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We explore the application of a theory of semantic information to the well-motivated problem of resource
foraging. Semantic information is defined as the subset of correlations, which is here measured via the transfer
entropy, between agent A and environment E that is necessary for the agent to maintain its viability V . Viability,
in turn, is endogenously defined as opposed to the use of exogenous quantities like utility functions. In our model,
the forager’s movements are determined by its ability to measure, via a sensor, the presence of an individual
unit of resource, while the viability function is its expected lifetime. Through “interventions”—scrambling the
correlations between agent and environment by noising the sensor—we demonstrate the presence of a critical
value of the noise parameter, ηc, above which the forager’s expected lifetime is dramatically reduced. On the
other hand, for η < ηc there is little to no effect on its ability to survive. We refer to this boundary as the semantic
threshold, quantifying the subset of agent-environment correlations that the agent actually needs to maintain its
desired state of staying alive. Each bit of information affects the agent’s ability to persist both above and below
the semantic threshold. Modeling the viability curve and its semantic threshold via forager and/or environment
parameters, we show how the correlations are instantiated. Our work demonstrates the successful application of
semantic information to a well-known agent-based model of biological and ecological interest. Additionally, we
demonstrate that the concept of semantic thresholds may prove useful for understanding the role information
plays in allowing systems to become autonomous agents.
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I. INTRODUCTION

Questions about the role of information in the physics of
life extend as far back as Schrödinger’s seminal 1944 work,
What Is Life [1]. Four years later, Shannon published his pi-
oneering work on information theory [2], shortly followed by
the discovery that DNA serves as a code for living organisms
[3]. These developments have led to a deep interest in the
relationship between information, physics, and biology [4].
Since then, the applications of information theory to biology
have grown exponentially [5–15], allowing researchers to un-
pack the ways organisms store and process data about the
environment and their own internal states [16–18].

One difficulty with applications of Shannon’s information
theory to biological systems is its “syntactic” nature. That
is, the kinds of extant measures employed in information
theory capture statistical correlations between systems with-
out any consideration of the relevance or meaning of those
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correlations. Living systems, however, act as agents for whom
information is intrinsically meaningful in the most basic
sense, that is, whether it can be useful for its self-production
and self-maintenance [19,20]. Life, as a driven, nonlinear,
and far-from-equilibrium system, is always in a precarious
position and must gather information about the state of the
environment and its internal state to endure [21]. Some of
this information will be useful for this purpose and some will
be irrelevant. In this setting, relevance and meaning can be
considered synonymous.

Unlike the well-developed field of syntactic information
theory, there exists no widely accepted or applied formal
theory of semantic information (previous attempts at devel-
oping such a theory include Refs. [22–28]). A goal of a
precise mathematical theory of semantic information would
be to provide an operational definition useful for charac-
terizing nonlinear far-from-equilibrium systems which can
be identified as agents (e.g., organisms or robots). Recently,
Kolchinsky and Wolpert [29] (henceforth KW18) developed
an explicit formalism for semantic information based on the
use of counterfactuals and a notion of viability. Their for-
mulation uses the state spaces and probability distributions
for an agent A and its environment E to characterize the
mutual information between the two, while the persistence
of A (its ability to maintain a desired state) is measured
through a viability function V . The concept of meaning here
is thus taken in the most basic sense of being related to an
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agent’s continued existence. By running intervened versions
of the system dynamics in which some fraction of the mutual
information between agent and environment is scrambled, a
formal working definition of the semantic information was
characterized in terms of the response of the viability function
to such interventions. Importantly, the viability is determined
by the inherent coupled dynamics of the system and the envi-
ronment [29,30], rather than through exogenous utility, cost,
error, or loss functions (as is sometimes done when studying
the value of information in statistics or in engineering appli-
cations [15,31–34]).

The fitness value of information has been recently proposed
in an ecological setting, investigating the role of information
in species growth using population distributions as proxy for
probability measures [35]. We note that while the KW18 paper
outlines the formalism for semantic information, there is yet to
be any application of their framework in a biological setting,
or indeed in any realistic individual organism model. As we
will see one reason for this is the need to deal with both the
formal and computational issues associated with the extensive
state spaces associated with the method.

There are several classes of models that describe specific
attributes of living systems such as synchronization [36,37],
pattern formation [38,39], competition between species for re-
sources [40], stability of ecosystems [41], and simple models
of metabolism [42], as well as synthetic cells [43]. Each of
these models involves settings where one can test the theoreti-
cal framework of semantic information. Indeed, the only work
to date that has used the KW18 formalism for semantic infor-
mation was in the context of synthetic cells [44]. However, in
that short study no extension of the formalism was attempted.

In this paper, we make an attempt to test the formalism of
semantic information in a model of central interest to biology
and ecology: the two-dimensional forager. Our approach is
threefold: First, we apply the semantic information framework
to the well-motivated problem of resource foraging agents.
Second, we develop a detailed mathematical and numerical
implementation, operationalizing the original KW18 formal-
ism to explore what simplifying approximations lead to a clear
connection between semantic information and the viability
of the foraging agents. Finally, we demonstrate the efficacy
of our approach in uncovering new insights on the general
features of agent-environment dynamics.

Section II focuses on a class of models that jointly address
the interrelation between exploration and resource consump-
tion. In such forager models [45–56], an agent navigates its
environment (using various exploration strategies) in search of
resources (food) that it then consumes to maintain its desired
internal state (staying alive). The resources are either at fixed
locations along the spatial extent of the environment or are
replenished at a constant rate in random locations. These
dynamics are described in detail in Sec. II A. In such a setting,
a natural choice for a viability function is the agent’s lifetime,
while the environment is simply the field of resources. The
correlations between the agent and its environment, which
are contingent on the agent’s sensorial capability, carry mean-
ingful information about the location of the resources. These
correlations are then scrambled by tuning the fidelity of the
sensor and then measuring its effect on the viability function,
the quantitative details of which make up Sec. II B.

We describe our simulations and demonstrate numerically
in Sec. III the existence of a plateau in the viability, capturing
the subset of correlations that has little effect on the agent’s
ability to stay alive. Below this threshold the lifetime of the
agent monotonically decays with increased scrambling of the
mutual information. Using geometric arguments, we derive
an analytical expression for the threshold, relating it directly
to sensor resolution. We introduce a semantic information
concept, the viability per bit, that captures the degree to which
each bit of the agent’s information on its environment is
relevant. This quantity, not articulated in the original KW18
formalism, peaks at the boundary separating the plateau from
the decaying region indicating the existence of a semantic
threshold. Information above the threshold has little to no
effect on the agent’s viability, while below it, each bit becomes
crucial for the agent to stay alive.

On the plateau, we investigate the appearance of a viability
lower bound for a wide range of model parameters, then derive
its analytical expression. Analytical and numerical evidence
supporting these results is agnostic to the particular choice
of viability function or indeed the type of foraging strategy.
We end in Sec. IV with a discussion of the implications of
our findings and possible future directions. Five Appendixes
clarify technical aspects of our model and the approximations
used.

II. FORAGING IN A REPLENISHING ENVIRONMENT

Consider a system A × E , defined to be a foraging agent,
A, exploring an environment, E . The states of both agent
and environment are described by finite collections of dy-
namical degrees of freedom, a = (a1, a2, . . . ) ∈ A and e =
(e1, e2, . . . ) ∈ E . Evolution in a given time interval is de-
scribed by a trajectory {(a(t ), e(t ))|t ∈ [ti, t f ]}. A model is
the dynamical rule, deterministic or stochastic, that constructs
this trajectory; the subset of the model describing the agent is
referred to as a foraging strategy.

There are several foraging strategies that have been
considered in the literature, including diffusive [45–48], inter-
mittent [49–51], Lévy-flight [52,53], and ballistic trajectories
[54–56]. In Sec. II A we define in detail a model of a re-
plenishing environment containing an agent with a ballistic
foraging strategy. The choice of this particular strategy stems
from its analytical tractability, enabling the derivation of the
semantic threshold and viability bound of Sec. III, which are
then verified numerically. Other foraging strategies are then
considered, and shown numerically to have similar results.

