n e

which is indicated by the dashed blue horizontal line in
Fig. 1. This inequality provides a thermodynamic bound on
the generation of nontrivial temporal structures in stochas-
tic dynamics. Remarkably, it implies that not only the
slowest-decaying modes, but also the fast-decaying ones
cannot exhibit strong oscillations unless £ is large. This is
somewhat surprising, as thermodynamic constraints are
typically associated with slowly decaying oscillatory
modes, rather than those that decay rapidly [46-50,52].
Importantly, this result provides a fundamental constraint
on biochemical clocks [46-48,62,63], such as circadian
rhythms [64-66], where nonequilibrium oscillations are
essential for timekeeping in living systems.

Sketch of the proof—We provide two different deriva-
tions, a mathematically oriented one is presented in
Supplemental Material [67], while the main text and the
End Matter focus on a physically motivated proof, with the
full details given in the End Matter. To prove the ellipse
theorem, we decompose the matrix R into its symmetric
and antisymmetric parts: Sym(R):= (R+R")/2 and
Skew(R) == (R — R")/2, which correspond to the real
and imaginary parts of the numerical range W(R), respec-
tively. These components relate to physical quantities,
where the antisymmetric part provides the current matrix

J = 2I1:Skew(R)IT: and the symmetric part provides the
traffic matrix A = 2I1:Sym(R)IIz. From Eq. (3), the imagi-
nary part y:=Imz of z€& W(R) can be written as
>.ijJijlaib; — a;b;) over a normalizing factor. Similarly,

1

09r ]
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FIG. 2. Thermodynamic bound on maximal frequency for
cycles with N = 4 states. The open circles represent the maxi-
mum imaginary part of the eigenvalues of rate matrices corre-
sponding to random walks on a ring with random jump rates. The
blue line represents the bound given by Eq. (5).

the real part x :=Rez is given by ) ,:A;;(a;a; + b;b;)
over a normalizing factor. Using tanh(F,/2) = J;;/A;;
with e = j — i, we scale y and define j == ), A;jla;b;—
a;b;|, so that § > |y|/f with == tanh (max, F,/2). Then,
we decompose x as x = xp + xyp, Where xp collects the
diagonal contributions of A and xyp the off-diagonal parts.
By construction, y and xyp involve the same off-diagonal
index pairs on which the summands are nonzero. As
shown in the End Matter, this yields x%, + 7> < x3, i.e.,
(x —xp)? + 3 < x}, which is a circular bound. Since
—a < xp < 0and y > |y|/f, we obtain the elliptic bound.

Markov jump process on a single cycle—As an example,
we consider the random walk on aring with N sites. First, we
discuss the case of the uniform cycle in which the forward
jump rate @, and the backward jump rate @_ are constant.
In this case, the eigenvalues can be calculated analytically
[45], A, =a]|—1+cos(2zN/n)+itanh(F,/2)sin(2zN/n)],
wherea = w, +w_and F, = In(w, /w_). The spectrum is
located precisely on the boundary of the ellipse. This
example confirms that the spectral bound given by the
ellipse theorem is tight, as it is exactly saturated by the
uniform cycle.

Then, we consider the random walk on a ring with
different jump rates, a minimal model with applications in
physics [7,43], and biology [22,68—70]. We simulate jump
rates as independent random variables uniformly distrib-
uted in the interval (0,1). For each realization, we compute
the maximum imaginary part of the eigenvalues of the rate
matrix. The thermodynamic bound on the maximal fre-
quency, given by inequality (5), is numerically validated in
Fig. 2. This confirms that the oscillatory modes in ran-
domly disordered cycles remain constrained by the
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FIG. 3. Comparison between the conjectured ellipse EL,. (red
line) and the derived bound EL (blue line). This example illustrates
that the conjectured ellipse EL. contains all eigenvalues of R
(hollow circles), but does not enclose the numerical range W(R)
(black shaded region). The bound by Ohga et al. also holds for the
numerical range W(R). The numerical range is calculated using the
algorithm in Ref. [71]. This example is obtained from a random
walk on a ring (as in Fig. 2) with i.i.d. jump rates sampled
uniformly from the interval (0,1). We sample such random walks
for increasing ring size N. For N > 6, cases where EL. does not
enclose W(R) are observed, and the frequency of such cases
increases with N. This figure shows a representative instance with
N =7, found within 1000 random samples.

thermodynamic force, as predicted by our theory. Although
we have demonstrated the result for a single-cycle example,
our theoretical framework holds for Markov processes with
arbitrary network topologies.

