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Abstract. The practical successes of deep neural networks have not been 
matched by theoretical progress that satisfyingly explains their behavior. In 
this work, we study the information bottleneck (IB) theory of deep learning, 
which makes three specific claims: first, that deep networks undergo two distinct 
phases consisting of an initial fitting phase and a subsequent compression 
phase; second, that the compression phase is causally related to the excellent 
generalization performance of deep networks; and third, that the compression 
phase occurs due to the diffusion-like behavior of stochastic gradient descent. 
Here we show that none of these claims hold true in the general case, and instead 
reflect assumptions made to compute a finite mutual information metric in 
deterministic networks. When computed using simple binning, we demonstrate 
through a combination of analytical results and simulation that the information 
plane trajectory observed in prior work is predominantly a function of the 
neural nonlinearity employed: double-sided saturating nonlinearities like tanh 
yield a compression phase as neural activations enter the saturation regime, 
but linear activation functions and single-sided saturating nonlinearities like 
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the widely used ReLU in fact do not. Moreover, we find that there is no evident 
causal connection between compression and generalization: networks that do 
not compress are still capable of generalization, and vice versa. Next, we show 
that the compression phase, when it exists, does not arise from stochasticity in 
training by demonstrating that we can replicate the IB findings using full batch 
gradient descent rather than stochastic gradient descent. Finally, we show that 
when an input domain consists of a subset of task-relevant and task-irrelevant 
information, hidden representations do compress the task-irrelevant information, 
although the overall information about the input may monotonically increase 
with training time, and that this compression happens concurrently with the 
fitting process rather than during a subsequent compression period.

Keywords: machine learning
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1. Introduction

Deep neural networks (Schmidhuber 2015, LeCun et al 2015) are the tool of choice 
for real-world tasks ranging from visual object recognition (Krizhevsky et al 2012), 
to unsupervised learning (Goodfellow et al 2014, Lotter et al 2016) and reinforcement 
learning (Silver et al 2016). These practical successes have spawned many attempts to 
explain the performance of deep learning systems (Kadmon and Sompolinsky 2016), 
mostly in terms of the properties and dynamics of the optimization problem in the 
space of weights (Saxe et al 2014, Choromanska et al 2015, Advani and Saxe 2017), or 
the classes of functions that can be efficiently represented by deep networks (Montufar 
et al 2014, Poggio et al 2017). This paper analyzes a recent inventive proposal to 
study the dynamics of learning through the lens of information theory (Tishby and 
Zaslavsky 2015, Shwartz-Ziv and Tishby 2017). In this view, deep learning is a question 
of representation learning: each layer of a deep neural network can be seen as a set of 
summary statistics which contain some but not all of the information present in the 
input, while retaining as much information about the target output as possible. The 
amount of information in a hidden layer regarding the input and output can then be 
measured over the course of learning, yielding a picture of the optimization process in 
the information plane. Crucially, this method holds the promise to serve as a general 
analysis that can be used to compare different architectures, using the common cur-
rency of mutual information. Moreover, the elegant information bottleneck (IB) theory 
provides a fundamental bound on the amount of input compression and target output 
information that any representation can achieve (Tishby et al 1999). The IB bound 
thus serves as a method-agnostic ideal to which different architectures and algorithms 
may be compared.

A preliminary empirical exploration of these ideas in deep neural networks has 
yielded striking findings (Shwartz-Ziv and Tishby 2017). Most saliently, trajectories in 
the information plane appear to consist of two distinct phases: an initial ‘fitting’ phase 
where mutual information between the hidden layers and both the input and output 
increases, and a subsequent ‘compression’ phase where mutual information between 
the hidden layers and the input decreases. It has been hypothesized that this compres-
sion phase is responsible for the excellent generalization performance of deep networks, 
and further, that this compression phase occurs due to the random diffusion-like behav-
ior of stochastic gradient descent.

Here we study these phenomena using a combination of analytical methods and 
simulation. In section 2, we highlight the fundamental theoretical issue: for determin-
istic continuous-valued neural networks, the mutual information between representa-
tions is typically infinite, as has often been noted before (Laughlin 1981, Tishby and 
Zaslavsky 2015). We argue that information plane trajectories therefore largely reflect 
the assumptions used to arrive at a finite mutual information value. For instance we 
show that the compression observed by Shwartz-Ziv and Tishby (2017) using dis-
cretization to compute finite mutual information arises primarily due to the double-
saturating tanh activation function used. Using simple models, we elucidate the effect 
of neural nonlinearity on the compression phase. Importantly, we demonstrate that 
the ReLU activation function, often the nonlinearity of choice in practice, does not 
exhibit a compression phase under standard training procedures. We discuss how this 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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compression via nonlinearity is related to the assumption of binning or noise in the hid-
den layer representation, and is not simply a question of finding more accurate mutual 
information estimation techniques. To better understand the dynamics of learning in 
the information plane, in section 3 we study deep linear networks in a tractable set-
ting where the mutual information can be calculated exactly. We find that deep lin-
ear networks do not compress over the course of training for the setting we examine. 
Further, we show a dissociation between generalization and compression. In section 4, 
we investigate whether stochasticity in the training process causes compression in the 
information plane. We train networks with full batch gradient descent, and compare 
the results to those obtained with stochastic gradient descent. We find comparable 
compression in both cases, indicating that the stochasticity of SGD is not a primary 
factor in the observed compression phase. Moreover, we show that the two phases of 
SGD occur even in networks that do not compress, demonstrating that the phases are 
not causally related to compression. These results may seem difficult to reconcile with 
the intuition that compression can be necessary to attain good performance: if some 
input channels primarily convey noise, good generalization requires excluding them. 
Therefore, in section 5 we study a situation with explicitly task-relevant and task-
irrelevant input dimensions. We show that the hidden-layer mutual information with 
the task-irrelevant subspace does indeed drop during training, though the overall infor-
mation with the input increases. However, instead of a secondary compression phase, 
this task-irrelevant information is compressed at the same time that the task-relevant 
information is boosted. Our results highlight the importance of noise assumptions in 
applying information theoretic analyses to deep learning systems, and put in doubt the 
generality of the IB theory of deep learning as an explanation of generalization perfor-
mance in deep architectures.

2. Compression and neural nonlinearities

The starting point for our analysis is the observation that changing the activation 
function can markedly change the trajectory of a network in the information plane. In 
figure 1(A), we show our replication of the result reported by Shwartz-Ziv and Tishby 
(2017) for networks with the tanh nonlinearity5. This replication was performed with 
the code supplied by the authors of Shwartz-Ziv and Tishby (2017), and closely fol-
lows the experimental setup described therein. Briefly, a neural network with 7 fully 
connected hidden layers of width 12-10-7-5-4-3-2 is trained with stochastic gradient 
descent to produce a binary classification from a 12-dimensional input. In our replica-
tion we used 256 randomly selected samples per batch. The mutual information of the 
network layers with respect to the input and output variables is calculated by bin-
ning the neuron’s tanh output activations into 30 equal intervals between  −1 and 1. 
Discretized values for each neuron in each layer are then used to directly calculate the 
joint distributions, over the 4096 equally likely input patterns and true output labels. 
In line with prior work Shwartz-Ziv and Tishby (2017), the dynamics in figure 1 show 
a transition between an initial fitting phase, during which information about the input 

5 Code for our results is available at https://github.com/artemyk/ibsgd/tree/iclr2018
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increases, and a subsequent compression phase, during which information about the 
input decreases.