A. Definition of the model

We begin with a description of our foraging agent, and the
environment it navigates. The agent has a fixed metabolic rate
μ powered by an ever-dwindling fuel reserve, and a sensor
allowing it to detect resources within some finite circular
range R. Moving at constant speed v, the agent changes its
direction n̂ only in response to detected resources. Any re-
source that falls within the collection radius r � R of the agent
can be harvested, its energy content added to the fuel supply
of the agent. The state of the agent is described by the tuple
a = (s, τ, n̂, x). s ∈ [0, S] is the agent’s stored fuel supply;
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TABLE I. Model parameters. M, L, and T are generalized units
of mass, length, and time, respectively.

Parameter Symbol Units

Collection radius r L
Detection radius R L
Speed v L T−1

Metabolic rate μ M L2 T−3

Maximum stored energy S M L2 T−2

Resource energy ε M L2 T−2

Resource decay rate γ T−1

Energy influx � M T−3

when s = 0 the agent is no longer functional; otherwise it
is considered alive. The parameter τ ∈ {0, 1} is Boolean and
describes if the agent has locked onto a target. The agent
will not change its direction of motion—indicated by the
unit vector n̂—if it has a target. Consuming a resource resets
τ �→ 0. Finally, x ∈ [0, L]2 is the position of the agent in the
environment, defined as a square of side length L � R.

The state of the environment is specified by the set
of locations of a fluctuating number of resources, e =
{y1, y2, . . . , yN } with yn ∈ [0, L]2, ∀n. The available resources
are renewable—there is a source of energy flux per unit area
into the environment, �, resulting in the growth of fixed
energy ε resources across it, which, in turn, decay at a rate
γ . In the absence of an agent, the two processes lead to
an equilibrium average resource density neq = �/εγ with
O(L−1√�/εγ ) fluctuations, so that the average distance be-
tween resources is �Re = √

εγ /� (see Appendix A for details
of the derivation).

Large inhomogeneities in the resource density, such as
those which are created by a foraging agent, are repopulated
at a rate γ . We work in the small back-reaction regime where
forager changes to the equilibrium spacing are on the or-
der δ�Re/�Re ∼ O(R2/L2) 	 1. The agent is then effectively
uncorrelated with the environmental degrees of freedom, on
distances larger than some O(1) multiple of R. Table I sum-
marizes the parameters that define the model.

As the agent moves through the environment, its collection
diameter 2r acts as a cross section, sweeping out an area
for harvest per unit time proportional to its speed. Interesting
regimes of the model happen when the speed falls within the
following bounds:

v	 < v < v	 where v	 = ε

S

μγ

2r�
and v	 = μγ

2r�
. (1)

For v < v	, resources are spread so thin that the foraging area
on a full tank has an expected harvest less than 1, leading to
agents with rather short lives. For v > v	, the harvest area fu-
eled by a single resource has an expected harvest greater than
1: the agent is coupled to an environment of abundance, and
is effectively immortal. In between, the agent’s probability
of survival decays exponentially at long lifetimes, while still
forming significant correlations with the environment. This
is the regime interesting for exploration. In a strong back-
reaction setting these bounds are dynamic: agent harvesting
increases the average spacing between resources, thereby in-
creasing both v	 and v	. Again, we will work in the small

back-reaction limit, where the forager does not affect the en-
vironment. Figure 1 provides a schematic of the agent-centric
dynamics.

B. The viability function and interventions

While there are a number of ways of quantifying the via-
bility of the agent, an obvious choice is the expected lifetime
V = E[T ]; here E is an expectation value over an ensemble
of agents, and T is the time at which the agent first reaches
the dead state (s = 0) (as we will later show, our results
are robust to other variants of the function). This is easily
measured by running an ensemble of agents as described in
Fig. 1, and characterizing the distribution of lifetimes. The
viability of the agent depends crucially on it correctly setting
its trajectory n̂ when a resource is targeted, which amounts to
having a properly working sensor. A broken sensor results in
an agent moving in directions that do not correlate with the
location of a resource, increasing the chance of starvation and
thus death. Importantly, when presenting our results below,
we report viability values in units of S/μ (maximum stored
energy divided by metabolic rate; see Table I). In these units, a
viability value of 1 represents the expected lifetime of an agent
that starts with a full tank and does not acquire any resources.

To escape the vagaries of chance, the agent needs a sensor
that correlates target direction with resource location. Let
ρAE (a, e) be the joint distribution over states of the agent
and environment. We use a standard notation where the sub-
script identifies the state space that the arguments are drawn
from. Without loss of generality, we assume that resources
are indexed in order of distance to agent, with y1 being the
closest. To hone in on the specific correlation between sensor
and environment, we next marginalize over all but the closest
resource, y = y1, and condition on the agent being alive, lead-
ing to the simpler joint distribution ρAE (n̂, τ, y|s > 0). Rather
than computing the correlation between all the agent and
environmental degrees of freedom, we now have the simpler
task of finding the correlations between the subsets {n̂, τ }
and {y}.

Denote the living agent distribution ρA = ρA(n̂, τ ) and the
environment distribution ρE = ρE (y). Correlations between
agent and environment prevent a factorization of the joint
distribution so that ρAE 
= ρAρE . (The distribution factorizes
in the case of a nonfunctional agent, given that the lack of an
interaction pathway rapidly suppresses correlations between
the agent and environment.) While alive, interactions trans-
fer information between the two, generating the correlations
which are then responsible for prolonging the agent’s viability.
Consequently, we examine the flow of information between
the environment and the agent during a detection event.

Consider a resource detection and locking event during the
time interval �t , when a resource is detected at a distance r <

|y| � R. The agent’s orientation evolves from n̂ �→ n̂′ while its
target degree of freedom flips from τ = 0 → τ ′ = 1. For an
agent with a perfect sensor, the transition probability between
nontargeting and targeting agent states, A → A′, conditioned
on the environment state, e, is

ρA→A′ |e(n̂′, τ ′|n̂, 0, y) = δ1
τ ′δ(θ (n̂′, y)), (2)

where θ (a, b) is the angle between vectors a and b, δ1
τ ′ is the

Kronecker delta, and δ(θ ) is the Dirac delta function. By the
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FIG. 1. Overview of model with ballistic strategy. Agent moves at constant speed in a direction n̂, sensing at a distance R and collecting
resources within radius r. The two-dimensional environment consists of decaying resources, randomly generated. Agent movement is powered
by a metabolism that drains the agent’s energy reserves; collecting resources replenishes them. When a resource comes within sensor range,
the agent targets (pink circle τ ), orients towards it, and then moves until the resource falls within collection range and is consumed.

rotational symmetry of the environment, we also have that
ρA→A′ (n̂′, τ ′|n̂, 0) = δ1

τ ′ (2π )−1, which is not equal to Eq. (2),
indicating that ρAE 
= ρAρE .

To investigate the extent these correlations are necessary
to ensure the agent’s longevity, we compromise the agent’s
ability to find resources by adding noise to its sensor. This will
impact the agent’s viability function V . We thus add a small
amount of noise η > 0 to the agent’s ideal sensor, which af-
fects the transition probability for detection defined in Eq. (2)
as ρA→A′|e ≡ ρ

η=0
A→A′|e �→ ρ

η

A→A′|e. We measure the effect on the

agent’s viability as η is increased to 1, where ρ
η=1
A→A′ |e ≡ ρA→A′ .

Adding noise changes the Dirac delta in Eq. (2) into a uniform
distribution of width 2πη, δ �→ δη, where

δη(θ ) =
{

1
2πη

, θ ∈ [−πη, πη]

0 otherwise.

As the noise parameter η → 0, the perfect sensor is recovered,
while η → 1 gives the uniform distribution.

