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A space-time tradeoff for implementing a function
with master equation dynamics

David H. Wolpert® "2, Artemy Kolchinsky' & Jeremy A. Owen3

Master equations are commonly used to model the dynamics of physical systems, including
systems that implement single-valued functions like a computer's update step. However,
many such functions cannot be implemented by any master equation, even approximately,
which raises the question of how they can occur in the real world. Here we show how any
function over some “visible" states can be implemented with master equation dynamics—if
the dynamics exploits additional, “hidden” states at intermediate times. We also show that
any master equation implementing a function can be decomposed into a sequence of “hid-
den” timesteps, demarcated by changes in what state-to-state transitions have nonzero
probability. In many real-world situations there is a cost both for more hidden states and for
more hidden timesteps. Accordingly, we derive a “space-time” tradeoff between the number
of hidden states and the number of hidden timesteps needed to implement any given
function.
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any problems in science and engineering involve

understanding how a physical system can implement a

given map taking its initial, “input” state to its “output”
state at some later time. Often such a map is represented by
some stochastic matrix P. For example, P may be a conditional
distribution that governs the evolution of some naturally occur-
ring system between two particular moments, and we wish to
understand what underlying physical process could result in that
conditional distribution. Alternatively, P might represent some
function f that we wish to implement using a physical process,
e.g., f could be the update function of the logical state of a digital
computer.

In this paper we uncover constraints on the amounts of various
resources that are needed by any system that implements a sto-
chastic matrix P. Throughout, we suppose that the underlying
dynamics of the system are continuous-time and Markovian.
(Such systems are sometimes said to evolve according to a
“master equation”.) This basic assumption underlies many ana-
lyses in stochastic thermodynamics'-®, and applies to many
classical physical systems at the mesoscale, as well as semiclassical
approximations of open quantum system with discrete states”-S.
Master equations also frequently appear in biology, demography,
chemistry, computer science, and various other scientific fields. In
addition to assuming master equation dynamics, we focus on the
case where P represents some single-valued function f: X — X
over a finite space of “visible states” X. For example, this would
be the case for any physical system that implements an idealized
digital device.

The first resource we consider is the number of “hidden
states” that are coupled to the states in A by the master
equation at intermediate times within the time interval [0, 1].
The second resource is the number of successive subintervals of
[0, 1] which are demarcated by moments when the set of state-
to-state transitions allowed by the master equation dis-
continuously changes. (We refer to each such subinterval as a
“hidden timestep”.)

In the real world, often it will be costly to have many hidden
states and / or many hidden timesteps. For example, increasing
the number of hidden states generally requires adding additional
storage capacity to the system, e.g., by using additional degrees of
freedom. Similarly, increasing the number of hidden timesteps
carries a “control cost”, i.e, it increases the complexity of the
control protocol that is used to drive the dynamics of the system.
Moreover, transitions from one timestep to the next, during
which the set of allowed state-to-state transition changes, typi-
cally require either the raising or dropping of infinite energy
barriers between states in some underlying phase space®~13. Such
operations typically require some minimal amount of time to be
carried out. Accordingly, the minimal number of hidden states
and the minimal number of hidden timesteps that are required to
implement any given function f can be viewed as fundamental
“costs of computation” of a function f.

Physics has long been interested in the fundamental costs of
performing computation and information processing. The most
well-known of such costs is “Landauer’s bound”!4-18, which
states that the erasure of a physical bit, represented by a function
f:{0,1}—0, requires the generation of at least kTIn2 heat when
coupled to a heat bath at temperature T, assuming the initial
value of the bit is uniformly distributed. Recent studies have
extended this bound to give the exact minimal amount of heat
needed to implement arbitrary functions f. These studies have all
focused on implementing the given function f with a physical
system whose dynamics can be approximated to arbitrary accu-
racy with master equations!>19-27. The two costs of computation
proposed here arise, implicitly, in these previous analyses, since
that the physical systems considered there all use hidden states.

However, none of these previous papers considered the minimal
number of hidden states needed to implement a given function f
using master equations. (Rather they typically focused on issues
related to thermodynamic reversibility).

In addition, the processes considered in these papers all unfold
through a sequence of distinct “timesteps”. In any single one
of those timesteps, transitions between some pairs of states are
allowed to occur while others are blocked, and the set of allowed
transitions changes in going from one timestep to the next. Again,
despite their use of such hidden timesteps, none of these previous
papers considered the minimal number of hidden timesteps
needed to implement a function, given a certain number of
available hidden states.

Our main results are exact expressions for the minimal
number of hidden states needed to implement a single-valued
function f, and the msinimal number of hidden timesteps needed
to implement f given a certain number of hidden states. These
results specify a tradeoff between the minimal number of hidden
states and the minimal number of hidden timesteps required to
implement a given f, which is analogous to the “space-time”
tradeoffs that arise in the study of various models of computation
in computer science. However, here the tradeoff arises from the
fundamental mathematical properties of continuous-time Mar-
kov processes. Moreover, real-world computers are constructed
out of circuits, which are networks of computational elements
called gates, each of which carries out a simple function. For
circuits, the tradeoff between hidden states and hidden timesteps
that we uncover would apply in a “local” sense to the function
carried out at each individual gate, whereas computer science has
traditionally focused on “global” tradeoffs, concerning the set of
all of those functions and of the network coupling them (e.g., the
number of required gates or the “depth” of the circuit to compute
some complicated f).