We then modified the code to train deep networks using rectified linear activation 
functions (f(x) = max(0, x)). While the activities of tanh networks are bounded in the 
range [−1, 1], ReLU networks have potentially unbounded positive activities. To cal-
culate mutual information, we first trained the ReLU networks, next identified their 
largest activity value over the course of training, and finally chose 100 evenly spaced 
bins between the minimum and maximum activity values to discretize the hidden 
layer activity. The resulting information plane dynamics are shown in figure 1(B). The 
mutual information with the input monotonically increases in all ReLU layers, with 
no apparent compression phase. To see whether our results were an artifact of the 
small network size, toy dataset, or simple binning-based mutual information estimator 
we employed, we also trained larger networks on the MNIST dataset and computed 
mutual information using a state-of-the-art nonparametric kernel density estimator 
which assumes hidden activity is distributed as a mixture of Gaussians (see appendix 
B for details). Figures (C) and (D) show that, again, tanh networks compressed but 
ReLU networks did not. Appendix B shows that similar results are also obtained with 
the popular nonparametric k-nearest-neighbor estimator of Kraskov et al (2004), and 
for other neural nonlinearities. Thus, the choice of nonlinearity substantively affects 
the dynamics in the information plane.

To understand the impact of neural nonlinearity on the mutual information dynam-
ics, we develop a minimal model that exhibits this phenomenon. In particular, consider 
the simple three neuron network shown in figure 2(A). We assume a scalar Gaussian 
input distribution X ∼ N (0, 1), which is fed through the scalar first layer weight w1, and 
passed through a neural nonlinearity f(·), yielding the hidden unit activity h  =  f (w1X). 
To calculate the mutual information with the input, this hidden unit activity is then 
binned yielding the new discrete variable T = bin(h) (for instance, into 30 evenly 
spaced bins from  −1 to 1 for the tanh nonlinearity). This binning process is depicted in 
figure 2(B). In this simple setting, the mutual information I(T ;X) between the binned 
hidden layer activity T and the input X can be calculated exactly. In particular,

I(T ;X) = H(T )−H(T |X) (1)

= H(T ) (2)

= −
N∑

i=1

pi log pi (3)

where H(·) denotes entropy, and we have used the fact that H(T |X) = 0 since T is a 
deterministic function of X. Here the probabilities pi = P (h ! biandh < bi+1) are simply 
the probability that an input X produces a hidden unit activity that lands in bin i, 
defined by lower and upper bin limits bi and bi+1 respectively. This probability can be 
calculated exactly for monotonic nonlinearities f(·) using the cumulative density of X,

pi = P (X ! f−1(bi)/w1 and X < f−1(bi+1)/w1), (4)
where f−1(·) is the inverse function of f(·).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Figure 1. Information plane dynamics and neural nonlinearities. (A) Replication 
of Shwartz-Ziv and Tishby (2017) for a network with tanh nonlinearities (except 
for the final classification layer which contains two sigmoidal neurons). The  
x-axis plots information between each layer and the input, while the y -axis plots 
information between each layer and the output. The color scale indicates training 
time in epochs. Each of the six layers produces a curve in the information plane 
with the input layer at far right, output layer at the far left. Different layers 
at the same epoch are connected by fine lines. (B) Information plane dynamics 
with ReLU nonlinearities (except for the final layer of 2 sigmoidal neurons). Here 
no compression phase is visible in the ReLU layers. For learning curves of both 
networks, see appendix A. (C) Information plane dynamics for a tanh network of 
size 784-1024-20-20-20-10 trained on MNIST, estimated using the non-parametric 
kernel density mutual information estimator of Kolchinsky and Tracey (2017) 
and Kolchinsky et al (2017). (D) Information plane dynamics for a ReLU network 
with same configuration as panel (C). No compression is observed except in the 
final classification layer which contains sigmoidal neurons. See appendix B for the 
KDE MI method applied to the original Tishby dataset; additional results using 
a second popular nonparametric k-NN-based method (Kraskov et al 2004); and 
results for other neural nonlinearities.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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As shown in figures 2(C) and (D), as a function of the weight w1, mutual information 
with the input first increases and then decreases for the tanh nonlinearity, but always 
increases for the ReLU nonlinearity. Intuitively, for small weights w1 ≈ 0, neural activi-
ties lie near zero on the approximately linear part of the tanh function. Therefore 
f(w1X) ≈ w1X , yielding a rescaled Gaussian with information that grows with the size 
of the weights. However for very large weights w1 → ∞, the tanh hidden unit nearly 
always saturates, yielding a discrete variable that concentrates in just two bins. This is 
more or less a coin flip, containing mutual information with the input of approximately 
1 bit. Hence the distribution of T collapses to a much lower entropy distribution, yield-
ing compression for large weight values. With the ReLU nonlinearity, half of the inputs 

Figure 2. Nonlinear compression in a minimal model. (A) A three neuron nonlinear 
network which receives Gaussian inputs x, multiplies by weight w1, and maps through 
neural nonlinearity f(·) to produce hidden unit activity h. (B) The continuous 
activity h is binned into a discrete variable T for the purpose of calculating mutual 
information. Blue: continuous tanh nonlinear activation function. Grey: bin borders 
for 30 bins evenly spaced between  −1 and 1. Because of the saturation in the 
sigmoid, a wide range of large magnitude net input values map to the same bin. 
(C) Mutual information with the input as a function of weight size w1 for a tanh 
nonlinearity. Information increases for small w1 and then decreases for large w1 as 
all inputs land in one of the two bins corresponding to the saturation regions. (D) 
Mutual information with the input for the ReLU nonlinearity increases without 
bound. Half of all inputs land in the bin corresponding to zero activity, while the 
other half have information that scales with the size of the weights.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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are negative and land in the bin containing a hidden activity of zero. The other half are 
Gaussian distributed, and thus have entropy that increases with the size of the weight.

Hence double-saturating nonlinearities can lead to compression of information about 
the input, as hidden units enter their saturation regime, due to the binning procedure 
used to calculate mutual information. The crux of the issue is that the actual I(h;X) 
is infinite, unless the network itself adds noise to the hidden layers. In particular, 
without added noise, the transformation from X to the continuous hidden activity h 
is deterministic and the mutual information I(h;X) would generally be infinite (see 
appendix C for extended discussion). Networks that include noise in their processing 
(e.g. Kolchinsky et al (2017)) can have finite I(T ;X). Otherwise, to obtain a finite MI, 
one must compute mutual information as though there were binning or added noise in 
the activations. But this binning/noise is not actually a part of the operation of the 
network, and is therefore somewhat arbitrary (different binning schemes can result in 
different mutual information with the input, as shown in figure C2 of appendix C).

We note that the binning procedure can be viewed as implicitly adding noise to the 
hidden layer activity: a range of X values map to a single bin, such that the mapping 
between X and T is no longer perfectly invertible (Laughlin 1981). The binning proce-
dure is therefore crucial to obtaining a finite MI value, and corresponds approximately 
to a model where noise enters the system after the calculation of h, that is, T = h+ ε, 
where ε is noise of fixed variance independent from h and X. This approach is com-
mon in information theoretic analyses of deterministic systems, and can serve as a 
measure of the complexity of a system’s representation (see section 2.4 of Shwartz-Ziv 
and Tishby (2017)). However, neither binning nor noise is present in the networks that 
(Shwartz-Ziv and Tishby 2017) considered, nor the ones in figure 2, either during train-
ing or testing. It therefore remains unclear whether robustness of a representation to 
this sort of noise in fact influences generalization performance in deep learning systems.