We approximate the information flowing from the envi-
ronment to the agent during the detection event with the
conditional transfer entropy (from the closest resource to the
agent’s direction, given the agent’s state) [57],

T η
E→A = EρAE

[
log2

ρA→A′ |e
ρA→A′

]
= log2

1

η
. (3)

The information gathered during detection approaches 0 as
η → 1, preventing the formation of correlations between

agent and environment. It diverges as η → 0, which reflects
the infinite precision needed to specify a direction in space, as
discussed in [58].

III. RESULTS

Returning to the notion of viability, we extend our defini-
tion to the noised sensor channel by defining V = V0 �→ Vη =
Eη[T ], where the expectation is now taken over an ensemble
of agents with noisy sensors. We interpret the addition of
noise as a counterfactual intervention that scrambles the in-
formation transfer between an agent with a perfect sensor and
its environment. We extract Vη by simulating a single agent
within an equilibrated environment at half of full health and
measuring how long it survives. This is done 104 times for
each of 200 values of η ∈ [0, 1], the first 100 equally spaced
in [0,0.15) and the second hundred logarithmically spaced in
[0.15,1]. Further details of the simulation procedure, includ-
ing the range of values used for the parameters, are described
in Appendix B. For animations of several instances of agents
with varying values of η, see the Supplemental Material [59].

A. Viability and distribution of lifetimes

In the upper panel of Fig. 2, we plot the distribution of
lifetimes for three different values of the noise parameter η.
The green curve corresponds to the case of a perfect sensor
(no scrambling, η = 0) and sets the baseline distribution of
lifetimes which is peaked near the expected lifetime (vertical
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FIG. 2. Top: The distribution of forager lifetimes extracted from
the simulations. The green curve is for a noiseless (ideal) agent
sensor (η = 0). The nearly indistinguishable blue curve is from near
critical scrambling (η ≈ ηc), while the red curve is for above critical
scrambling (η > ηc). Bottom: The corresponding distributions for
the probability of being alive. Note the decay of the tails is faster
than any power law.

dashed dark green line) with a broadly decaying tail. The red
curve corresponds to a larger value of η whereby one sees a
much lower value for Eη[T ] once a critical value of noise,
ηc (blue curve), is surpassed. (Later in the section we derive
this threshold analytically.) In the bottom panel, we show the
corresponding distributions for the probability of an agent to
stay alive, where one can see exponentially decaying tails.

The actual viability Vactual is defined as the expected life-
time of an agent with noiseless sensor. As anticipated in [29],
the viability plateaus near the actual viability Vactual even as
noise degrades the information flow during detection. How-
ever, once the sensor efficiency has been sufficiently degraded,
the viability begins to drop dramatically, as seen in the top
panel of Fig. 3. This rapid decline in viability is interpreted as
a semantic threshold—it is the minimal information acquired
in a sensing event responsible for maintaining agents close
to their actual viability. To better characterize this critical
information, we introduce the differential measure of viability
per bit (VpB = dV/dT ), as seen in the lower panel of Fig. 3.
The peak in VpB illustrates what an agent requires from its
interactions with the environment. Very noisy sensors provide
little VpB, even with increased accuracy. However, once a cer-
tain level of accuracy is achieved, the VpB grows dramatically
and the sensor provides the agent with meaningful informa-
tion about its environment, resulting in the agent’s improved
survivability. Too much accuracy, however, is wasted, and the
VpB drops again once the sensor goes above and beyond the

FIG. 3. Top: The viability curve (thick green line) as a func-
tion of the transfer entropy, T η

E→A. The actual viability Vactual is the
expected lifetime with no scrambling. The light green line is the
median, with the shaded regions representing intervals of 10% above
and below the median. V (0) indicates minimal viability achieved by
an agent with a completely noisy sensor, see Eq. (11). Bottom: The
viability per bit. The dots are actual data, and the line is a smoothed
and interpolated curve added to better visualize the semantic region.
The vertical dashed line is the semantic threshold in Eq. (5).

constraints dictated by the physical nature of the agent within
the environment.

B. Robustness to parameters and the viability bound

The results in Fig. 3 do not depend on using the expected
lifetime as a viability function; any percentile of the lifetime
distribution will do. The dashed green line shows the median
of the distribution, while the shaded green regions represent
jumps by ±10% from the median. In all cases the qualitative
shape of the curve and the semantic threshold is retained. This
feature can be understood by considering how scrambling the
sensor relates to the foraging efficacy of the agent. Recall that
the collection radius r acts as an impact parameter, and that
targets are set when they enter within the sensing radius R.
For this reason, there is a critical noise parameter above which
the agent will sometimes miss its target, and therefore achieve
a lower viability. This critical value, and the corresponding
semantic threshold, are

ηc = 1

π
sin−1 r

R
, (4)

T c
E→A = log2 π − log2 sin−1 r

R
. (5)
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(See Appendix C for details.) Interestingly, this expression
does not depend on most parameters that characterize the
agent, such as its speed and metabolic rate, only on its ge-
ometry. There is low VpB when the information transferred
during a detection event is well above T c

E→A, and high VpB as
T η

E→A → T c
E→A.

Above the semantic threshold (η < ηc), the minute drop in
the viability plateau away from Vactual also has a geometric ori-
gin. Due to the circular shape of both the resource collection
and sensing zones, a sensor with η < ηc will force agents to
travel farther ever so slightly to collect a targeted resource. As-
sume an agent targets a resource a distance y = |y| � R away,
but the sensor is mistaken by an angle θ as to the direction of
the resource. Rather than having to travel y − r to collect its
target, the agent now has to travel y cos θ −

√
r2 − y2 sin2 θ .

Given an information transfer of T during detection, averag-
ing over all angles we see that resources a distance y from the
agent are effectively a distance (1 + λ)y with

λ = r

y

(
1− 2T

π
E

(
π

2T

∣∣∣y2

r2

))
−

(
1− 2T

π
sin

π

2T

)
. (6)

Here E (ϕ|k2) is the indefinite elliptic integral of the second
kind with modulus k = y/r. (See Appendix D for details
of the derivation.) We may consider two interesting limiting
regimes. In the regime of accurate sensors, η ≈ 0 and T � 1,
the dilation decays exponentially as

λ ∼ π2

6

y − r

r
4−T . (7)

Another interesting regime to consider is when y is very close
to (but above) the collection radius r. In this case,

λ ∼ y − r

r

(
tanh−1 tan

(
π
2 2−T )

π
2 2−T − 1

)
, (8)

up to first order in y − r. As expected, the dilation grows
linearly away from r, with the slope being controlled by the
transfer entropy.

The expression for the dilation factor λ indicates that,
above the semantic threshold (η < ηc), agents can be thought
of as unscrambled agents making their way through a distorted
world. As the information acquisition from the environment
is restored (T → ∞), the distortion decays exponentially as
expected. Of course, within the extraction radius there is no
dilation as the scrambled agent still has the reach y = r, even
if it cannot judge properly distances y > r. Maximal dilation,
λmax, occurs at y = R in Eq. (6). This constitutes an upper
bound, which enables the determination of a lower bound on
the viability of a scrambled agent, given the actual viability of
an unscrambled agent.