Results

Markov chains and the embedding problem. We consider finite-
state systems evolving under time-inhomogeneous continuous
time Markov chains, which in physics are sometimes called
“master equations”. Such models of the dynamics of systems are
fundamental to many fields, e.g., they are very commonly used in
stochastic thermodynamics!?8. We begin in this subsection by
introducing some foundational concepts, which do not involve
hidden states or hidden timesteps.

We use calligraphic upper-case letters, such X’ and ), to indicate
state spaces. We focus on systems with a finite state space. We use
the term continuous-time Markov chain (CTMC) T(¢, ') to refer
to a set of transition matrices indexed by t < ' which obey
the Chapman-Kolmogorov equation T(t, t') = T(t", t')T(t, t") for
t"€[t, t']. We use CTMC with finite rates to refer to a CTMC such
that the derivatives %Tij(t, t') are well-defined and finite for all
states i, j and times ¢ < t'2%. For a given CTMC T(¢, t'), we use
Ti(t, t') to indicate the particular transition probability from state
j at time ft to state i at time #. Note that we do not assume
time-homogeneous CTMCs, meaning that in general T(t, t + 1) #
T(¢, t' + 7). Finally, note that the units of time are arbitrary in
our framework, and for convenience we assume that t=0 at the
beginning of the process and t=1 at the end of the process.

The following definition is standard:

Definition 1. A stochastic matrix P is called embeddable if
P="T(0, 1) for some CTMC T with finite rates.

As it turns out, many stochastic matrices cannot be
implemented by any master equation. (The general problem of
finding a master equation that implements some given stochastic
matrix P is known as the embedding problem in the mathematics
literature39-32). One necessary (but not sufficient) condition
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for a stochastic matrix P to be implementable with a master
equation is30-31,33

(1)

When P represents a single-valued function f which is not the
identity, [[ P; = 0, and the conditions of Eq. (1) are not satisfied.

[]P: = detp>0.
i

1
Therefore, no non-trivial function can be exactly implemented
with a master equation. However, as we show constructively in
Supplementary Note 2, all non-invertible functions (e.g., bit
1 1 b .
o o) can be approxi-
mated arbitrarily closely using master equation dynamics.
Intuitively, since the determinant of such functions equals 0,
they can satisfy Eq. (1) arbitrarily closely.
To account for such cases, we introduce the following
definition:
Definition 2. A stochastic matrix P is limit-embeddable if there
is a sequence of CTMCs with finite rates, {TM(t, ) : n=1, 2, ...},
such that

erasure, which corresponds to P = <

P = lim T"(0,1).

n—oo

(2)

Note that while each T(") has finite rates, in the limit these rates
may go to infinity (this is sometimes called the “quasistatic limit”
in physics). This is precisely what happens in the example of
(perfect) bit erasure, as shown explicitly in Supplementary Note 1.

We use the term master equation to broadly refer to a CTMC
with finite rates, or the limit of a sequence of such CTMCs.

Definition of space and time costs. When P represents a (non-
identity) invertible function, [[; P; = 0, while det P equals either
1 or —1. So the conditions of Eq. (1) are not even infinitesimally
close to being satisfied. This means that any (non-identity)
invertible function cannot be implemented, even approximately,
with a master equation. As an example, the simple bit flip (which
0 1 tb
| o ) cannot be
approximated by running any master equation over a two-state
system.

How is it possible then that invertible functions can be
accurately implemented by actual physical systems that evolve
according to a master equation? In this paper, we answer this
question by showing that any function f: X — X over a set of
visible states X' can be implemented with a master equation—as
long as the master equation operates over a sufficiently large state
space ) O X that may include additional hidden states, J\X.
The key idea is that if ) is large enough, then we can design the
dynamics over the entire state ) to be non-invertible, allowing
the determinant condition of Eq. (1) to be obeyed, while at the
same time the desired function f is implemented over the
subspace X. As an illustration, below we explicitly show below
how to implement a bit flip using a master equation over a 3-state
system, i.e., a system with one additional hidden state.

The following two definitions formalize what it means for one
stochastic matrix to implement another stochastic matrix over a
subset of its states. The first is standard.

Definition 3. The restriction of a |Y|x |Y| matrix A to the set
X C ), indicated as Ay, is the |X[x [X| submatrix of A formed

by only keeping the rows and columns of A corresponding to the
elements in X.

In all definitions below, we assume that P is a |X|x |X]
stochastic matrix.

Definition 4. M implements P with k hidden states if M is a
(IX] + k) x (| X + k) stochastic matrix and My = P.

corresponds to the stochastic matrix P = (

To see the motivation of Definition 4, imagine that M is a
stochastic matrix implemented by some process, and M) = P. If
at t =0 the process is started in some state i € X, then the state
distribution at the end of the process will be exactly the same as if
we ran P, ie, Mj =Pj for all j € X. Furthermore, because
> jexP;i =1, Mj;=0foranyi€ Xand jZX (i.. for any j which
is a hidden state). This means that if the process is started in some
i € X, no probability can “leak” out into the hidden states by
the end of the process, although it may pass through them at
intermediate times.