Furthermore, the addition of noise means that different architectures may no longer 
be compared in a common currency of mutual information: the binning/noise structure 
is arbitrary, and architectures that implement an identical input-output map can nev-
ertheless have different robustness to noise added in their internal representation. For 
instance, appendix C describes a family of linear networks that compute exactly the 
same input-output map and therefore generalize identically, but yield different mutual 
information with respect to the input. Finally, we note that approaches which view 
the weights obtained from the training process as the random variables of interest may 
sidestep this issue (Achille and Soatto 2017).

Hence when a tanh network is initialized with small weights and over the course of 
training comes to saturate its nonlinear units (as it must to compute most functions 
of practical interest, see discussion in appendix D), it will enter a compression period 
where mutual information decreases. Figures E1 and E2 of appendix E show histograms 
of neural activity over the course of training, demonstrating that activities in the tanh 
network enter the saturation regime during training. This nonlinearity-based compres-
sion furnishes another explanation for the observation that training slows down as tanh 
networks enter their compression phase (Shwartz-Ziv and Tishby 2017): some fraction 
of inputs have saturated the nonlinearities, reducing backpropagated error gradients.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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3. Information plane dynamics in deep linear networks

The preceding section investigates the role of nonlinearity in the observed compression 
behavior, tracing the source to double-saturating nonlinearities and the binning meth-
odology used to calculate mutual information. However, other mechanisms could lead 
to compression as well. Even without nonlinearity, neurons could converge to highly 
correlated activations, or project out irrelevant directions of the input. These phe-
nomena are not possible to observe in our simple three neuron minimal model, as they 
require multiple inputs and hidden layer activities. To search for these mechanisms, 
we turn to a tractable model system: deep linear neural networks (Baldi and Hornik 
1989, Fukumizu 1998, Saxe et al 2014). In particular, we exploit recent results on the 
generalization dynamics in simple linear networks trained in a student-teacher setup 
(Seung et al 1992, Advani and Saxe 2017). In a student-teacher setting, one ‘student’ 
neural network learns to approximate the output of another ‘teacher’ neural network. 
This setting is a way of generating a dataset with interesting structure that neverthe-
less allows exact calculation of the generalization performance of the network, exact 

Figure 3. Generalization and information plane dynamics in deep linear networks. 
(A) A linear teacher network generates a dataset by passing Gaussian inputs 
X through its weights and adding noise. (B) A deep linear student network is 
trained on the dataset (here the network has 1 hidden layer to allow comparison 
with figure 4(A), see supplementary figure F1 for a deeper network). (C) Training 
and testing error over time. (D) Information plane dynamics. No compression is 
observed.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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calculation of the mutual information of the representation (without any binning pro-
cedure), and, though we do not do so here, direct comparison to the IB bound which is 
already known for linear Gaussian problems (Chechik et al 2005).

We consider a scenario where a linear teacher neural network generates input and 
output examples which are then fed to a deep linear student network to learn (figure 
3(A)). Following the formulation of Advani and Saxe (2017), we assume multivari-

ate Gaussian inputs X ∼ N (0, 1
Ni
INi) and a scalar output Y. The output is generated 

by the teacher network according to Y = W0X + εo, where εo ∼ N (0, σ2
o) represents 

aspects of the target function which cannot be represented by a neural network (that is, 
the approximation error or bias in statistical learning theory), and the teacher weights 
Wo are drawn independently from N (0, σ2

w). Here, the weights of the teacher define the 
rule to be learned. The signal to noise ratio SNR = σ2

w/σ
2
o determines the strength of 

the rule linking inputs to outputs relative to the inevitable approximation error. We 
emphasize that the ‘noise’ added to the teacher’s output is fundamentally different 
from the noise added for the purpose of calculating mutual information: εo models the 
approximation error for the task–even the best possible neural network may still make 
errors because the target function is not representable exactly as a neural network–
and is part of the construction of the dataset, not part of the analysis of the student 
network.

To train the student network, a dataset of P examples is generated using the teacher. 
The student network is then trained to minimize the mean squared error between its 
output and the target output using standard (batch or stochastic) gradient descent on 
this dataset. Here the student is a deep linear neural network consisting of potentially 
many layers, but where the the activation function of each neuron is simply f(u) = u. 
That is, a depth D deep linear network computes the output Ŷ = WD+1WD · · ·W2W1X . 
While linear activation functions stop the network from computing complex nonlinear 
functions of the input, deep linear networks nevertheless show complicated nonlinear 
learning trajectories (Saxe et al 2014), the optimization problem remains nonconvex 
(Baldi and Hornik 1989), and the generalization dynamics can exhibit substantial over-
training (Fukumizu 1998, Advani and Saxe 2017).

Importantly, because of the simplified setting considered here, the true generaliza-
tion error is easily shown to be

Eg(t) = ||Wo −Wtot(t)||2F + σ2
o (5)

where Wtot(t) is the overall linear map implemented by the network at training epoch 
t (that is, Wtot = WD+1WD · · ·W2W1).

Furthermore, the mutual information with the input and output may be calculated 
exactly, because the distribution of the activity of any hidden layer is Gaussian. Let T 
be the activity of a specific hidden layer, and let W̄  be the linear map from the input to 
this activity (that is, for layer l, W̄ = Wl · · ·W2W1). Since T = W̄X , the mutual infor-
mation of X and T calculated using differential entropy is infinite. For the purpose of 
calculating the mutual information, therefore, we assume that Gaussian noise is added 
to the hidden layer activity, T = W̄X + εMI , with mean 0 and variance σ2

MI = 1.0. This 
allows the analysis to apply to networks of any size, including overcomplete layers, but 
as before we emphasize that we do not add this noise either during training or testing. 
With these assumptions, T and X are jointly Gaussian and we have

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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I(T ;X) = log |W̄W̄ T + σ2
MIINh

|− log |σ2
MIINh

| (6)
where | · | denotes the determinant of a matrix. Finally the mutual information with the 
output Y, also jointly Gaussian, can be calculated similarly (see equations (G.1)–(G.4) 
of appendix G).

Figure 3 shows example training and test dynamics over the course of learning in 
panel (C), and the information plane dynamics in panel (D). Here the network has an 
input layer of 100 units, 1 hidden layer of 100 units each and one output unit. The 
network was trained with batch gradient descent on a dataset of 100 examples drawn 
from the teacher with signal to noise ratio of 1.0. The linear network behaves qualita-
tively like the ReLU network, and does not exhibit compression. Nevertheless, it learns 
a map that generalizes well on this task and shows minimal overtraining. Hence, in 
the setting we study here, generalization performance can be acceptable without any 
compression phase.

The results in Advani and Saxe (2017) show that, for the case of linear networks, 
overtraining is worst when the number of inputs matches the number of training sam-
ples, and is reduced by making the number of samples smaller or larger. Figure 4 shows 
learning dynamics with the number of samples matched to the size of the network. Here 
overfitting is substantial, and again no compression is seen in the information plane. 
Comparing to the result in figure 3(D), both networks exhibit similar information 
dynamics with respect to the input (no compression), but yield different generalization 
performance.