To compare the viability of scrambled and unscrambled
agents, we scale down the length scale of the scrambled agent
by (1 + λmax) so that it matches the length scale of the un-
scrambled agent. Unfortunately, this means the speeds of the
two no longer match; to restore equality we must scale down
the timescale by the same amount. Numerical simulations
indicate that this rescaling does not affect the environmental
variables. Focusing therefore only on the agent variables, the

FIG. 4. Top: Viability curves for six velocities in the range 1 �
v/v	 � 6 in integer increments. Here v	 = 10v	. The vertical dashed
line is Eq. (5). Inset: Minimal viability as achieved by an agent
with a completely noisy sensor, as TE→A → 0. Bars represent 5σ

errors in the estimates. The dashed line represents Eq. (11), showing
good agreement with simulations. Bottom: The plateau region of
each curve, rescaled for purposes of comparison. The dashed curve
represents the viability bound in Eq. (10).

rescaled viability is

Vη = Eη[T ] = E0[(1 + λmax)−1T ]

= (1 + λmax)−1Vactual. (9)

Finally, expanding this expression for λmax 	 1, above the
semantic threshold, the viability as a function of the transfer
entropy is bounded from below by

V (T )

Vactual
� 2 − r

R
+ 2T −T c

sin−1 r
R

×
[

r

R
E

(
sin−1 r

R

2T −T c

∣∣∣∣∣R2

r2

)
−sin

(
sin−1 r

R

2T −T c

)]
, (10)

where T c is defined in Eq. (5).
It is instructive to check whether the results presented thus

far are robust to varying the speed of the forager. As shown in
Eq. (1), the speed is naturally bounded in the limits v	 < v <

v	. In our simulations, we set v	 = 10v	; varying the velocity
within this range, in the upper panel of Fig. 4, we show
the viability curves for six values of 1 � v/v	 � 6 in integer
increments (colors represent different values of the ratio). The
vertical dashed line is the analytically calculated semantic
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FIG. 5. Comparison of the semantic threshold and viability bound for multiple foraging strategies. Left: The (dashed) viability curve for
the ballistic forager is presented for reference. In all strategies foragers move with a velocity 5v	 (in the Lévy flight 〈v〉 = 5v	). Right: Rescaled
viability data points in the plateau region. The vertical (dot-dashed) line is the semantic threshold from Eq. (5), and the dashed curve is the
viability bound from Eq. (11).

threshold [Eq. (5)]. As expected, while the height of the vi-
ability curve decreases with decreasing velocity (eventually
flattening near the lower bound v	), the semantic threshold
as well as the shape of each curve is robust to the change in
velocities.

In the bottom panel we zoom in to the plateau region for
each curve, rescaling them for purposes of comparison. The
viability bound calculated in Eq. (10) is plotted as a dashed
curve, while the semantic threshold is shown as a vertical
dashed line. While the agreement with the viability bound
improves with increasing velocity, Eq. (10) bounds the plateau
for all velocity ranges (up to statistical fluctuations).

One can estimate the minimal viability, V (0) = E1[T ], as
achieved by an agent with a completely noisy sensor. To do
so, note that resources encountered by such an agent fol-
low a Poisson distribution with rate 2vr/�2

Re. The total fuel
processed by the agent will therefore be s0 + εE1[T ], where
s0 is the initial stored fuel. But this total fuel divided by
the metabolic rate is precisely the expected lifetime; a little
algebra reveals

V (0) = s0/μ

1 − v/v	
, (11)

where v	 is the upper velocity limit defined in Eq. (1). As
mentioned earlier, the agent approaches immortality when its
velocity approaches this limit, even if it has a completely
random sensor. In the inset panel of Fig. 4, we plot Eq. (11) as
a dashed line. Points indicate the minimal viability extracted
from simulations as a function of velocity, showing excellent
agreement with the theoretical prediction.

C. Robustness to choice of foraging strategy

To see how robust these results are to changes in the forag-
ing behavior, we consider several other strategies of increasing
complexity. The most oft-studied version is that of a diffusive
forager that undergoes a random walk when not detecting a

resource (and then moving ballistically on detection) [45–48].
Adding an additional layer of complexity are intermittent
foragers [49–51]. Here, the forager moves diffusively, but not
always for the purpose of detecting resources. For large pe-
riods the movement represents locomotion, with intermittent
sensing and consumption events. This represents the fact that
biological organisms are not always looking to consume, but
spend their time performing other functions. Finally, Lévy-
walk foragers [52,53] are inspired by empirical observations
of animal movement [60], whereby foragers move at variable
speed drawn from a (truncated) power-law distribution of
velocities. In Appendix E, we provide details on how each
of these strategies is incorporated into our simulations.

The viability curve for each strategy is plotted in the left-
hand panel of Fig. 5, where the dashed line indicates ballistic,
the blue intermittent, the green diffusive, and finally the pink
line Lévy-walk foraging. We note that the shape of the curve
for all strategies is retained, and that the analytically calcu-
lated semantic threshold matches the numerical simulations
for all considered strategies. In the right-hand panel we show
the (rescaled) plateau region for all strategies indicating good
agreement with the viability bound, Eq. (11). The figure in-
dicates that the height of the viability plateau decreases with
increasingly complex strategies, with ballistic foraging lead-
ing to the highest viability and Lévy walk the lowest. This is
a pleasing result, given the previous observation that ballistic
foraging is the most efficient in a replenishing environment
[54] (where efficiency is measured in terms of the encounter
rate of the forager with a resource).

Thus, the viability factorizes into a plateau that depends
implicitly on both environment and agent, and a scaling term
that depends only on properties of the agent. Furthermore,
below the semantic threshold, the viability curves for multi-
ple strategies asymptote to the same minimum viability. This
is fairly straightforward to understand. When locked onto
a target, every implementation of our strategies defaults to
ballistic motion, and maintains it until a resource is collected.
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For the range of simulation parameters used, there is a high
probability of a resource being found in the sensing area
of a newly instantiated agent (PN>0 ≈ 99.2%) so it is most
likely that the instance has τ = 1 and is moving ballistically.
The different strategies change what foragers do when not
locked onto a target. The formation of low-resource “deserts”
is therefore crucial to switching between behaviors that dif-
ferentiate strategies, but as sensor scrambling is increased,
agents tend to travel farther each time they engage in ballistic
motion, and end up in areas well outside their local desert.
Then, once again, there is a high probability that a resource
is within sensing range, and the process begins anew. In the
limit of a completely noisy sensor, all variants behave like a
ballistic forager that chooses a random direction after each
resource collection.

IV. DISCUSSION AND CONCLUSION

In this work, we explored the application of a theory of
semantic information to the well-motivated problem of a re-
source foraging agent. Semantic information is defined as the
subset of correlations—measured here via the transfer entropy
T η

E→A—between agent A and environment E that is necessary
for the agent to maintain its viability V . Viability, in turn,
is endogenously defined as opposed to the use of exogenous
quantities like utility functions (we note a subtlety in terms
of different possible definitions of “system existence,” which
could be a topic of further exploration). The semantic in-
formation content in a particular agent-environment system
is determined by rerunning the system evolution for inter-
vened versions of the dynamics. Such interventions involve
“scrambling” the information transfer between the agent and
environment in a specified way. Tracking changes in agent
viability for a distribution of intervened system trajectories
allows the semantic information content to be determined.

Applying this procedure to our forager model required
finding appropriate approximations to the fully specified state
space of the original KW18 formalism. This “operationaliza-
tion” of the KW18 prescription in terms of demonstrating
how to apply it to a multidimensional model is, itself, an
important result of our study. For realistic systems with many
degrees of freedom, the full specification of the joint proba-
bility distribution ρAE over the full state space, as required in
the initial formalism, may prove computationally expensive or
even intractable. For our model we adopted a phenomenolog-
ical perspective which traced over those degrees of freedom
not essential to specification of the viability (this is, in part,
what we mean by “operationalization”). This left us with a
reduced state space in which intervened trajectories could be
simulated and the subsequent transfer entropy could be calcu-
lated. This represents the application of semantic information
in a (quasi)realistic setting.

In our model, the forager’s movements were determined
by its ability to sense the presence of an individual unit of
resource. Once detected (sensing was limited to within a ra-
dius R), the forager moved towards the resource. The transfer
entropy was scrambled by adding noise to the forager’s sensor
via a parameter η, where η = 1 implied a complete loss of the
forager’s ability to sense the direction of the resource. Our
results, expressed in terms of a viability function defined as

the expectation value of the forager’s lifetime, clearly showed
the effect of adding noise to the sensor. For η > ηc, where
ηc is a critical value set by the sensing radius, the forager’s
expected lifetime was dramatically reduced (Fig. 2). We refer
to this as the semantic threshold.