Comparison with the conjectured bound—The ellipse
bound derived in this Letter differs from the previous
conjecture [45] in the value of the minor axis. The
conjecture assumes the existence of an ellipse EL,. such
that 6(R) C EL.. The conjectured ellipse EL,. shares the
same major axis as our bound EL, but its semiminor axis is
given by atanh (max.{F./(2n.)})=:af’, where F is the
thermodynamic force along a cycle ¢, and n,. is the number
of states in that cycle. This expression uses the cycle-
averaged force and then maximizes over all cycles. We
observe that ' < due to the triangle inequality, i.e.,
Fol = Seec Fol € Yee, |F.. and the  incquality
between the maximum value and the arithmetic mean,
i'e" maxe€c|Fe| > Zeec |Fe|/nc(Z |fc|/nc) Since the
maximum in the definition of § and #' already implies
positive F . and F,, it follows that max, F, > max,. F./n..
Therefore, we can verify that EL. C EL, meaning that the
conjectured ellipse is strictly tighter.

In contrast, our ellipse theorem rigorously establishes
that 6(R) C W(R) C EL, with the minor axis determined
by the largest edgewise thermodynamic force F',. While the
theorem 6(R) C EL is alooser bound on the spectrum o(R)
compared to the conjecture, 6(R) C EL,. C EL, our ellipse

theorem may give a tight bound on the numerical range
W(R). Indeed, our numerical simulations reveal that the
bound defined by the conjectured ellipse EL, does not hold
for the numerical range, W(R)ZEL ., while it still correctly
bounds the eigenvalues, 6(R) C EL.. An example dem-
onstrating this discrepancy is shown in Fig. 3. This
indicates that the conjecture cannot be derived from the
numerical range. Interestingly, the sectorial bound derived
by Ohga et al. [52] based on cycle forces remains valid for
the numerical range W(R), whereas the conjectured ellipse
bound based on cycle forces is not. The validity of the
conjectured bound remains an open question, warranting
further theoretical and numerical investigation.

Conclusion and discussion—In summary, we have estab-
lished a thermodynamic geometric bound on the spectrum of
Markov rate matrices by introducing the numerical range
which bridges the spectrum and the correlation functions.
The derived ellipse theorem reveals that all eigenvalues lie
within a bounded elliptical region in the complex plane, with
the geometry determined by the maximal escape rate and the
maximal thermodynamic force. Our findings provide new
insights into how irreversibility shapes the spectral structure
and dynamical behavior in stochastic systems.

We also compared our result with a previously conjec-
tured spectral bound [45], which is tighter but remains an
open problem. Further investigations based on the proper-
ties of the eigenvectors may help refine our results and
eventually lead to a proof of the conjecture. Additionally,
the numerical range may offer valuable insights into
spectral properties in quantum Markov systems. However,
the structure of quantum master equations is significantly
more complex, requiring further study.

We briefly discuss how the spectral gap is introduced in
our analysis and how it constrains autocorrelation functions
(see also the End Matter for details). In Ref. [42], the
slowest decay rate of autocorrelation functions is given
by the symmetrized Liouvillian gap for quantum Markov
systems. This result can be interpreted in terms of the
numerical range. If we consider zero-mean observables a’
and b’ that satisfy 7'a’ = z'b’ = 0, we can define the
reduced numerical range W,(R) = {<X|R|x>/<x|x)|x =
n'/2(a’ +ib')eC",z'a = 2'b’ = 0,x # 0}, which ex-
hibits a spectral gap g,. We can obtain the bound on
the decay of the autocorrelation function C, (1) <
Cyo(0)exp{—g,t}. In fact, W,.(R)(C W(R)) is located
entirely within the sectorial region, which captures essential
physical information about the system. It may be useful
to consider an appropriately defined reduced numerical
range, in a similar manner, to examine a tighter bound
on the spectrum, which may also imply a bound on the
spectral gap.