Hence, in this linear analysis of a generic setting, there do not appear to be addi-
tional mechanisms that cause compression over the course of learning; and gener-
alization behavior can be widely different for networks with the same dynamics of 
information compression regarding the input. We note that, in the setting considered 
here, all input dimensions have the same variance, and the weights of the teacher are 
drawn independently. Because of this, there are no special directions in the input, and 
each subspace of the input contains as much information as any other. It is possible 
that, in real world tasks, higher variance inputs are also the most likely to be relevant 
to the task (here, have large weights in the teacher). We have not investigated this 
possibility here.

To see whether similar behavior arises in nonlinear networks, we trained tanh net-
works in the same setting as section 2, but with 30% of the data, which we found to 
lead to modest overtraining. Figures 4(C) and (D) shows the resulting train, test, and 
information plane dynamics. Here the tanh networks show substantial compression, 
despite exhibiting overtraining. This establishes a dissociation between behavior in the 
information plane and generalization dynamics: networks that compress may (figure 
1(A)) or may not (figures 4(C) and (D) generalize well, and networks that do not com-
press may (figures 1(B), 3(A) and (B) or may not (figures 4(A) and (B) generalize well.

4. Compression in batch gradient descent and SGD

Next, we test a core theoretical claim of the information bottleneck theory of deep 
learning, namely that randomness in stochastic gradient descent is responsible for the 
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compression phase. In particular, because the choice of input samples in SGD is ran-
dom, the weights evolve in a stochastic way during training.

Shwartz-Ziv and Tishby (2017) distinguish two phases of SGD optimization: in 
the first ‘drift’ phase, the mean of the gradients over training samples is large relative 
to the standard deviation of the gradients; in the second ‘diffusion’ phase, the mean 
becomes smaller than the standard deviation of the gradients. The authors propose 
that compression should commence following the transition from a high to a low gra-
dient signal-to-noise ratio (SNR), i.e. the onset of the diffusion phase. The proposed 
mechanism behind this diffusion-driven compression is as follows. The authors state 
that during the diffusion phase, the stochastic evolution of the weights can be described 
as a Fokker–Planck equation under the constraint of small training error. Then, the 
stationary distribution over weights for this process will have maximum entropy, again 
subject to the training error constraint. Finally, the authors claim that weights drawn 
from this stationary distribution will maximize the entropy of inputs given hidden layer 
activity, H(X|T ), subject to a training error constraint, and that this training error 
constraint is equivalent to a constraint on the mutual information I(T ;Y ) for small 
training error. Since the entropy of the input, H(X), is fixed, the result of the diffusion 

Figure 4. Overtraining and information plane dynamics. (A) Average training and 
test mean square error for a deep linear network trained with SGD. Overtraining is 
substantial. Other parameters: Ni  =  100, P  =  100, Number of hidden units  =  100, 
Batch size  =  5. (B) Information plane dynamics. No compression is observed, and 
information about the labels is lost during overtraining. (C) Average train and test 
accuracy (% correct) for nonlinear tanh networks exhibiting modest overfitting 
(N  =  8). (D) Information plane dynamics. Overfitting occurs despite continued 
compression.
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dynamics will be to minimize I(X;T ) := H(X)−H(X|T ) for a given value of I(T ;Y ) 
reached at the end of the drift phase.

However, this explanation does not hold up to either theoretical or empirical invest-
igation. Let us assume that the diffusion phase does drive the distribution of weights 
to a maximum entropy distribution subject to a training error constraint. Note that 
this distribution reflects stochasticity of weights across different training runs. There 
is no general reason that a given set of weights sampled from this distribution (i.e. the 
weight parameters found in one particular training run) will maximize H(X|T ), the 
entropy of inputs given hidden layer activity. In particular, H(X|T ) reflects (condi-
tional) uncertainty about inputs drawn from the data-generating distribution, rather 
than uncertainty about any kind of distribution across different training runs.

We also show empirically that the stochasticity of the SGD is not necessary for 
compression. To do so, we consider two distinct training procedures: offline stochastic 
gradient descent (SGD), which learns from a fixed-size dataset, and updates weights 
by repeatedly sampling a single example from the dataset and calculating the gradient 
of the error with respect to that single sample (the typical procedure used in practice); 
and batch gradient descent (BGD), which learns from a fixed-size dataset, and updates 
weights using the gradient of the total error across all examples. Batch gradient descent 
uses the full training dataset and, crucially, therefore has no randomness or diffusion-
like behavior in its updates.

Figure 5. Stochastic training and the information plane. (A) tanh network trained 
with SGD. (B) tanh network trained with BGD. (C) ReLU network trained with 
SGD. (D) ReLU network trained with BGD. Both random and non-random 
training procedures show similar information plane dynamics.

Figure 6. Simultaneous fitting and compression. (A) For a task with a large task-
irrelevant subspace in the input, a linear network shows no overall compression of 
information about the input. (B) The information with the task-relevant subspace 
increases robustly over training. (C) However, the information specifically about 
the task-irrelevant subspace does compress after initially growing as the network 
is trained.
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We trained tanh and ReLU networks with SGD and BGD and compare their 
information plane dynamics in figure 5 (see appendix H for a linear network). We find 
largely consistent information dynamics in both instances, with robust compression in 
tanh networks for both methods. Thus randomness in the training process does not 
appear to contribute substantially to compression of information about the input. This 
finding is consistent with the view presented in section 2 that compression arises pre-
dominantly from the double saturating nonlinearity.

Finally, we look at the gradient signal-to-noise ratio (SNR) to analyze the relation-
ship between compression and the transition from high to low gradient SNR. Figure I1 
of appendix I shows the gradient SNR over training, which in all cases shows a phase 
transition during learning. Hence the gradient SNR transition is a general phenomenon, 
but is not causally related to compression. Appendix I offers an extended discussion 
and shows gradient SNR transitions without compression on the MNIST dataset and 
for linear networks.

5. Simultaneous fitting and compression

Our finding that generalization can occur without compression may seem difficult to 
reconcile with the intuition that certain tasks involve suppressing irrelevant direc-
tions of the input. In the extreme, if certain inputs contribute nothing but noise, then 
good generalization requires ignoring them. To study this, we consider a variant on 
the linear student-teacher setup of section 3: we partition the input X into a set of 
task-relevant inputs Xrel and a set of task-irrelevant inputs Xirrel, and alter the teacher 
network so that the teacher’s weights to the task-irrelevant inputs are all zero. Hence 
the inputs Xirrel contribute only noise, while the Xrel contain signal. We then calcu-
late the information plane dynamics for the whole layer, and for the task-relevant 
and task-irrelevant inputs separately. Figure 6 shows information plane dynamics for 
a deep linear neural network trained using SGD (5 samples/batch) on a task with 30 
task-relevant inputs and 70 task-irrelevant inputs. While the overall dynamics show 
no compression phase, the information specifically about the task-irrelevant subspace 
does compress over the course of training. This compression process occurs at the same 
time as the fitting to the task-relevant information. Thus, when a task requires ignoring 
some inputs, the information with these inputs specifically will indeed be reduced; but 
overall mutual information with the input in general may still increase.