The “(hidden) space cost” of P is the minimal number of
hidden states required to implement P:

Definition 5. The (hidden) space cost of P, written as Cypace(P),
is the smallest k such that there exists a limit-embeddable matrix
M that implements P with k hidden states.

Consider a CTMC T governing the evolution of a system. As ¢
increases, the set of transitions allowed by the CTMC (that is, the
set of states which have Tj;(0, ) > 0) changes. We wish to identify
the number of such changes between t=0 and t=1 as the
number of “timesteps” in T. To formalize this, we first define
the set of “one-step” matrices, which can be implemented by a
CTMC which does not undergo any changes in the set of allowed
transitions:

Definition 6. P is called one-step if P is limit-embeddable with
a sequence of CTMCs {T\") : n=1, 2,...} such that:

1. TG, ¢):=lim, . TM(t t') exists for all ¢, ¢ € [0, 1];
T(0, t) is continuous in ¢t € (0, 1] and T(#, 1) is continuous in
t' € [0, 1);

3. For all i, j, either Tj0, t) >0 for all £ € (0, 1), or T;;(0, t) =0
for all t € (0, 1).

We note two things about our definition of one-step matrices.
First, the precise semi-open interval used in the continuity
condition (condition 2) allows discontinuities in T (and therefore
in the set of allowed transitions) at the borders of the
time interval. Second, we note that the limiting transition matrix
T in the above definition is still a CTMC. This is because: (1) a
limit of a sequence of stochastic matrices is itself a stochastic
matrix, so by definition T(t, ¢') is a stochastic matrix for all t,
t'€[0, 1], and (2) the Chapman-Kolmogorov equation T(¢, t') =
T(", t')T(t, t') holds (since it holds for each T("). A canonical
example of a one-step map is bit erasure, as demonstrated in
Supplementary Note 1. The definition of one-step matrices allows
us to formalize the minimal number of timesteps it takes to
implement any given P:

Definition 7. The (hidden) time cost with k hidden states of P,
written as Cime(P, k), is the minimal number of one-step matrices
of dimension (|X| + k) x (|]X| + k) whose product implements P
with k hidden states.

Note that a product of one-step matrices can be implemented
with a CTMC that successively carries out the CTMCs
corresponding to each one-step matrix, one after the other. So
any stochastic matrix P with finite time cost can be implemented
as a single CTMC. Moreover, we can rescale units of time so that
that product of one-step matrices is implemented in the unit
interval, ¢t € [0, 1]. Note as well that since one-step matrices can
have discontinuities at their borders, the adjacency matrix of such
a product of one-step matrices can change from one such matrix
to the next.

The space-time tradeoff. For the rest of this paper, we
assume that our stochastic matrix of interest P is 0/1-
valued, meaning that it represents a (single-valued) function
f: X — X. Below, in a slight abuse of previous notation, we will
use Copace(f) and Ciime(f, k) to refer to the space and time cost of
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implementing f. Except where otherwise indicated, all proofs are
in the Methods section.

As we will show, there is a fundamental tradeoff between the
number of available hidden states and the minimal number of
timesteps. It will be convenient to present it using some standard
terminology>*. For any function f: X — X, we write fix(f) for the
number of fixed points of f; and |img(f)| for the size of the image
of f. We also write cycl(f) for the number of cyclic orbits of f, i.e.,
the number of distinct subsets of X of the form {x, flx), f(f(x)),...,
x} where x is not a fixed point of f and each element in the subset
has a unique inverse under f.

We can now state our main result:

Theorem 1. For any single-valued function f and number of
hidden states k,

[k +|X] + max[cyc(f) — k, 0] — fix(f)
e S

] +b(f, k)
(3)

where [] is the ceiling function and b(f, k) equals either zero or
one (the precise value of b(f, k) is unknown for some functions).

Several corollaries from this result follow immediately:

Corollary 2. For any single-valued function f and number of
hidden states k,

Cﬁme(fa k) ~ |X| + CYCI(f) — ﬁX(f)

T k[ - [img()]

+1 (4)

and

1.5x% |X
C'cime (fﬂ k) < XTl‘ +3 (5)

In addition, a “converse” of our main result gives kp,(f; 7), the
minimal number of hidden states k needed to implement f,
assuming we are allowed to use at most 7 timesteps. The exact
equation for ky,,(f, 7) is presented in the Methods section. A
simple approximation of that exact converse follows from
Corollary 2:

b, 1) = ZERC 2D 2D iy (6)

Although formulated in terms of time cost, our results have
some implications for space cost:

Corollary 3. For any non-invertible function f, Cypace(f) = 0.
For any invertible f (except the identity), Cpace(f) = 1.