Finally, we would like to mention an interesting topic
related to Uhl and Seifert’s conjecture [45]. In 1938,
Kolmogorov considered the collection of all eigenvalues
of all n x n stochastic matrices €, [72], and a complete
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description of the collection 2, has been discussed [73-75]
and given exactly [76—78]. The boundary of Q,, consists of
the vertices of k gons (k < n) on the Gershgorin circle (unit
circle S' := {z€Cl|z| = 1}) and the curves that connect
them [77,78]. Since stochastic matrices are obtained from
rate matrices by considering transition probabilities, this
result may be reinterpreted in terms of the set Q/,, defined as
the collection of all eigenvalues of all n x n rate matrices. By
considering the relative shape of Q,, with respect to the unit
circle S', one may infer the geometric boundary of €/
embedded in the corresponding Gershgorin circle of radius
a. However, it is not obvious that the scaling of its relative
shape provides the collection of all eigenvalues of all n x n
rate matrices that are restricted by a finite thermodynamic
force. Thus, we could propose the following open problem:
does vertical scaling by the factor ' applied to the collection
of all eigenvalues of all n x n rate matrices produce the
collection of all eigenvalues of all n X n rate matrices
constrained by a finite value of a thermodynamic force?
Indeed, we find numerical evidence that supports this
conjecture (see Supplemental Material [67]). Interestingly,
the opening angle in the bound by Ohga et al. [52] coincides
with a part of the n-gon that is vertically scaled by the factor
f' on the ellipse EL,. Thus, Uhl and Seifert’s conjecture, in
conjunction with the newly proposed open problem, remains
an open problem and warrants further investigation.
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End Matter

Eigenvalues and correlation functions—By definition,
the numerical range W(R) is the set of all possible
values of (x|R|x)/(x|x). When x =@, which is the
right eigenvector of R satisfying Rii = Ali, we obtain
(i|R|d)/(li]d) = Red + i(ImA). Using R = IT-'/2RIT'/?,

we find that u = IT"/2ii is a right eigenvector of R, i.e.,
Ru = Ju. Following the notation in the main text, we
introduce the observables such that @ = I1'/%(a + ib),
from which it follows that a + ib = IT-'u. Therefore,
we obtain Red = [Caa (O> + Cbb(o)]/[caa (O) + Cbb(o)]
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and ImA = [Cab(o) - Cba (O)]/[Caa (0) + Cbb (O)] for
observables a; = Reu;/n; and b, =Imu;/7;, as
discussed in Ref. [52].

Derivation of the ellipse theorem—Here we provide
the proof based on physical quantities. A mathematically
oriented derivation is presented in Supplemental
Material [67]. First, we define the current matrix
J:=RII-TIRT =2ISkew(R)[E: with J;;=R;z;—Rjx;

and the traffic matrix A:=RII+TIRT = 2HZSym( )Hz

with A;; = R;m; + Rym;. Then, z=x+iyeW(R) is
given by
_1aTAa+bTAb — Cuy(0) + €1 (0) (B1)
24 Ma+b'TIh  Cuy(0) + Cpy(0)
and
1a"Jb-b"Ja  Cu(0) = Ch(0) (B2)

- EaTHa —+ bTHb N Caa (0) + Cbb (0> .

It is noted that J is a zero matrix when the detailed
balance condition is satisfied, which implies that y =0
in equilibrium systems.

The imaginary part y can be written as

121/ l/( _ab')
2 Ymla; +b2)

The term a;b; — a;b; corresponds to the cross product of
the vectors (a;, b;) and (a;, b;), which can be written as

i P
a;b; — a;b; = r;r;sin6;;, where r; = \/a? + b?, and 6;; is
the angle between the two vectors. We then rewrite the sum
over i, j as a sum over the set ¢ of all edges e = j — i
such that J, := J;; > 0. For each edge e, we define 0, := 0;;

and A, == A;;. With these notations, we obtain

(B3)

y| =
Z 7

JoAerir; s1n|9|

<
E€€+A Zl

A, r;r;sin |6
< <max£> Z_er,r., 2| ‘
¢ A i Dol

Aerirj sin |9€|
= tanh max— ——
ecet Zi”iri

= 5. (B4)

Here, the thermodynamic force is given by

R;.x;
F, =In—4"0 —
¢ Rjim; IlAe—

A, +J J
e J: = 2arctanh <A_i> (B5)

which leads to J,/A, = tanh(F,/2), and by the mono-
tonicity of the function tanh(x), it follows that

max,(/,/A,) = tanh (max,F,/2) =: . For simplicity, we
denote
A,r.r;
he = =— B6
Y (B6)
and
=Y h,sin|6,] > = |y| (B7)
e€e’
The real part
A (aa; + b;b;

2 Ymai+ b} T

can be decomposed into two components, X = xp + Xnp,
corresponding to the contribution from the diagonal part
of A,