6. Discussion

Our results suggest that previously observed compression dynamics in the informa-
tion plane are not a general feature of deep networks, but are critically influenced by 
the nonlinearities employed by the network. Double-saturating nonlinearities lead to 
compression, if mutual information is computed by binning activations or by adding 
homoscedastic noise, while single-sided saturating nonlinearities like ReLUs do not 
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always compress. We emphasize that the assumption of binning/noise is a distinct 
question from that of the method used to estimate mutual information, and our results 
do not simply reflect the need for more accurate MI estimation techniques. This is 
illustrated by our results in deep linear networks, for which we exactly compute mutual 
information given the noise assumption. Regarding mechanism, we find that stochastic-
ity in the training process does not contribute to compression in the cases we investigate. 
Although the binning-based mutual information computation used in prior work may 
not accurately reflect mutual information in deterministic networks, it could still pro-
vide a useful metric that connects to generalization. However, we have found instances 
where generalization performance does not clearly track information plane behavior, 
questioning the causal link between compression and generalization. Hence information 
compression may parallel the situation with sharp minima: although empirical evidence 
has shown a correlation with generalization error in certain settings and architectures, 
further theoretical analysis has shown that sharp minima can in fact generalize well 
(Dinh et al 2017). We emphasize that compression still may occur within a subset of 
the input dimensions if the task demands it. This compression, however, is interleaved 
rather than in a secondary phase and may not be visible by information metrics that 
track the overall information between a hidden layer and the input. Finally, we note 
our results address the specific claims of one scheme to link the information bottleneck 
principle with current practice in deep networks. The information bottleneck principle 
itself is more general and may yet offer important insights into deep networks (Achille 
and Soatto 2017). In particular, our findings question whether information bottleneck 
ideas will explain the success of ‘vanilla’ deterministic networks. But for fundamentally 
stochastic or quantized networks, the information bottleneck principle could yield new 
training algorithms where compression is explicitly encouraged with appropriate regu-
larization terms (Chalk et al 2016, Alemi et al 2017, Kolchinsky et al 2017).
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Appendix A. Learning curves for tanh and ReLU networks

Supplementary figure A1 shows the learning curves for tanh and ReLU networks 
depicted in figure 1.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


On the information bottleneck theory of deep learning

16https://doi.org/10.1088/1742-5468/ab3985

J. S
tat. M

ech. (2019) 124020

Appendix B. Robustness of findings to MI estimation method and neural activa-
tion functions

This appendix investigates the generality of the finding that compression is not observed 
in neural network layers with certain activation functions. Figure 1 of the main text 
shows example results using a binning-based MI estimator and a nonparametric KDE 
estimator, for both the tanh and ReLU activation functions. Here we describe the KDE 
MI estimator in detail, and present extended results on other datasets. We also show 
results for other activation functions. Finally, we provide entropy estimates based on 
another nonparametric estimator, the popular k-nearest neighbor approach of Kraskov 
et al (2004). Our findings consistently show that double-saturating nonlinearities can 
yield compression, while single-sided nonlinearities do not.

B.1. Kernel density estimation of MI

The KDE approach of Kolchinsky and Tracey (2017) and Kolchinsky et al (2017) 
estimates the mutual information between the input and the hidden layer activity 
by assuming that the hidden activity is distributed as a mixture of Gaussians. This 
assumption is well-suited to the present setting under the following interpretation: 
we take the input activity to be distributed as delta functions at each example in the 
dataset, corresponding to a uniform distribution over these specific samples. In other 
words, we assume that the empirical distribution of input samples is the true distri-
bution. Next, the hidden layer activity h is a deterministic function of the input. As 
mentioned in the main text and discussed in more detail in appendix C, without the 
assumption of noise, this would have infinite mutual information with the input. We 
therefore assume for the purposes of analysis that Gaussian noise of variance σ2 is 
added, that is, T = h+ ε where ε ∼ N (0, σ2I). Under these assumptions, the distribu-
tion of T is genuinely a mixture of Gaussians, with a Gaussian centered on the hidden 
activity corresponding to each input sample. We emphasize again that the noise ε is 

Figure A1. Learning curves for (A) tanh neural network in 1 A and (B) ReLU 
neural network in 1(B). Both networks show good generalization with regards to 
the test data.
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added solely for the purposes of analysis, and is not present during training or testing 
the network. In this setting, an upper bound for the mutual information with the input 
is (Kolchinsky and Tracey 2017, Kolchinsky et al 2017)

I(T ;X) ! − 1
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∑
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log
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where P is the number of training samples and hi denotes the hidden activity vector 
in response to input sample i. Similarly, the mutual information with respect to the 
output can be calculated as

I(T ;Y ) = H(T )−H(T |Y ) (B.2)
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where L is the number of output labels, Pl denotes the number of data samples with 
output label l, pl = Pl/P  denotes the probability of output label l, and the sums over 
i,Yi  =  l indicate a sum over all examples with output label l.

Figures B1(A) and (B) shows the result of applying this MI estimation method on 
the dataset and network architecture of Shwartz-Ziv and Tishby (2017), with MI esti-
mated on the full dataset and averaged over 50 repetitions. Mutual information was 
estimated using data samples from the test set, and we took the noise variance σ2 = 0.1. 
These results look similar to the estimate derived from binning, with compression in 
tanh networks but no compression in ReLU networks. Relative to the binning estimate, 
it appears that compression is less pronounced in the KDE method.

Figures 1(C) and (D) of the main text shows the results of this estimation technique 
applied to a neural network of size 784-1024-20-20-20-10 on the MNIST handwritten 
digit classification dataset. The network was trained using SGD with minibatches of 
size 128. As before, mutual information was estimated using data samples from the test 
set, and we took the noise variance σ2 = 0.1. The smaller layer sizes in the top three 
hidden layers were selected to ensure the quality of the kernel density estimator given 
the amount of data in the test set, since the estimates are more accurate for smaller-
dimensional data. Because of computational expense, the MNIST results are from a 
single training run.

More detailed results for the MNIST dataset are provided in figure B2 for the tanh 
activation function, and in figure B3 for the ReLU activation function. In these figures, 
the first row shows the evolution of the cross entropy loss (on both training and test-
ing data sets) during training. The second row shows the mutual information between 
input and the activity of different hidden layers, using the nonparametric KDE estima-
tor described above. The blue region in the second row shows the range of possible MI 
values, ranging from the upper bound described above (equation (B.4)) to the following 
lower bound (Kolchinsky and Tracey 2017),
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The third row shows the mutual information between input and activity of different 
hidden layers, estimated using the binning method (here, the activity of each neuron 
was discretized into bins of size 0.5). For both the second and third rows, we also plot 
the entropy of the inputs, H(X), as a dashed line. H(X) is an upper bound on the 
mutual information I(X;T ), and is computed using the assumption of a uniform distri-
bution over the 10 000 testing points in the MNIST dataset, giving H(X) = log2 10 000.

Finally, the fourth row visualizes the dynamics of the SGD updates during train-
ing. For each layer and epoch, the green line shows the !2 norm of the weights. We 
also compute the vector of mean updates across SGD minibatches (this vector has one 
dimension for each weight parameter), as well as the vector of the standard deviation 
of the updates across SGD minibatches. The !2 norm of the mean update vector is 
shown in blue, and the !2 norm of the standard deviation vector is shown in orange. 
The gradient SNR, computed as the ratio of the norm of the mean vector to the norm 
of the standard deviation vector, is shown in red. For both the tanh and ReLU net-
works, the gradient SNR shows a phase transition during training, and the norm of the 
weights in each layer increases. Importantly, this phase transition occurs despite a lack 
of compression in the ReLU network, indicating that noise in SGD updates does not 
yield compression in this setting.