Proof. If f is non-invertible f, | X'| — |img(f)|#0, s0 Cyime(f; 0) is
finite. Therefore, by definition of Cypace and Cime; Cspace(f) = 0.
For invertible f, the denominator of Eq. (3) is zero if k = 0. So
while it is possible to implement any such f (except the identity)
in a finite number of timesteps if we can use at least one hidden
state, it is impossible if we do not have any hidden states, i.e.,
Cspace(f) =1L

Figure 1 illustrates the tradeoff between space cost and time
cost for three different functions over X = {0,,2%* —1}. The
first function (in blue) is an invertible “cycle” over the state space,
computed as x—x + 1 mod 232, The second function (in green)
is an invertible bitwise NOT operation, in which each element of
X is treated as a 32-bit string and the value of each bit is negated.
The third function (in red) is an addition followed by clipping
to the maximum value, computed as x—min(x + 216,23 —1).
Exact results (solid lines), as well as the approximation of Eq. (4)
from Corollary 2 (crosses), are shown. These results show that
achieving the minimal space costs given in Corollary 3 may result
in a very large time cost.

There are two important special cases of our result, which are
analyzed in more detail in the Methods section. First, when at
least |img(f)] hidden states are available, any f can be

— x+ x+ 1 mod 2%
—— Bitwise NOT
—— xemin(x + 216,232 1)

103.

# Timesteps required
<
5,

101 p

20 2t o
# Hidden states available
Fig. 1 The space/time tradeoff for three functions. The domain of all three

functions is X = {0, ..., 23 — 1}. Solid lines show exact results, crosses
indicate the approximation given by Eq. (4)

implemented in exactly two timesteps. Second, when f is a cyclic
permutation and there is one hidden state available, the time cost
is exactly |X| + 1.

We emphasize that the proofs of these results (presented in the
Methods section) are constructive; for any choice of function f
and number of hidden states k, this construction gives a sequence
of CTMC:s with finite rates whose limit implements f while using
k hidden states and the minimal number of hidden timesteps
for that number of hidden states. These constructions involve
explicitly time-inhomogeneous master equations. Indeed, for any
time-homogeneous master equation, the set of allowed state
transitions can never change, i.e., the only functions f that can be
implemented with such a master equation are those that can be
implemented in a single timestep. Therefore our demonstrations
of functions f with time cost of 2 proves that there are maps that
cannot be implemented unless one uses a time-inhomogeneous
master equation, no matter how many hidden states are available.

Explicit constructions saturating the tradeoff. We now illustrate
our results using two examples. These examples use the fact that
any idempotent function is one-step, as proved in Theorem 4 in
the Methods section. (We remind the reader that a function f is
called idempotent if f{x) = f(f(x)) for all x.)

Example 1. Suppose we wish to implement the bit flip function
f:x+— -x over X ={0,1}. By Corollary 3, since this map is
invertible, we need exactly one hidden state to implement it.

We introduce a space of three states ) = {0, 1,2}, and seek a
sequence of idempotent functions over ) that collectively
interchange 0 < 1. It is straightforward to confirm that our goal
is met by the following sequence of idempotent functions:

1. {1,2}~2, 0—0;
2. {0,1}—1, 2~2;
3. {0,2}—0, 1—1;

Each idempotent can be implemented with the one-step
CTMC described in Supplementary Note 2. This explicitly shows
how to implement a bit flip using one hidden state and three
hidden timesteps.

Evaluating Eq. (3) with k = 1, |X| = [img(f)| = 2, cycl(f) =1,
and fix(f) = 0 gives

Cime(f> 1) =3+ b(f,1). (7)

Thus, the above construction has optimal time cost (and, in
this case, b(f, 1) =0).
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a Function to carry out b
(0]
O (6]
O
d Timestep 3 e

P

Timestep 1 Cc

Timestep 4 f

N
A

Timestep 2

O
o o/,o::]egti: 5’.

e

Fig. 2 Minimal-timestep implementation of a cyclic permutation with 4 hidden states. The implementation carries out the function f : x— x 4+ Tmod 16 over
16 states (green circles in (a), using 4 hidden states (white circles in a). In all subplots, white nodes indicate states that cannot have any probability, light
green nodes with outgoing black arrows indicate states that may have positive probability but are not yet mapped to their final output, and purple nodes
indicate states that may have positive probability and have been mapped to their final outputs. Subplots b-f show the state of the system after each of the 5
timesteps required to carry out f, where red arrows indicate the idempotent function carried out in each timestep (in each timestep, any state without

outgoing red arrows is mapped to itself)

The following example demonstrates the implementation of a
more complicated function, involving a greater number of hidden
states.

Example 2. Suppose we wish to implement the function

f(x) :=x+ 1mod16 (8)

over X ={1,...,16}. For example, this kind of “cyclic’
function may be used to keep track of a clock in a digital
computer. Suppose also that 4 hidden states are available, so
Y ={1, ... ,20}. The overall function to carry out, along with the
hidden states, are shown in Fig. 2a, along with a sequence of 5
idempotent functions over ) that carries out f{ix) = x + 1 mod 16
over X. (See caption for details.)

Evaluating Eq. (3) for k=4, |X| = |img(f)| = 16, cycl(f) = 1,
and fix(f) = 0 gives

Ciime(f>4) = 5+ b(f,4). ©)

Thus, the above construction of 5 idempotents achieves the
minimal time cost for 4 hidden states, and b(f, 4) =0.