This result by itself represents an important extension of
previous work on forager dynamics [45–52,56]. What is dif-
ferent in our work is the way in which casting the problem
in terms of semantic information reveals useful aspects of
the model dynamics. For instance, while ballistic foraging
has been shown to be the most efficient strategy in terms of
optimizing the encounter rate of foragers with resources (in a
replenishing environment) [54], here we find the same result
but recast in terms of information theory and the concept of
viability (or survival). The transfer entropy represents cor-
relations established between the forager (an agent) and the
environment via the agent’s sensor. A blind forager η = 1
has a sensor that is fully decoupled from the environment.
By tracking how the forager’s viability changes as these cor-
relations are either increased or decreased, we gain some
understanding about the role they play in the forager’s abil-
ity to persist. In particular the upper panel of Fig. 3, which
shows the viability curve V (T ), reveals two essential ways to
understand the role of such correlations for the forager (or for
any agent) which we now unpack separately.

Above the semantic threshold (i.e., to the right of threshold
in Figs. 3–5) we find a plateau of high viability. Moving
from right to left in this region we are removing correla-
tions between agent and environment; however, this does
not effect the agent’s ability to maintain its existence. Thus
the correlations that are being removed are not essential to
maintain agent viability. Below the semantic threshold, each
bit of information affects the agent’s ability to persist. Once
this threshold is passed, we see the viability monotonically
decrease. Thus casting the forager-environment system into
the semantic information formalism allows us to see exactly
how much information matters. In addition, our ability to
model the shape of the V (T ) curve (including in particular
the location of the semantic threshold) in terms of the for-
ager and environment parameters (R, r, μ, η) allows us to see
how the correlations are instantiated. Layering on increas-
ingly complex foraging strategies mimicking various aspects
of biological systems leads to the same qualitative results.
The semantic threshold, the shape of the viability curve, and
the viability bound are robust to whether the forager moves
ballistically, diffusively, intermittently, or by undertaking a
Lévy flight. Thus, our work can provide a useful starting point
for studies of more complex biological behavior in terms of
semantic information in order to better understand the un-
derlying structure of correlations between agents and their
environments as well as the role information dynamics plays
in their behavior.

Coming from the left in Fig. 3 leads us to a different
perspective, which may prove useful in using semantic in-
formation to understand how agents arise in the first place.
Beginning with the low-viability region on the left, we see
that adding correlations initially has little effect. The forager
dies quickly and adding an additional bit of correlation with
the environment does not change that outcome. As more bits
of information are acquired, the agent’s viability slowly rises.
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However, it is only near the semantic threshold that the slope
of the curve accelerates and viability per bit (VpB) peaks.
Thus, it is possible that this threshold can prove useful for
understanding the role information plays in allowing systems
to become autonomous agents. Both hurricanes and cells are
nonlinear, driven, far-from-equilibrium systems, but only cells
are considered agents. Future work could explore the relation-
ship between the accumulation of semantic information and
the emergence of agentlike behavior while also considering
the thermodynamic cost of such accumulation.
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APPENDIX A: EQUILIBRIUM RESOURCE DENSITY

Consider a large patch of the environment, A ⊂ R2. The
number of resources in the patch is

N (t ) =
∫

A
d2x n(x, t ), (A1)

where n is the resource density. Resources do not move, but
they can be created or destroyed. Creation is due to an energy
flux impinging on A, denoted �(x, t ); there exists some mech-
anism in the environment that converts this flux into localized
resource deposits of energy ε. Destruction is due to another
mechanism by which resources decay, their energy lost as
heat, denoted γ (x, t ). Note that the former rate is independent
of the number of resources; the latter is not. The rate of change
of resources in this large patch is

dN

dt
=

∫
A
d2x

(
�(x, t )

ε
− γ (x, t )n(x, t )

)
. (A2)

Taking � and γ both to be static, the resource density satisfies

∂n

∂t
= �

ε
− γ n

⇓
n(t ) = n0e−γ t + neq(1 − e−γ t ), (A3)

where the equilibrium density is neq = �/εγ . The average
area occupied by a single resource is the reciprocal of this,
εγ /�, so that the average spacing between resources at equi-
librium is

�Re =
√

εγ

�
. (A4)

If instead we coarse-grain over the positions of resources
and care only about their count, then the transition probabil-
ities for a resource being generated or destroyed in a time

TABLE II. Primary simulation dimensionless parameters.

Parameter Symbol Value

Collection radius r̃ 1
Scaling Metabolic rate μ̃ 1

Maximum stored energy S̃ 1

Detection radius R̃ 4
20 (Fig. 3),

Speed ṽ
25 (Fig. 5)

Time discretization �t̃ 0.02
Chosen Environment size L̃ 100

Resource energy ε̃ 0.1
Resource decay rate γ̃ 0.1
Energy influx �̃ 0.001

Minimal speed ṽ	 5
Derived Maximal speed ṽ	 50

Equilibrium resource density ñeq 0.1
Equilibrium resource spacing �̃Re

√
10 ≈ 3.16

�t → 0 are p(N → N + 1) = �A�t/ε and p(N → N −
1) = γ N�t . The transitions between these coarse-grained
states define an M/M/∞ queue—a well-known stochastic
process with a stationary distribution that is Poisson:

p(N ) = 1

N!

(
�A

εγ

)N

e− �A
εγ . (A5)

The expected number of resources is 〈N〉 = �A
εγ

, which, un-
der the assumption of a homogeneous distribution, gives an
equilibrium number density that matches neq from the pre-
ceding paragraphs. The variance in the number of resources
is δN2 = neq A, giving a fluctuation in the number density of
δn = �−1

Re A−1/2. Thus when considering large environments,
A � �2

Re, the relative fluctuations around the equilibrium den-
sity are negligible, δn/n → 0.

APPENDIX B: SIMULATION DETAILS

Translating our model for numerical simulation requires
first dimensionalizing all parameters in Table I. Natural scales
were chosen to be agent-centric, so that numerical values
within each simulation are all interpreted in terms of scales
meaningful to the forager. The natural timescale is T = S/μ,
the lifetime of an agent on a full tank—with no other influxes
of fuel; the natural length scale is L = r, the extraction radius
of the agent; and the natural mass scale, M = S T2 L−2, the
size of a full fuel tank.

Dimensionalization is accomplished by dividing model pa-
rameters by the combination of natural units given in the
far right column of Table I. For example, the dimensionless
(tilded) speed is ṽ = v/(L T−1), read off naturally as the num-
ber of extraction radii (∼ forager length) traveled on a full tank
of fuel. We summarize the chosen scales and dimensionless
values of parameters, as well as derived dimensionless values
of relevant quantities, in Table II.

After dimensionalizing, data are generated by simulating
104 instances of a single forager placed into an environment at
equilibrium, for multiple values of the scrambling parameter
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η. Specifically, 200 values of η were chosen, with the first 100
spaced linearly on the interval [0,0.15), and the second 100
logarithmically spaced on the interval [0.15, 1]. These were
chosen after initial coarser simulations revealed the location
of the semantic threshold so as to ensure the resolution of
the viability plateau. For each value of η, each of the 104

simulations are begun by instantiating a forager at half health,
s̃ = 0.5, at the center of an environment—a square with side
length L̃ = 100—with N = ñeqL̃2 = 103 resources distributed
uniformly.