B.2. Other activation functions

Next, in figures B1(C) and (D), we show results from the kernel MI estimator from two 
additional nonlinear activation functions, the softsign function

f(x) =
x

1 + |x| ,

and the softplus function

f(x) = ln(1 + ex).

These functions are plotted next to tanh and ReLU in figure B4. The softsign function 
is similar to tanh but saturates more slowly, and yields less compression than tanh. The 
softplus function is a smoothed version of the ReLU, and yields similar dynamics with 
no compression. Because softplus never saturates fully to zero, it retains more informa-
tion with respect to the input than ReLUs in general.

B.3. Kraskov estimator

We additionally investigated the widely-used nonparametric MI estimator of Kraskov 
et al (2004). This estimator uses nearest neighbor distances between samples to compute 
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an estimate of the entropy of a continuous random variable. Here we focused for sim-
plicity only on the compression phenomenon in the mutual information between the 
input and hidden layer activity, leaving aside the information with respect to the out-
put (as this is not relevant to the compression phenomenon). Again, without additional 
noise assumptions, the MI between the hidden representation and the input would be 
infinite because the mapping is deterministic. Rather than make specific noise assump-
tions, we instead use the Kraskov method to estimate the entropy of the hidden repre-
sentations T. Note that the entropy of T is the mutual information up to an unknown 
constant so long as the noise assumption is homoscedastic, that is, T  =  h  +  Z where the 
random variable Z is independent of X. To see this, note that

I(T ;X) = H(T )−H(T |X)
 (B.7)

= H(T )−H(Z)
 

(B.8)

= H(T )− c
 

(B.9)

where the constant c = H(Z). Hence observing compression in the layer entropy H(T ) 
is enough to establish that compression occurs in the mutual information.

The Kraskov estimate is given by

d

P

P∑

i=1

log(ri + ε) +
d

2
log(π)− logΓ(d/2 + 1) + ψ(P )− ψ(k) (B.10)

where d is the dimension of the hidden representation, P is the number of samples, ri 
is the distance to the kth nearest neighbor of sample i, ε is a small constant for numer-
ical stability, Γ(·) is the Gamma function, and ψ(·) is the digamma function. Here the 
parameter ε prevents infinite terms when the nearest neighbor distance ri  =  0 for some 
sample. We took ε = 10−16.

Figure B5 shows the entropy over training for tanh and ReLU networks trained on 
the dataset of and with the network architecture in Shwartz-Ziv and Tishby (2017), 
averaged over 50 repeats. In these experiments, we used k  =  2. Compression would cor-
respond to decreasing entropy over the course of training, while a lack of compression 
would correspond to increasing entropy. Several tanh layers exhibit compression, while 
the ReLU layers do not. Hence qualitatively, the Kraskov estimator returns similar 
results to the binning and KDE strategies.

Appendix C. Noise assumptions and discrete versus continuous entropy

A recurring theme in the results reported in this paper is the necessity of noise assump-
tions to yield a nontrivial information theoretic analysis. Here we give an extended 
discussion of this phenomenon, and of issues relating to discrete entropy as opposed to 
continuous (differential) entropy.

The activity of a neural network is often a continuous deterministic function of its 
input. That is, in response to an input X, a specific hidden layer might produce activ-
ity h = f(X) for some function f . The mutual information between h and X is given by
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I(h;X) = H(h)−H(h|X). (C.1)
If h were a discrete variable, then the entropy would be given by

H(h) = −
N∑

i=1

pi log pi (C.2)

where p i is the probability of the discrete symbol i, as mentioned in the main text. Then 
H(h|X) = 0 because the mapping is deterministic and we have I(h;X) = H(h).

Figure B1. Information plane dynamics for the network architecture and training 
dataset of Shwartz-Ziv and Tishby (2017), estimated with the nonparametric KDE 
method of Kolchinsky and Tracey (2017) and Kolchinsky et al (2017) and averaged 
over 50 repetitions. (A) The tanh neural network layers show compression. (B) ReLU 
neural network layers show no compression. (C) The soft-sign activation function, 
a double-saturating nonlinearity that saturates more gently than tanh, shows 
modest compression. (D) The soft-plus activation function, a smoothed version of 
the ReLU, exhibits no compression. Hence double-saturating nonlinearities exhibit 
the compression effect while single-saturating nonlinearities do not.
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However h is typically continuous. The continuous entropy, defined for a continuous 
random variable Z with density p Z by analogy to equation (C.2) as

H(Z) = −
∫

pZ(z) log pZ(z)dz, (C.3)

can be negative and possibly infinite. In particular, note that if p Z is a delta function, 
then H(Z) = −∞. The mutual information between hidden layer activity h and the 
input X for continuous h,X is

Figure B2. Detailed tanh activation function results on MNIST. Row 1: loss over 
training. Row 2: upper and lower bounds for the mutual information I(X;T ) 
between the input (X) and each layer’s activity (T), using the nonparametric 
KDE estimator (Kolchinsky and Tracey 2017, Kolchinsky et al 2017). Dotted line 
indicates H(X) = log2 10 000, the entropy of a uniform distribution over 10 000 
testing samples. Row 3: Binning-based estimate of the mutual information I(X;T ), 
with each neuron’s activity discretized using a bin size of 0.5. Row 4: gradient 
SNR and weight norm dynamics. The gradient SNR shows a phase transition 
during training, and the norm of the weights in each layer increases.
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I(h;X) = H(h)−H(h|X). (C.4)
Now H(h|X) = −∞ since given the input X, the hidden activity h is distributed as a 
delta function at f(X). The mutual information is thus generally infinite, so long as the 
hidden layer activity has finite entropy (H(h) is finite).

Figure B3. Detailed ReLU activation function results on MNIST. Row 1: loss 
over training. Row 2: upper and lower bounds for the mutual information I(X;T ) 
between the input (X) and each layer’s activity (T), using the nonparametric 
KDE estimator (Kolchinsky and Tracey 2017, Kolchinsky et al 2017). Dotted line 
indicates H(X) = log2 10 000, the entropy of a uniform distribution over 10 000 
testing samples. Row 3: binning-based estimate of the mutual information I(X;T ), 
with each neuron’s activity discretized using a bin size of 0.5. Row 4: gradient 
SNR and weight norm dynamics. The gradient SNR shows a phase transition 
during training, and the norm of the weights in each layer increases. Importantly, 
this phase transition occurs despite a lack of compression in the ReLU network, 
indicating that noise in SGD updates does not yield compression in this setting.
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To yield a finite mutual information, some noise in the mapping is required such 
that H(h|X) remains finite. A common choice (and one adopted here for the linear net-
work, the nonparametric kernel density estimator, and the k-nearest neighbor estima-
tor) is to analyze a new variable with additive noise, T  =  h  +  Z, where Z is a random 
variable independent of X. Then H(T |X) = H(Z) which allows the overall information 
I(T ;X) = H(T )−H(Z) to remain finite. This noise assumption is not present in the 
actual neural networks either during training or testing, and is made solely for the pur-
pose of calculating the mutual information.

-5 0 5
Net input

-1

0

1

2

3

4

5

6
A

ct
iv

at
io

n

tanh
ReLU
Softsign
Softplus

Figure B4. Alternative activation functions.