See ref. 3° for details on how to decompose more complicated
functions into products of idempotent functions.

Visible states that are coarse-grained macrostates. Our analysis
above concerns scenarios where the full set of states is the union
of the set of visible states with the (disjoint) set of hidden states.
However, in many real-world physical computers, f is carried out
over a set of macrostates that coarse-grain an underlying set of
microstates. We call such macrostates “logical states” (logical
states are sometimes called the states of the “information bearing
degrees of freedom”3). The map over the logical states, as spe-
cified by f, is induced by a master equation evolving over the
underlying set of microstates. In such scenarios, we cannot
express the full state space as the disjoint union of the logical
states with some other “hidden” states, since the logical states are

macrostates. This means that such scenarios cannot be immedi-
ately analyzed with our framework.

However, as shown in the Methods, we can generalize our
framework to include such maps carried out over logical
macrostates, in such a way that scenarios involving disjoint
unions of visible and hidden states are just a special case. It turns
out that the results of the previous sections apply without any
modification, so long as we identify “the number of hidden states”
in those results with the difference between the number of
microstates and the number of macrostates.

Example 3. Suppose we have two quantum dots, each with two
possible states, written as u and w, respectively, that evolve jointly
according to a CTMC?22, In this scenario, the set of microstates is
the set of all four pairs (u, w).

Suppose further that we identify a logical bit with the value of
u. Then a CTMC over (u, w) will flip the value of the visible state
in two (hidden) timesteps if it implements the following sequence
of two idempotent functions:

L. {(0, 0), (0, )} = (0, 0); {(1, 0), (1, )} = (1, 1)
2. {0, 0), (1, 0)} = (1, 0); {(1, 1), (0, 1)} = (0, 1)

Since there are four microstates and two logical states (given by
the value u), this means there are two “hidden states”. Thus,
applying Theorem 1, with the appropriate change to how k is
defined, we conclude that no master equation can implement the
bit flip using less than two timesteps. This minimal time cost is in
fact achieved by the construction above.

Discussion

Many single-valued functions from initial to final states cannot
be realized by master equation dynamics, even using time-
inhomogeneous master equations. In this paper, we show that
any single-valued function f over a set of “visible” states X’ can be
implemented, to arbitrary accuracy—if additional “hidden” states
not in X are coupled to X" by the underlying master equation. We

| (2019)10:1727 | https://doi.org/10.1038/s41467-019-09542-x | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

refer to the minimal number of hidden states needed to imple-
ment fas the “space cost” of implementing f. In addition, we show
that given any function f and number of available hidden states k,
there is an associated minimal number of timesteps that are
needed by any master equation to implement f, where we define a
“timestep” as a time interval in which the set of allowed transi-
tions between states does not change. We refer to this minimal
number of timesteps as the time(step) cost of f for k hidden states.

In this paper, we derive a simple expression for the tradeoff
between the space cost and the time cost of any function f, a
tradeoff which depends on certain algebraic properties of f.

We also analyze a generalization of our framework which
encompasses scenarios in which visible states are taken to be
coarse-grained “logical” macrostates which carry out the desired
input-output map, while the hidden states are a subset of the
microstates over which the actual master equation unfolds. We
show that all of our results regarding space and time costs still
apply in this more general setting.

Interestingly, in standard treatments of the thermodynamics of
computation, invertible functions can be carried out for free (ie.,
while generating no heat), whereas many-to-one maps are viewed
as costly. Moreover, noisy (i.e., non-single-valued) stochastic
matrices can have lower thermodynamic cost than invertible single-
valued ones, in the sense that the minimal free energy required to
implement them can actually be negative! 32027, In contrast, when
considering the number of hidden states required to implement a
computation, it is many-to-one maps that are free, and single-
valued invertible ones that are costly. Furthermore, as shown in our
companion paper?’, noisy maps may require more hidden states to
implement than single-valued ones. Thus, the relative benefits of
many-to-one, invertible, and noisy maps are exactly opposite when
considering thermodynamic costs versus space and time costs.

The results derived in this paper are independent of con-
siderations like whether detailed balance holds, how many ther-
mal reservoirs the system is connected to, the amount of entropy
production incurred by the stochastic process, etc. Nonetheless, in
Supplementary Note 2, we show by construction that one can
implement any f using the minimal number of hidden states and
timesteps using a master equation that (1) obeys detailed balance,
(2) evolves probabilities in a continuous manner, and (3) has
vanishing entropy production, i.e., is thermodynamically rever-
sible. The latter two properties are satisfied when the equilibrium
distribution of the master equation at t=0 (determined by the
choice of g in the construction in Supplementary Note 2) coin-
cides with the initial distribution over states (this and related
issues are studied further in ref. 38).

This demonstrates that the implementation costs we consider
are novel, and independent from energetic costs like heat and
work that are traditionally studied in thermodynamics of com-
putation. Indeed, while our analysis is driven by physical moti-
vations, it applies broadly to any field in which master equation
dynamics play an important role.