Each individual simulation evolves with a temporal dis-
cretization �t̃ = 1/50 = 0.02 following the flowchart pre-
sented in Fig. 1. Below we summarize the chart, describing
what our code does in a single time step for both the degrees
of freedom (DOF) of the agent, (s, τ, n̂, x), and environment,
(y1, y2, . . . ) (whose DOF are ordered by distance from the
agent). First, the agent must be alive, s > 0; otherwise the sim-
ulation ends. Otherwise the closest resource, y1, is examined.
The probability that two or more resources have the same
closest distance is for all intents and purposes zero, but should
this miracle occur only one among these is chosen, uniformly
at random. If that resource is within the extraction radius of
the agent, then it is harvested, whereupon the agent’s fuel
supply increases s �→ s + ε, the agent’s target DOF is set to
τ → 0, while its orientation and position remain unchanged,
(n̂, x) �→ (n̂, x). If that resource is not within extraction range,
then the agent’s target DOF, τ , is examined. If a target is set,
τ = 1, then it remains set, as does the orientation of the agent;
simultaneously the fuel supply decreases, s �→ s − μ�t , as
the agent moves, x �→ x + vn̂�t . If the target is not set, τ = 0,
then the code checks if the closest resource is within sensing
range of the agent. If it is, then the agent sets a target τ �→ 1,
and expends fuel s �→ s − μ�t , to reorient and move towards
it, (n̂, x) �→ (y1/|y1|, x + y1/|y1|�t ). If the closest resource
is beyond sensing range, then the target remains unset, and
the agent’s orientation does not change as it expends fuel,
s �→ s − μ�t , to move in that direction, x �→ x + n̂v�t .

Since we have a finite environment, sometimes the agent
may find itself approaching a boundary, in which case the
code implements reflective boundary conditions as follows.
Should one of the components of the position of the agent fall
outside the interval [0, L], then it is replaced by the reflected
position in the interval. That is, if x < 0 then x �→ −x, while if
x > L then x �→ L − x. If a spatial reflection takes place, then
the corresponding component of the velocity is also reflected,
vx �→ −vx. This completes the agent’s update time step.

Next, the environment updates via a full time step consist-
ing of a degradation step followed by a growth step. During
the degradation step, each resource is checked to see if it
degrades. A check consists of drawing a uniform random
number and seeing if it is greater than e−γ�t . If it is, the
resource is removed from the environment; otherwise it re-
mains. During the growth step, a random non-negative integer
is chosen from a Poisson distribution with λ = �L2�t/ε = 2,
i.e.,

pn = e−λ

n!
λn. (B1)

This integer represents how many new resources are gener-
ated; these are added to the environment at uniformly random

FIG. 6. The geometry of an agent (mis)targeting a resource at the
edge of sensor range.

locations. The displacement and distance from the agent to
each resource is updated, and the list of resource locations is
reordered according to proximity. This completes the environ-
ment update time step.

For each of the 104 simulations at each value of η, the
degrees of freedom of the agent and the location of the nearest
resource are saved at each time step. On the plateau, simula-
tions run for ∼40 minutes, averaging ∼750 time steps and
resulting in data sets of ∼0.5 Gb; simulations on the other
side of the plateau dropped in both temporal and spatial com-
plexity. For a fixed set of parameters, 104 simulations across
the 200 scrambling parameters require ∼8000 core-hours of
computation and generate ∼60 Gb of data. Simulations were
conducted on the Center for Integrated Research Computing’s
BlueHive cluster at the University of Rochester.

APPENDIX C: THE SEMANTIC THRESHOLD

Consider an agent for which a resource has just entered
sensor range and a targeting event has occurred. We scramble
the information relayed by the event so that the agent reori-
ents itself with a target that is misaligned with the resource.
The agent begins its journey towards the target, as shown in
Fig. 6. For an agent moving towards a target any resource that
falls within the grey region will be collected. The maximal
misalignment angle between target and resource is πη. From
the diagram once can infer a critical level of scrambling, ηc,
satisfying

sin πηc = r

R
, (C1)

below which the agent will always collect the resource. Above
it, the agent will sometimes miss the resource—an event that
could potentially result in starvation. Combining Eq. (C1)
with Eq. (3) gives the semantic threshold, Eq. (5).
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FIG. 7. The geometry describing how far an agent has to travel
to collect a mistargeted resource.

APPENDIX D: THE VIABILITY PLATEAU

Let us examine a case below the critical scrambling
strength, so that every targeted resource is still collected. Once
again we consider a scrambled targeting event, but assume it
occurs for a resource a distance y < R away from the agent.
This type of event occurs regularly after the agent has col-
lected a resource and there is at least one other resource in
sensor range. The agent begins to move towards the target as
depicted in Fig. 7.

Had the sensor not been scrambled, the agent would tra-
verse a distance y − r to collect the resource. Meanwhile,
the scrambled agent needs to travel the distance from p2 to
the resource for collection to occur; a little geometry and
trigonometry on the diagram give us this distance as y cos θ −√

r2 − y2 sin2 θ . Since p2 to p3 is also a distance y − r, denote
the remaining distance λ(θ )y where λ(θ ) is referred to as a
dilation factor. It will become clear why in what follows.

A little algebra gets us the angular dependence of the
dilation factor,

λ(θ ) = r

y
− 1 + cos θ −

√
r2

y2
− sin2 θ. (D1)

Of course this factor will be different each time a targeting
event occurs, depending on distance to resource and the par-
ticular mismatch angle of the target. However, for a given η

we know the distribution of mismatch angles—it is uniform
over [−πη, πη]—so for fixed y, the expected dilation is

Eη[λ] = 1

2πη

∫ πη

−πη

dθ λ(θ ).

Examining the functional form of λ(θ ) we see that the first
two terms are trivial and the third term easily integrates to
sin πη/πη, while the fourth term requires a little massaging.
After factoring out a −r/yπη and using that the integrand is

even, the remaining factor is massaged into the form∫ πη

0
dθ

√
1 − y2

r2
sin2 θ.

The integral is not elementary, but it turns out to be an incom-
plete elliptic integral of the second kind,

E (ϕ|k2) =
∫ ϕ

0
dθ

√
1 − k2 sin2 θ, (D2)

with modulus k. There is a slight nuance since normally 0 <

k2 < 1, while in our case y > r gives a modulus greater than
unity. This bound ensures the integrand remains real for all
values of ϕ. Fortunately, since we are considering cases below
critical scrambling, y sin θ < r is automatically satisfied and
there is no need to worry about which branch we are on. With
this minutiae out of the way, we write the expected dilation
for fixed y,

Eη[λ] = r

y
− 1 + sin πη

πη
− r

y

E
(
πη| y2

r2

)
πη

, (D3)

which, when combined with Eqs. (3) and (5), yields Eq. (6).
To simplify the notation, we simply denote this as λ in the
main text.

The asymptotic behaviors of the dilation require Taylor
expanding the elliptic integral. For the perfect sensor limit we
treat η 	 1, so that

E (πη|k2) ≈
∫ πη

0
1 − k2

2
θ2

= πη − k2

6
π3η3

to third order in η. Doing the same to the sine function, and
plugging into Eq. (D3), one finds the first nonvanishing term
is second order in η:

π2

6

y − r

r
η2.

Plugging in the inverse of Eq. (3) gives the quoted exponential
asymptotic behavior.

The asymptotic when y → r+ requires a bit more work.
We parametrize the approach as y = (1 + ε)r with ε 	 1, and
expand the elliptic integral to first order:

E (πη|(1 + ε)2) =
∫ πη

0
dθ

√
1−(1+ε)2 sin2 θ

≈
∫ πη

0
dθ

√
cos2 θ−2ε sin2 θ

≈
∫ πη

0
dθ cos θ−ε

∫ πη

0
dθ cos θ tan2 θ

= (1 − ε) sin πη − ε ln | sec θ + tan θ |.
After plugging this in, Eq. (D3) simplifies to

ε

(
1

πη
ln

cos πη

1 + sin πη
− 1

)
.

The argument of the logarithm can be massaged using elemen-
tary trigonometric identities into (1 − tan πη

2 )/(1 + tan πη

2 ).
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FIG. 8. Diffusive foraging strategy.

Then recalling that tanh−1 x is equivalent to 1
2 ln 1−x

1+x , we have
the quoted linear asymptotic behavior.

APPENDIX E: MODEL COMPARISONS

To examine the effect of changing the complexity of the
agent on the viability curve, we performed the entire set of
simulations described in the preceding Appendix on three
other forager models of increasing complexity. Whereas the
ballistic forager of the primary simulations is a completely
deterministic automaton, the three models detailed below in-
troduce internal stochasticity into the agent behavior.