Figure B5. Entropy dynamics over training for the network architecture 
and training dataset of Shwartz-Ziv and Tishby (2017), estimated with the 
nonparametric k-nearest-neighbor-based method of Kraskov et al (2004). Here the 
x-axis is epochs of training time, and the y -axis plots the entropy of the hidden 
representation, as calculated using nearest-neighbor distances. Note that in this 
setting, if T is considered to be the hidden activity plus independent noise, the 
entropy is equal to the mutual information up to a constant (see derivation in 
text). Layers 0–4 correspond to the hidden layers of size 10-7-5-4-3. (A) The tanh 
neural network layers can show compression over the course of training. (B) ReLU 
neural network layers show no compression.
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Another strategy is to partition the continuous variable h into a discrete variable 
T, for instance by binning the values (the approach taken in Shwartz-Ziv and Tishby 
(2017)). This allows use of the discrete entropy, which remains finite. Again, however, 
in practice the network does not operate on the binned variables T but on the con-
tinuous variables h, and the binning is solely for the purpose of calculating the mutual 
information. Moreover, there are many possible binning strategies, which yield different 
discrete random variables, and different mutual information with respect to the input. 
The choice of binning strategy is an assumption analogous to choosing a type of noise 
to add to the representation in the continuous case: because there is in fact no bin-
ning in the operation of the network, there is no clear choice for binning methodology. 
The strategy we use in binning-based experiments reported here is the following: for 
bounded activations like the tanh activation, we use evenly spaced bins between the 
minimum and maximum limits of the function. For unbounded activations like ReLU, 
we first train the network completely; next identify the minimum and maximum hid-
den activation over all units and all training epochs; and finally bin into equally spaced 
bins between these minimum and maximum values. We note that this procedure places 
no restriction on the magnitude that the unbounded activation function can take dur-
ing training, and yields the same MI estimate as using infinite equally spaced bins 
(because bins for activities larger than the maximum are never seen during training).

As an example of another binning strategy that can yield markedly different results, 
we consider evenly spaced bins in a neuron’s net input, rather than its activity. That 
is, instead of evenly spaced bins in the neural activity, we determine the bin edges by 
mapping a set of evenly spaced values through the neural nonlinearity. For tanh, for 
instance, this spaces bins more tightly in the saturation region as compared to the lin-
ear region. Figure C1 shows the results of applying this binning strategy to the minimal 
three neuron model with tanh activations. This binning scheme captures more infor-
mation as the weights of the network grow larger. Figure C2 shows information plane 
dynamics for this binning structure. The tanh network no longer exhibits compression. 
(We note that the broken DPI in this example is an artifact of performing binning only 
for analysis, as discussed below.)

Any implementation of a neural network on digital hardware is ultimately of finite 
precision, and hence is a binned, discrete representation. However, it is a very high reso-
lution binning compared to that used here or by Shwartz-Ziv and Tishby (2017): single 
precision would correspond to using roughly 232 bins to discretize each hidden unit’s 
activity, as compared to the 30–100 used here. If the binning is fine-grained enough 
that each input X yields a different binned activity pattern h, then H(h) = log(P ) 
where P is the number of examples in the dataset, and there will be little to no change 
in information during training. As an example, we show in figure C3 the result of bin-
ning at full machine precision.

Finally, we note two consequences of the assumption of noise/binning for the pur-
poses of analysis. First, this means that the data processing inequality (DPI) does 
not apply to the noisy/binned mutual information estimates. The DPI states that 
information can only be destroyed through successive transformations, that is, if 
X → h1 → h2 form a Markov chain, then I(X;h1) ! I(X;h2) (see, e.g. Tishby and 
Zaslavsky (2015)). Because noise is added only for the purpose of analysis, however, 
this does not apply here. In particular, for the DPI to apply, the noise added at lower 
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Figure C1. Effect of binning strategy on minimal three neuron model. Mutual 
information for the simple three neuron model shown in figure 2 with bin edges 
bi ∈ tanh(linspace(−50, 50,N)). In contrast to linear binning, the mutual information 
continues to increase as weights grow.

Figure C2. Effect of binning strategy on information plane dynamics. Results 
for the same tanh network and training regime as figure 1(A), but with bin edges 
bi ∈ tanh(linspace(−50, 50,N)). Measured with this binning structure, there is no 
compression in most layers.
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layers would have to propagate through the network to higher layers. That is, if the 
transformation from hidden layer 1 to hidden layer 2 is h2 = f(h1) and T1 = h1 + Z1 is 
the hidden layer activity after adding noise, then the DPI would hold for the variable 
T̃2 = f(T1) + Z2 = f(h1 + Z1) + Z2, not the quantity T2 = h2 + Z2 = f(h1) + Z2 used in 
the analysis. Said another way, the Markov chain for T2 is X → h1 → h2 → T2, not 
X → h1 → T1 → T2, so the DPI states only that I(X;h1) ! I(X;T2).

A second consequence of the noise assumption is the fact that the mutual informa-
tion is no longer invariant to invertible transformations of the hidden activity h. A 
potentially attractive feature of a theory based on mutual information is that it can 
allow for comparisons between different architectures: mutual information is invariant 
to any invertible transformation of the variables, so two hidden representations could 
be very different in detail but yield identical mutual information with respect to the 
input. However, once noise is added to a hidden representation, this is no longer the 
case: the variable T  =  h  +  Z is not invariant to reparametrizations of h. As a simple 
example, consider a minimal linear network with scalar weights w1 and w2 that com-
putes the output ŷ = w2w1X. The hidden activity is h  =  w1X. Now consider the family 
of networks in which we scale down w1 and scale up w2 by a factor c != 0, that is, these 
networks have weights w̃1 = w1/c and w̃2 = cw2, yielding the exact same input-output 
map ŷ = w̃2w̃1X = cw2(w1/c)X = w2w1X. Because they compute the same function, 
they necessarily generalize identically. However after introducing the noise assumption 
the mutual information is

I(T ;X) = log
(
w2

1/c
2 + σ2

MI

)
− log

(
σ2
MI

)
 (C.5)

where we have taken the setting in section 3 in which X is normal Gaussian, and 
independent Gaussian noise of variance σ2

MI is added for the purpose of MI computa-
tion. Clearly, the mutual information is now dependent on the scaling c of the internal 

Figure C3. Effect of binning at full machine precision. (A) ReLU network. (B) The 
tanh network. Information in most layers stays pinned to log2(P ) = 12. Compression 
is only observed in the highest and smallest layers near the very end of training, 
when the saturation of tanh is strong enough to saturate machine precision.
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layer, even though this is an invertible linear transformation of the representation. 
Moreover, this shows that networks which generalize identically can nevertheless have 
very different mutual information with respect to the input when it is measured in this 
way.

Appendix D. Weight norms over training

Our argument relating neural saturation to compression in mutual information relies 
on the notion that in typical training regimes, weights begin small and increase in size 
over the course of training. We note that this is a virtual necessity for a nonlinearity 
like tanh, which is linear around the origin: when initialized with small weights, the 
activity of a tanh network will be in this linear regime and the network can only com-
pute a linear function of its input. Hence a real world nonlinear task can only be learned 
by increasing the norm of the weights so as to engage the tanh nonlinearity on some 
examples. This point can also be appreciated from norm-based capacity bounds on 
neural networks, which show that, for instance, the Rademacher complexity of a neu-
ral network with small weights must be low (Bartlett and Mendelson 2002, Neyshabur 
et al 2015). Finally, as an empirical matter, the networks trained in this paper do in 
fact increase the norm of their weights over the course of training, as shown by the 
green lines in figure I1 for tanh and ReLU networks in the training setting of Shwartz-
Ziv and Tishby (2017); figures B2 and B3 for the MNIST networks; and figure I2 for a 
linear network.