Our analysis suggests several important directions for future
work:

1. Here, we focused on tradeoffs involved in implementing
single-valued functions, but typical real-world digital devices
cannot achieve perfect accuracy—they will always have some
noise. An important line for future work is to extend our
analysis to the space and timesteps tradeoffs for the case of
arbitrary P, including non-single-valued maps. Some pre-
liminary work related to this issue is presented in ref. 37,
where we present bounds (not exact equalities) on the space
cost of arbitrary stochastic matrices. As discussed there, those
space cost bounds have some implications for bounds (again,
inexact) on the time cost.

An associated goal is to analyze the tradeoffs for
implementing a given f up to some accuracy e. In this setting,
a quantity of fundamental interest may be the maximal size
Epmax of allowed energy barriers, which will determine how
small entries of the rate matrix can be made. In particular, it is
of interest to investigate the coupled tradeoffs between space
cost, time cost (appropriately generalized), €, and E.y, and
show how these reduce to a two-way tradeoff between space
cost and time cost in the appropriate limit. (The analysis done
here corresponds to the case where ¢ = 0 and E,,,,, = .)

2. Our results quantify the space/time tradeoff under the “best-
case” scenario, where there are no restrictions on the dynamical
processes available to an engineer who is constructing a system
to carry out some map. In particular, we assume that a system’s
dynamics can be sufficiently finely controlled so as to produce
any desired idempotent function. In real-world situations,
however, it is likely that the set of idempotent functions that
can be engineered into a system will be a tiny fraction of the
total number possible, Zlﬂ |)f| >i‘X =139 (This already
exceeds a trillion if there are just 4 bits, so that | X| = 16). We
perform an initial exploration of the consequences of such
restrictions in Supplementary Note 6, but there is significant
scope for future study of related tradeoffs.

3. Future work will also involve extending our framework to
evaluate space and timestep tradeoffs for functions over
infinite state spaces, in particular, to extend our results to
Turing machines. (See3” for preliminary analysis of the
space costs of implementing noisy stochastic matrices over
countably infinite spaces).

Methods
Our proofs are fully constructive. At a high level, the construction can be sum-
marized as follows:

(1)  Adapting an existing result in semigroup theory>>, we find the minimal
(length) sequence of idempotent functions on a state space Y
(|Y| = |X] + k) whose composition equals f when restricted to X C ).

(2) We show that any idempotent function is one-step, by explicitly specifying
(see Supplementary Note 2) rate matrices and a limiting procedure for limit-
embedding any idempotent function. Thus, the length of the minimal
sequence of idempotent functions whose composition implements f with k
hidden states, as found in step (1), is an upper bound on Cime(f, k).

(3)  We show that if a CTMC implements f with k hidden states and ¢
timesteps, then there must exist ¢ idempotent functions whose composition
implements f with k hidden states. Together with step (1) and (2), this means
that Cyme(f; k) is exactly equal to the minimal number of idempotents whose
composition implements f with k hidden states.

(4)  Therefore, by chaining together the CTMCs implementing the idempotent
functions in the decomposition we found in step (1), we construct a CTMC
that implements f while achieving our space and timestep bounds.

The rest of this section presents the details.

Time cost and idempotent functions. Although our definitions apply to any
stochastic matrix P, our results all concern 0/1-valued stochastic matrices repre-
senting single-valued functions f. This is because there is a special relationship
between one-step matrices that represent single-valued functions and idempotent
functions, a relationship that in turn allows us to apply a result from semigroup
theory to calculate time cost—but only of single-valued functions.

We begin with the following, which is proved in Supplementary Note 2.

Theorem 4. Any idempotent function over a finite X" is one-step.

Theorem 4 means that we can get an upper bound on the time cost of a single-
valued matrix P over a finite ) by finding the minimal number of idempotent
functions that equals P. It turns out that this bound is tight, as proved in
Supplementary Note 4:

Lemma 5. Suppose the stochastic matrix P over ) O A has time cost ¢ and the
restriction of P to X is a function f: X — X. Then there is a product of ¢
idempotent functions over X’ whose restriction to X’ equals f.

By combining these results, we simplify the calculation of the time cost of a
function f to the problem of finding a minimal set of idempotent functions whose
product is f:
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Corollary 6. The time cost of any function f with k hidden states is the minimal
number of idempotents over Y = XU {1, ... ,k} such that the product of those
idempotents equals f when restricted to X

Idempotent functions have been extensively studied in semigroup theory>>40-43,
Corollary 6 allows us to exploit results from those studies to calculate the time cost (to
within 1) for any function. In particular, we will use the following Theorem, proved
in3° in an analysis of different issues:

Theorem 7. Let f: X — X be non-invertible. Then

1]+ cyel(f) — fix(f)
Cunl£:0) = [FEE 0= w0 (10)

where b(f, 0) equals either zero or one.
The expression for b(f, 0) is not easy to calculate, though some sufficient
conditions for b(f, 0) = 0 are known3>.

Proofs of our main results. Theorem 1. Let f: X — X. For any number of
hidden states k >0, the time cost is

[k + |X] + max[cyd(f) — k, 0] — fix(f)
it = [

where b(f, k) equals either zero or one.