1. Diffusive forager

The first model increases the DOF of the agent to include
a logical switch, δ ∈ {0, 1}, which determines the type of
locomotive behavior. When δ = 0 the agent behaves as the
ballistic forager in the primary simulations; when flipped to
δ = 1 the agent performs a continuous random walk—the
namesake of the model. The new DOF is tied to the targeting
DOF, δ �→ 1 − τ in each agent state update of Fig. 1, so that
diffusive motion occurs when the agent does not have a target.
When τ = 0, the orientation of the agent becomes a random
variable—an angle drawn from the uniform distribution over
the circle, n̂ ∼ U (S1). There is an interesting question of what
effect the scrambling of the internal correlation between τ and
n̂ would would have on viability. We do not explore it in this
work, but mention it as an entry point for the exploration of
viability-based behavior [61]. The architecture of the diffusive
forager used in our code is shown in Fig. 8.

FIG. 9. Intermittent foraging strategy.

2. Intermittent forager

The next model increases the complexity of the diffusive
forager to include another logical switch, f ∈ {0, 1}, deter-
mining the behavioral modality of the agent. This model is
meant to imitate well-known intermittent foraging strategies.
When f = 1, the agent behaves exactly like the diffusive
forager in the prior section. This modality of behavior occurs
when the fuel supply is below a hunger threshold, s � sh, and
is called foraging; when the fuel supply of the forager is above
threshold, the modality switches to exploring. In the exploring
modality, the direction of motion is chosen randomly and
independently of the environment, and the energy supplied by
metabolism is no longer split between sensing and locomo-
tion. To incorporate this rerouting of resources, the speed of
the agent is doubled, turning an exploring forager into a diffu-
sive forager with twice the diffusivity. Our implementation is
shown in Fig. 9.

We experimented with different values of the hunger
threshold. The time spent in the exploring modality depends
on the resource energy ε, with the maximum time spent ex-
ploring equal to tE = ε/μ, or 0.1 full tank lifetimes for our
chosen parameters. These exploring excursions would typi-
cally happen towards the beginning of the forager’s lifetime.
In order to compare the tails of the strategies, we need to
account for the fact that our intermittent foragers spent a small
fraction of their lives exploring. For this reason, the plateau
of the reported viability curve falls just barely on top of a
purely diffusive strategy. In experiments with larger values of
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ε and higher speeds, a greater distinction appeared between
the curves, with the plateau of the intermittent strategy lying
between the diffusive and ballistic strategies.

3. Lévy-walk forager

The final model goes back to the ballistic forager and ele-
vates the speed parameter to a dynamical degree of freedom.
The speed is a stochastic multiple of v0, drawn from a power
law with exponent ν, namely,

P(k; kmin ,kmax , ν) = k−ν∑kmax
n=kmin

n−ν
, (E1)

meant to simulate a random Lévy walk. This novelty is added
at the end of the ballistic forager time step, updating the
velocity to some multiple, kmin � k � kmax .

For our experiments, we wanted to compare this strat-
egy to the others in the limit of a completely noisy sensor.
Initial experiments revealed that this required the average
velocity of all the models to be the same in order for
the viabilities to match in that limit (the precise reason is
elucidated in the text). To this end we chose ν = 1.9658,
with kmin = 2, kmax = 30, meaning that the maximal veloc-
ity achieved by the agent was six times v	. These ensured

FIG. 10. Lévy-walk foraging strategy.

that 〈v〉/v	 = 5.0, the same as the other simulations, to four
decimal places of accuracy. Our implementation is shown in
Fig. 10.
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[12] G. Tkačik and W. Bialek, Information processing in living sys-
tems, Annu. Rev. Condens. Matter Phys. 7, 89 (2016).

[13] M. C. Donaldson-Matasci, C. T. Bergstrom, and M. Lachmann,
The fitness value of information, Oikos 119, 219 (2010).

[14] O. Rivoire and S. Leibler, The value of information for popula-
tions in varying environments, J. Stat. Phys. 142, 1124 (2011).

[15] R. M. Hazen, P. L. Griffin, J. M. Carothers, and J. W. Szostak,
Functional information and the emergence of biocomplexity,
Proc. Natl. Acad. Sci. USA 104, 8574 (2007).

[16] D. R. Sowinski, J. Carroll-Nellenback, J. DeSilva, A. Frank, G.
Ghoshal, and M. Gleiser, The consensus problem in polities of
agents with dissimilar cognitive architectures, Entropy 24, 1378
(2022).

[17] S. Oh, E. F. Bowen, A. Rodriguez, D. Sowinski, E. Childers, A.
Brown, L. Ray, and R. Granger, Towards a perceptual distance
metric for auditory stimuli, arXiv:2011.00088.

[18] E. F. Bowen, A. M. Rodriguez, D. R. Sowinski, and R. Granger,
Visual stream connectivity predicts assessments of image qual-
ity, J. Vision 22, 4 (2022).

[19] G. Schlosser, Self-re-production and functionality, Synthese
116, 303 (1998).

[20] M. Mossio, C. Saborido, and A. Moreno, An organizational ac-
count of biological functions, Br. J. Philos. Sci. 60, 813 (2009).

[21] X. Fang and J. Wang, Nonequilibrium thermodynamics in cell
biology: Extending equilibrium formalism to cover living sys-
tems, Annu. Rev. Biophys. 49, 227 (2020).

[22] D. Polani, T. Martinetz, and J. Kim, An information-theoretic
approach for the quantification of relevance, in Advances
in Artificial Life: 6th European Conference, ECAL 2001
Prague, Czech Republic, September 10–14, 2001 Proceedings 6
(Springer, Berlin, 2001), pp. 704–713.

[23] E. Thompson and M. Stapleton, Making sense of sense-making:
Reflections on enactive and extended mind theories, Topoi 28,
23 (2009).

[24] C. L. Nehaniv, D. Polani, K. Dautenhahn, R. te Beokhorst, and
L. Cañamero, Meaningful information, sensor evolution, and
the temporal horizon of embodied organisms, in Proceedings

023003-13

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1038/171737a0
https://doi.org/10.1006/jtbi.1994.1211
https://doi.org/10.1038/s41567-021-01380-3
https://doi.org/10.1016/j.plrev.2004.01.002
https://doi.org/10.1007/s12551-020-00665-w
https://doi.org/10.1109/TMBMC.2016.2640284
https://doi.org/10.1088/1478-3975/9/4/045011
https://doi.org/10.1146/annurev-conmatphys-031214-014803
https://doi.org/10.1111/j.1600-0706.2009.17781.x
https://doi.org/10.1007/s10955-011-0166-2
https://doi.org/10.1073/pnas.0701744104
https://doi.org/10.3390/e24101378
http://arxiv.org/abs/arXiv:2011.00088
https://doi.org/10.1167/jov.22.11.4
https://doi.org/10.1023/A:1005073307193
https://doi.org/10.1093/bjps/axp036
https://doi.org/10.1146/annurev-biophys-121219-081656
https://doi.org/10.1007/s11245-008-9043-2


DAMIAN R. SOWINSKI et al. PRX LIFE 1, 023003 (2023)

of the Eighth International Conference on Artificial Life (ICAL
2003) (MIT Press, Cambridge, MA, 2002), pp. 345–349.

[25] J. Barham, A dynamical model of the meaning of information,
Biosystems 38, 235 (1996).

[26] T. W. Deacon, Shannon-Boltzmann-Darwin: Redefining infor-
mation (part I), Cognitive Semiotics 1, 123 (2007).

[27] P. A. Corning, Control information theory: The ‘missing link’
in the science of cybernetics, Syst. Res. Behav. Sci. 24, 297
(2007).

[28] M. Gleiser and D. Sowinski, How we make sense of the world:
Information, map-making, and the scientific narrative, in The
Map and the Territory: Exploring the Foundations of Science,
Thought and Reality (Springer, Berlin, 2018), pp. 141–164.