Appendix E. Histograms of neural activations

Supplementary figures E1 and E2 show histograms of neural activities over the course 
of training in tanh and ReLU networks respectively.

Appendix F. Information plane dynamics in deeper linear networks

Supplementary figure F1 shows information plane dynamics for a deep neural network 
with five hidden layers each containing 50 hidden units.

Appendix G. Linear mutual information calculation

For the linear setting considered here, the mutual information between a hidden repre-
sentation T and the output Y may be calculated using the relations

H(Y ) =
No

2
log(2πe) +

1

2
log |WoW

T
o + σ2

oINo |, (G.1)

H(T ) =
Nh

2
log(2πe) +

1

2
log |W̄W̄ T + σ2

MIINh
|, (G.2)
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Figure E1. Histogram of neural activities in a tanh network during training. The 
final three layers eventually saturate in the top and bottom bins corresponding to 
the saturation limits of the tanh activation function, explaining the compression 
observed in tanh. x-axis: training time in epochs. y -axis: hidden activity bin values 
from lowest to highest. Colormap: density of hidden layer activities across all input 
examples.
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Figure E2. Histogram of neural activities in a ReLU network during training. ReLU 
layers 1–5 have a roughly constant fraction of activities at zero, corresponding to 
instances where the ReLU is off; the nonzero activities disperse over the course of 
training without bound, yielding higher entropy distributions. The sigmoid output 
layer 6 converges to its saturation limits, and is the only layer that compresses 
during training (see figure 1(B)). x-axis: training time in epochs. y -axis: hidden 
activity value. Colormap: density of hidden layer activities across all input 
examples.
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H(Y ;T ) =
No +Nh

2
log(2πe) +

1

2
log

∣∣∣∣
W̄W̄ T + σ2

MIINh
W̄W T

o ,
WoW̄ T WoW T

o + σ2
oINh

∣∣∣∣ ,

 (G.3)
I(Y ;T ) = H(Y ) +H(T )−H(Y ;T ). (G.4)

Appendix H. Stochastic versus batch training

Figure H1 shows information plane dynamics for stochastic and batch gradient descent 
learning in a linear network. Randomness in the training process does not dramatically 
alter the information plane dynamics.

Appendix I. Gradient SNR phase transition

The proposed mechanism of compression in Shwartz-Ziv and Tishby (2017) is noise 
arising from stochastic gradient descent training. The results in section 4 of the main 
text show that compression still occurs under batch gradient descent learning, sug-
gesting that in fact noise in the gradient updates is not the cause of compression. Here 
we investigate a related claim, namely that during training, networks switch between 
two phases. These phases are defined by the ratio of the mean of the gradient to the 
standard deviation of the gradient across training examples, called the gradient signal-
to-noise ratio. In the first ‘drift’ phase, the SNR is high, while in the second ‘diffusion’ 
phase the SNR is low. Shwartz-Ziv and Tishby (2017) hypothesize that the drift phase 
corresponds to movement toward the minimum with no compression, while the diffusion 
phase corresponds to a constrained diffusion in weight configurations that attain the 
optimal loss, during which representations compress. However, two phases of gradient 
descent have been described more generally, sometimes known as the transient and sto-
chastic phases or search and convergence phases (Murata 1998, Chee and Toulis 2017), 
suggesting that these phases might not be related specifically to compression behavior.

Figure F1. Information plane dynamics in a deep linear neural network. (A) Train 
and test error during learning. (B) Information plane dynamics. No compression 
is visible.
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In figure I1 we plot the gradient SNR over the course of training for the tanh and 
ReLU networks in the standard setting of Shwartz-Ziv and Tishby (2017). In par-
ticular, for each layer l we calculate the mean and standard deviation as

ml =

∥∥∥∥

〈
∂E

∂Wl

〉∥∥∥∥
F

 (I.1)

sl =

∥∥∥∥STD
(
∂E

∂Wl

)∥∥∥∥
F

 (I.2)

Figure H1. Effect of stochastic training in linear networks. (A) Information plane 
dynamics for stochastic gradient descent in a linear network (same setting as 
figure 4). (B) Information plane dynamics for batch gradient descent.

Figure I1. Gradient SNR phase transition. (A) tanh networks trained in the 
standard setting of Shwartz-Ziv and Tishby (2017) show a phase transition in 
every layer. (B) ReLU networks also show a phase transition in every layer, despite 
exhibiting no compression.
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where 〈·〉 denotes the mean and STD(·) denotes the element-wise standard deviation 
across all training samples, and ‖·‖F denotes the Frobenius norm. The gradient SNR 
is then the ratio ml/sl. We additionally plot the norm of the weights ‖Wl‖F  over the 
course of training.

Both tanh and ReLU networks yield a similar qualitative pattern, with SNR under-
going a step-like transition to a lower value during training. Figures B2 and B3, fourth 
row, show similar plots for MNIST-trained networks. Again, SNR undergoes a trans-
ition from high to low over training. Hence the two phase nature of gradient descent 
appears to hold across the settings that we examine here. Crucially, this finding shows 
that the SNR transition is not related to the compression phenomenon because ReLU 
networks, which show the gradient SNR phase transition, do not compress.

Finally, to show the generality of the two-phase gradient SNR behavior and its 
independence from compression, we develop a minimal model of this phenomenon in 
a three neuron linear network. We consider the student-teacher setting of figure 3 but 
with Ni = Nh = 1, such that the input and hidden layers have just a single neuron (as 
in the setting of figure 2). Here, with just a single hidden neuron, clearly there can be 

Figure I2. Minimal model exhibiting gradient SNR phase transition. Here a three 
neuron linear network (architecture 1  −  1  −  1) learns to approximate a teacher. 
Other parameters are teacher SNR = 1, number of training samples P  =  100, 
learning rate .001. Left column: (A) the loss over training with SGD (minibatch 
size (1). (C) The resulting gradient SNR dynamics. Right column: (B) the loss over 
training with BGD. (D) The resulting gradient SNR dynamics averaging over all 
training samples (not minibatches, see text).
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no compression so long as the first layer weight increases over the course of training. 
Figures I2(A)–(C) shows that even in this simple setting, the SNR shows the phase 
transition but the weight norm increases over training. Hence again, the two phases 
of the gradient are present even though there is no compression. To intuitively under-
stand the source of this behavior, note that the weights are initialized to be small and 
hence early in learning all must be increased in magnitude, yielding a consistent mean 
gradient. Once the network reaches the vicinity of the minimum, the mean weight 
change across all samples by definition goes to zero. The standard deviation remains 
finite, however, because on some specific examples error could be improved by increas-
ing or decreasing the weights–even though across the whole dataset the mean error has 
been minimized.

Hence overall, our results show that a two-phase structure in the gradient SNR 
occurs in all settings we consider, even though compression occurs only in a subset. 
The gradient SNR behavior is therefore not causally related to compression dynam-
ics, consistent with the view that saturating nonlinearities are the primary source of 
compression.
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