Proof. Let Y = X U Z where ZN X = () and | Z| = k. By definition Cyme(f, k)
is the minimum of Ciime(g, 0) over all non-invertible functions g: Y — ) that
equal f when restricted to X'. Moreover, by Theorem 7,

_ [+ oyelg) — fix(g)
Cunl.0) = [P O 4 4i5.0) (12)

Due to the constraint that g(x) = f(x) for all x € X, our problem is to
determine the optimal behavior of g over Z. For any fixed img(g), this means
finding the g that minimizes cycl(g) — fix(g). Since img(f) C X, the constraint tells
us that there are no cyclic orbits of g that include both elements of A" and elements
of Z. So all cyclic orbits of g either stay wholly within Z or wholly within X.
Moreover changing g so that all elements of a cyclic orbit Q lying wholly in Z
become fixed points of g does not violate the constraint and reduces the time cost.
Therefore under the optimal g, all z € Z must either be fixed points or get mapped
into img(f).

Our problem then reduces to determining precisely where g should map those
elements in Z it sends into img(f). To determine this, note that g might map an
element of Z into an x that lies in a cyclic orbit of f, Q. If that happens, Q will
not be a cyclic orbit of g—and so the time cost will be reduced. Thus, to ensure
that cycl(g) is minimal, we can assume that all elements of Z that are not fixed
points of ¢ get mapped into img(f), with as many as possible being mapped into
cyclic orbits of f.

Suppose g sends m <k of the hidden states into the image of f, where each can
be used to “destroy” a cyclic orbit of f (until there are none left, if possible). The
remaining k — m hidden states are fixed points of g. Moreover, since

g(X) = img(f),

%b(f,k) (1)

limg(g)| = [img(f)| + k — m. (13)

So using Theorem 7,

m + | X| + max[cycl(f) — m, 0] — fix(f)
m + | X] — [img(f)]

The quantity inside the ceiling function is minimized if m is as large as possible,
which establishes the result once we take b(f,k) := b(g,0) for the g which has
m = k and smallest b(g, 0).

Corollary 8. For any f and number of hidden states k,

1] + eyel(f) — fix(f)
1A~ g T (19)

Cime(8,0) = + b(g, 0). (14)
| |

Ctime (fﬂ k) ~

to within 2 timesteps.

Proof. Whenever k < cycl(f), the approximation of Eq. (15) holds up to the
accuracy of 1 timestep, since the +1 term accounts for error due to both the
ceiling function and the term b(f, k) € {0, 1}. The equivalent approximation for
k > cycl(f) is

kA=) (16)
k+ 1] — [img(f)]
and also holds up to the accuracy of 1 timestep. However, when k > cycl(f), Eq. (16)

will never be more than 1 greater than Eq. (15). To see why, note that Eq. (15)
subtracted from Eq. (16) gives

k — cycl(f)
k+ 1] — [img(f)|
For k> cycl(f), this quantity is bigger than 0. At the same time, Eq. (17) is

always smaller than 1, since the numerator is smaller than the denominator
(observe that |X| — |img(f)| > 0).

(17)

Corollary 9. For any f: X — X,

1.5x |X
Canef.) <2 5 (13)

Proof. First, assume |X| is even and consider some function f* which has f'(f
(x)) =x and f'(x) # x for all x € X. One can verify that for this f, cycl(f) = |X]|/2,
fix(f) =0, and |img(f)| = | X[, and that these values maximize the approximation
to the time cost given by Corollary 8. This approximation is accurate to within 2
timesteps, which implies the bound
1.5x |X
Ctime(ka) SA"'i (19)

If | X| is odd, the maximum number of cyclic orbits is (|X| — 1)/2, so the above
upper bound can be tightened by 1/(2k).

Corollary 10. Let 7> 3 and define

o= [Cyclv)*lz(l;\irzf)3>ffWU)" + [img(7)| -
*k im; 7—2)—fix|
P P g(f)‘frfsf (f)" — L.
We can implement f in 7 timesteps if we have at least k hidden states, where
P max[k*,0] if k*<c?rcl(f) 1)
max[k™, 0] otherwise.

Proof. Since b(f, k) is 0 or 1, by Theorem 1 we know that we can implement f if
7 and k obey

k + | X| + max[cycl(f) — k,0] — ﬁx(f)-‘
T> . +1. 22
[ et =
This inequality will hold if
X 1(f) — k,0] — fi
T>k+\ | + max[cycl(f) — &, 0] 1x(f)+2- (23)

- k4| x| — [img(f)]
The RHS is non-increasing in k. So we can implement f in 7 timesteps, as
desired, if k is the smallest integer that obeys the inequality.
First hypothesize that the smallest such # is less than cycl(f). In this case
max[cycl(f) — k, 0] = cycl(f) — k. So our bound becomes
N k+ | X| + cycl(f) — k — fix(f)
T2 s ;
k+ || — [img(f)]
which is saturated if

If instead the least k that obeys our inequality is greater than or equal to cycl(f),
then our bound becomes

(24)

k+ x| — fix(f)
" ke 14— [img(f) (@)
which is saturated if
o lmeflir —2) () o)

T—3

The fact that k must be a nonnegative integer completes the proof.