[29] A. Kolchinsky and D. H. Wolpert, Semantic information, au-
tonomous agency and non-equilibrium statistical physics, Int.
Focus. 8, 20180041 (2018).

[30] C. Rovelli, Meaning and intentionality = information + evo-
lution, in Wandering Towards a Goal, The Frontiers Collection
(Springer, Cham, 2018), pp. 17–27.

[31] J. P. Gould, Risk, stochastic preference, and the value of infor-
mation, J. Econ. Theory 8, 64 (1974).

[32] R. L. Stratonovich, Theory of Information and its Value, edited
by R. V. Belavkin, P. M. Pardalos, and J. C. Principe (Springer,
Cham, 2020).

[33] C. E. Shannon et al., Coding theorems for a discrete source with
a fidelity criterion, IRE Nat. Conv. Rec. 4, 1 (1959).

[34] D. R. Sowinski, M. D. McGarry, E. E. Van Houten, S. Gordon-
Wylie, J. B. Weaver, and K. D. Paulsen, Poroelasticity as a
model of soft tissue structure: Hydraulic permeability recon-
struction for magnetic resonance elastography in silico, Front.
Phys. 8, 617582 (2021).

[35] J. Usinowicz and M. I. O’Connor, The fitness value of ecologi-
cal information in a variable world, Ecol. Lett. 26, 621 (2023).

[36] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort,
and R. Spigler, The Kuramoto model: A simple paradigm for
synchronization phenomena, Rev. Mod. Phys. 77, 137 (2005).

[37] D. García-Selfa, G. Ghoshal, C. Bick, J. Pérez-Mercader, and
A. P. Muñuzuri, Chemical oscillators synchronized via an active
oscillating medium: Dynamics and phase approximation model,
Chaos, Solitons Fractals 145, 110809 (2021).

[38] F. Cooper, G. Ghoshal, A. Pawling, and J. Pérez-Mercader, In-
ternal composite bound states in deterministic reaction diffusion
models, Phys. Rev. Lett. 111, 044101 (2013).

[39] S. Mimar, M. M. Juane, J. Park, A. P. Muñuzuri, and G.
Ghoshal, Turing patterns mediated by network topology in ho-
mogeneous active systems, Phys. Rev. E 99, 062303 (2019).

[40] J. E. Cohen, Ratio of prey to predators in community food webs,
Nature (London) 270, 165 (1977).

[41] N. Rooney, K. McCann, G. Gellner, and J. C. Moore, Struc-
tural asymmetry and the stability of diverse food webs, Nature
(London) 442, 265 (2006).

[42] J. C. Xavier, W. Hordijk, S. Kauffman, M. Steel, and W. F.
Martin, Autocatalytic chemical networks at the origin of
metabolism, Proc. R. Soc. B: Biol. Sci. 287, 20192377 (2020).

[43] J. C. Blain and J. W. Szostak, Progress toward synthetic cells,
Annu. Rev. Biochem. 83, 615 (2014).

[44] B. Ruzzante, L. Del Moro, M. Magarini, and P. Stano, Synthetic
cells extract semantic information from their environment,
IEEE Trans. Mol. Biol. Multi-Scale Commun. 9, 23 (2023).

[45] O. Bénichou and S. Redner, Depletion-controlled starvation of
a diffusing forager, Phys. Rev. Lett. 113, 238101 (2014).

[46] U. Bhat, S. Redner, and O. Bénichou, Does greed help a forager
survive? Phys. Rev. E 95, 062119 (2017).

[47] O. Bénichou, M. Chupeau, and S. Redner, Role of depletion on
the dynamics of a diffusing forager, J. Phys. A: Math. Theor.
49, 394003 (2016).

[48] U. Bhat and S. Redner, How smart should a forager be? J. Stat.
Mech.: Theory Exp. (2022) 033402.

[49] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez,
Intermittent search strategies, Rev. Mod. Phys. 83, 81
(2011).

[50] O. Bénichou, M. Coppey, M. Moreau, P. Suet, and R. Voituriez,
A stochastic model for intermittent search strategies, J. Phys.:
Condens. Matter 17, S4275 (2005).

[51] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Two-
dimensional intermittent search processes: An alternative to
Lévy flight strategies, Phys. Rev. E 74, 020102(R) (2006).

[52] F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra, and G. M.
Viswanathan, Optimizing the encounter rate in biological inter-
actions: Lévy versus Brownian strategies, Phys. Rev. Lett. 88,
097901 (2002).

[53] G. Viswanathan, F. Bartumeus, S. V. Buldyrev, J. Catalan, U.
Fulco, S. Havlin, M. Da Luz, M. L. Lyra, E. Raposo, and H. E.
Stanley, Lévy flight random searches in biological phenomena,
Physica A 314, 208 (2002).

[54] A. James, M. J. Plank, and R. Brown, Optimizing the encounter
rate in biological interactions: Ballistic versus Lévy versus
Brownian strategies, Phys. Rev. E 78, 051128 (2008).

[55] D. Campos, J. Cristín, and V. Méndez, Optimal escape-
and-feeding dynamics of random walkers: Rethinking the
convenience of ballistic strategies, Phys. Rev. E 103, 052109
(2021).

[56] F. Bartumeus, D. Campos, W. S. Ryu, R. Lloret-Cabot, V.
Méndez, and J. Catalan, Foraging success under uncertainty:
Search tradeoffs and optimal space use, Ecol. Lett. 19, 1299
(2016).

[57] T. Schreiber, Measuring information transfer, Phys. Rev. Lett.
85, 461 (2000).

[58] M. Gleiser and D. Sowinski, Configurational information ap-
proach to instantons and false vacuum decay in D-dimensional
spacetime, Phys. Rev. D 98, 056026 (2018).

[59] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PRXLife.1.023003 for videos of the ballistic forager
model below, near, and above the critical scrambling parameter.

[60] H. Barbosa, M. Barthelemy, G. Ghoshal, C. R. James, M.
Lenormand, T. Louail, R. Menezes, J. Ramasco, F. Simini, and
M. Tomasini, Human mobility: Models and applications, Phys.
Rep. 734, 1 (2018).

[61] M. Egbert, M. M. Hanczyc, I. Harvey, N. Virgo, E. C. Parke, T.
Froese, H. Sayama, A. S. Penn, and S. Bartlett, Behaviour and
the origin of organisms, Origins Life Evol. Biospheres 53, 87
(2023).

023003-14

https://doi.org/10.1016/0303-2647(95)01596-5
https://doi.org/10.1515/cogsem.2007.1.fall2007.123
https://doi.org/10.1002/sres.808
https://doi.org/10.1098/rsfs.2018.0041
https://doi.org/10.1016/0022-0531(74)90006-4
https://doi.org/10.1109/9780470544242.ch21
https://doi.org/10.3389/fphy.2020.617582
https://doi.org/10.1111/ele.14166
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/j.chaos.2021.110809
https://doi.org/10.1103/PhysRevLett.111.044101
https://doi.org/10.1103/PhysRevE.99.062303
https://doi.org/10.1038/270165a0
https://doi.org/10.1038/nature04887
https://doi.org/10.1098/rspb.2019.2377
https://doi.org/10.1146/annurev-biochem-080411-124036
https://doi.org/10.1109/TMBMC.2023.3244399
https://doi.org/10.1103/PhysRevLett.113.238101
https://doi.org/10.1103/PhysRevE.95.062119
https://doi.org/10.1088/1751-8113/49/39/394003
https://doi.org/10.1088/1742-5468/ac57b9
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1088/0953-8984/17/49/020
https://doi.org/10.1103/PhysRevE.74.020102
https://doi.org/10.1103/PhysRevLett.88.097901
https://doi.org/10.1016/S0378-4371(02)01157-3
https://doi.org/10.1103/PhysRevE.78.051128
https://doi.org/10.1103/PhysRevE.103.052109
https://doi.org/10.1111/ele.12660
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevD.98.056026
http://link.aps.org/supplemental/10.1103/PRXLife.1.023003
https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1007/s11084-023-09635-0