1> Ai(a; +b7)
>imi(a; + b7)
-A_

i

Xp =

Z = —max |Rii| = —a, (B9)

l\)I'—‘ [\_)|

and the off-diagonal part of A,
121#] t/(aa +bb)
XND = 3
2 Ztﬂl(ai + bl)
B Z A,rirjcosf,
a St a

e€e”

Z h,cos@,.

e€et

(B10)

Consider the sum of squares

2 2
Xp + 3 = (Zhecosee) + <Zhe sin|93|>

e€et e€et

= Z helh Cos |0€]|_|9€2|)

e, €€t

S heyhe, = (Zhe)z,

e, €€t e€e’

IA

(B11)

and

1 Z,#A il
2 Zlﬂlrl

1 Zl#} IJ(
=2 DT

1 Z A;r? :
:xD’
2 Somir?

we obtain x4, + 72 < x3, which leads to

Sh=

ecet

(B12)

r7 : r2~>/2

(B13)

(B14)
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(x —xp)* + 5% < xp. (B15)
This inequality implies that (x, ) is located inside a disk
centered on (xp,0) with radius |xp|. Since —a < xp < 0,
all these disks are enclosed by the largest one given by
(x + @)? + % < a®. Moreover, noting that |y|/f < 3, we

finally obtain
2 2
(o) () =
a aff

Spectral gap and its relation to temporal correlations—
It has been shown in Ref. [42] that, for quantum
Markov systems, the slowest decay rate of autocorre-
lation functions is given by the symmetrized Liouvillian
gap. Here, we rephrase this result in the language of the
numerical range. We consider observables a’ and b’ with
zero mean values, 7'a’ = 7' b’ = 0. By substituting the
correlation functions of a’ and b’ into the expression of
the numerical range, Eq. (3), we obtain a reduced nume-
rical range W.,.(R)={(x|R|x)/(x|x)|x=I1"%(a’+ib')e
C',z'a'=z"b'=0,x#0}, as shown in Fig. 4. Note that
the real part of W,(R) is given by

(B16)

<0, (C1)

where the symmetrized matrix is defined as

R+RT
5

Sym(R) = (C2)
In the subspace orthogonal to 7z, the real part of W,(R)
is a linear combination of the nonzero eigenvalues of
Sym{R}. As a result, W,(R) exhibits a spectral gap

Sym(R
_gs — X <X| ym( >|X> , <C3)
X)#0:(zlx)=0  (X[x)

which is the second largest eigenvalue of Sym(R) and
coincides with the symmetrized Liouvillian gap introduced
in Ref. [42]. Since |x) can be chosen as eigenvectors
corresponding to nonzero eigenvalues of R, and R is a
similarity transformation of R, all nonzero eigenvalues of
R lie within W,(R). It therefore follows that
g2 g (C4)

where g(> 0) is the spectral gap of R.
Moreover, based on the definition of the numerical range
W(R) and following the method in Ref. [42], we can obtain

Imz

p \(zhga etal.

~

EL W, (R) <

- - A

9s

FIG. 4. Reduced numerical range and spectral gap. An
illustration of the symmetrized Liouvillian gap g, (green
dashed line) given by the maximum real part of the complex
number in the reduced numerical range W,(R) (red shaded
region). The blue shaded region represents the thermodynamic
geometric bound, and the black shaded region shows the
numerical range W(R). The numerical ranges are calculated
using the algorithm in Ref. [71].

the bound on the decay of the autocorrelation function.
Given that Cy, (1) := a'TeR'Tla’ with z'a’ =0, we can
define a):=ef''a’ with ='a, =0. According to the
Cauchy-Schwarz inequality, we obtain

(c6) <

The time derivative of a}'Ila) is given by

a/'Ila/
a/Tr[a/ °

(C5)

d

@ (a}"Ta}) = a;" (RT1 4+ TIR")a,
= 2(x/|Sym{R}[x’)
< _293 <X/|X/>

_ T /
= —2g,a; Ila;,

where we denote x’' =T1'/2aj, and the inequality is
obtained from the definition of the spectral gap g;.
Thus, a,'Tla} < a’'Tla’ exp{—2g,¢}. Finally, we obtain
Ca’a’(t) <Cuu (O) exp{_gst};

The numerical range W(R) is the convex hull of the
reduced numerical range W,(R) and the origin, satisfying
the relation W,(R) C W(R) € W(R). Moreover, W,(R) is
located entirely within the sectorial region, which provides
a tight convex set that captures essential physical informa-
tion about the system. In this sense, the matrix R is referred
to as a sectorial matrix, which has been the subject of recent
interest in matrix analysis and operator theory [79-84].
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