Corollary 11. Any f can be implemented in two timesteps, as long as |img(f)|
hidden states are available.

Proof. Consider an implementation of f when k = |img(f)| hidden states are
available. Index the states in ) using 1, ... , |X| for the states in X’ and |X| +
1, ..., |X| + k for the hidden states. The function f can then be implemented as a
product of two idempotents:

1. In the first step, for each x € X, both x and k + f(x) are mapped to k + f(x);
2. In the second step, for each x'€img(f), both x’ and k + x" are mapped to x".

Corollary 12. If f: X — X is a cyclic permutation with no fixed points and
there is one hidden state available, then the time cost is |X| + 1.

Proof. Theorem 8 tells us that the time cost of fis |X| + 1 or |X| + 2. To show
that it is in fact |X| 4 1, write the states of X" as {1,2, ... ,|X|}, with the single
hidden state written as |X| 4+ 1. Assume without loss of generality that the states
are numbered so that f(i) =i+ 1 mod |X. Then have the first idempotent
function send {|X|, |X| + 1}+—|X| + 1 (leaving all other states fixed), the second
function send {|X| — 1, |X|}—|X| (leaving all other states fixed), etc., up to the
|X'th idempotent function, which sends {1, 2} — 2 (leaving all other states fixed).
Then have the last idempotent function send {1, |X| + 1}—1 (leaving all other
states fixed). It is easy to verify that this sequence of | X'| + 1 idempotent functions
performs the cyclic orbit, as claimed.

It is straightforward to use the proof technique of Corollary 12 to show that, in
Theorem 1, b(f,1) = 0 for any invertible f.

Extension to allow visible states to be coarse-grained macrostates. If the
visible states are identified with a set of macrostates given by coarse-graining an
underlying set of microstates, then the framework introduced above, where X C ),
does not directly apply. It turns out though that we can generalize that framework
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to apply to such scenarios as well. To show how we start with the following
definition:

Definition 8. A function f : Z — Z can be implemented with n microstates
and / timesteps if and only if there exists a set ) with n states and a partial function
g:Y — Z such that

1. img(g) = Z,

2. there exists a stochastic matrix M over ) which is a product of ¢ one-step
matrices,

3. for all iedom(g), Zjeg"(]’(g(i)) M; = 1.

The minimal number n such that f’ can be implemented with # microstates
(for some associated g and M, and any number of timesteps) we call the microspace
cost of f .

Note that we allow the coarse-graining function to be partially specified,
meaning that some microstates may have an undefined corresponding macrostate.
Nonetheless, condition 1 in Definition 8 provides that each macrostate is mapped
to by at least one microstate. An example of Definition 8 is given by the class of
scenarios analyzed in the previous sections, in which Z = X C ), g(x) = x for all
x € X and is undefined otherwise, and the elements Y\ X’ are referred to as hidden
states. Note, however, that in Definition 8, we specify a number of microstates,
rather than a number of hidden states. As illustrated in Example 3, this flexibility
allows us to consider scenarios in which each z € Z is not a single element of the
full space ), but rather a coarse-grained macrostate of ).

Definition 9. Let f be a single-valued function over Z that can be implemented
with n microstates. Then we say that the (hidden) time(step) cost of f with n
microstates is the minimal number ¢ such that f can be implemented with n
microstates.

The minimization in Definition 9 is implicitly over the set of partial
macrostates, the matrix M, and the function g.

The proof of the following Theorem is left for the Supplementary Information.

Theorem 13. Assume f : Z — Z can be implemented with n microstates and ¢
timesteps. Then there is a stochastic matrix W over a set of n states ), a subset
X C Y with |X| = |Z], and a one-to-one mapping w : Z — X such that

1.  Wis a product of ¢ one-step matrices R
2. The restriction of W to X carries out the function f(x) := w(f(w™!(x))

We are finally ready to prove the equivalence between time cost as defined in
previous sections, and time cost for computations over coarse-grained spaces.

Corollary 14. Consider a system with microstate space ). The hidden time cost
of a function f over a coarse-grained space Z with n microstates equals the hidden
time cost off (up to a one-to-one mapping between Z and X C V) with n — | Z|
hidden states.

Proof. Let ¢ indicate the time cost of f : Z — Z with n microstates, and let M
be a stochastic matrix that achieves this (microstates-based) time cost. Similarly, let
¢ indicate the time cost of carrying out f over X C ) (up to a one-to-one mapping
between Z and X, which we call w : Z — X) with n — | Z| hidden states, and let M
" be a stochastic matrix that achieves this (hidden-states-based) time cost. We prove
that £ = ¢’ by proving the two inequalities, ¢ < ¢’ and ¢ < (.

By Theorem 13, it must be that there exists an implementation of f over X with
n — | Z| hidden states and ¢ timesteps. Thus, ¢ < . We can also show that ¢ < ¢'.
To do so, define the coarse-graining function g(x): = w~1(x) for all x € img(w), and
g(x) undefined for all x ¢ img(w). It is easy to verify that M and g satisfies the
conditions of Definition 8 with n microstates and ¢ timesteps. Thus, ¢ < ¢
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