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Geometric thermodynamics of reaction-diffusion systems:
Thermodynamic trade-off relations and optimal transport for pattern formation
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We establish universal relations between pattern formation and dissipation with a geometric approach to
nonequilibrium thermodynamics of deterministic reaction-diffusion systems. We first provide a way to system-
atically decompose the entropy production rate based on the orthogonality of thermodynamic forces, thereby
identifying the amount of dissipation caused by each factor. This enables us to extract the excess entropy
production rate that genuinely contributes to the time evolution of patterns. We also show that a similar geometric
method further decomposes the entropy production rate into detailed contributions, e.g., the dissipation from
each point in real or wavenumber space. Second, we relate the excess entropy production rate to the details of
the change in patterns through two types of thermodynamic trade-off relations for reaction-diffusion systems:
thermodynamic speed limits and thermodynamic uncertainty relations. The former relates dissipation and the
speed of pattern formation, and the latter bounds the excess entropy production rate with partial information on
patterns, such as specific Fourier components of concentration distributions. In connection with the derivation of
the thermodynamic speed limits, we also extend optimal transport theory to reaction-diffusion systems, which
enables us to measure the speed of the time evolution. This extension of optimal transport also solves the
minimization problem of the dissipation associated with the transition between two patterns, and constructs
energetically efficient protocols for pattern formation. We numerically demonstrate our results using chemical
traveling waves in the Fisher–Kolmogorov–Petrovsky–Piskunov equation and changes in symmetry in the
Brusselator model. Our results apply to general reaction-diffusion systems and contribute to understanding the
relations between pattern formation and unavoidable dissipation.
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I. INTRODUCTION

A. Background and motivation

Reaction-diffusion systems (RDSs) have been used to
study the formation of various spatiotemporal patterns [1–7]
since the pioneering study of Turing [8]. In nature, pattern
formation by RDSs achieves a variety of functions. For ex-
ample, organisms use the reactions and diffusive dynamics of
biomolecules for morphogenesis [4,5,9]. Cells also acceler-
ate biochemical reactions through phase separation, which is
interpretable as an RDS [10,11]. From an engineering per-
spective, we can also apply RDSs to biomimetic materials
[12], computation [13–15], and information processing [16].

In achieving such functions, it is generally crucial to mini-
mize costs associated with functions. One of the fundamental
costs is energy dissipation, measured with the entropy pro-
duction required to change a given pattern to a desired pattern
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through reactions and diffusion. In particular, biological sys-
tems must reduce energy dissipation to the extent that it does
not alter the desired function, since they have access to only
limited energy resources [17]. To consider such a minimiza-
tion of entropy production, we clarify how dissipation relates
to the spatiotemporal dynamics of patterns based on nonequi-
librium thermodynamics of RDSs.

Most attempts to relate the time evolution of patterns to
the dissipation are limited to qualitative observations of some
specific systems [18–21] and are considerably less advanced.
This may be because of the historical context: nonequilib-
rium thermodynamics of RDSs originated in the study of
dissipative structures by Prigogine and his collaborators, who
focused on steady-state patterns and stability rather than the
nonstationary change in patterns [22,23]. Unfortunately, ther-
modynamics cannot predict stable steady-state patterns except
in some special cases [22,24], and has been replaced by meth-
ods based on dynamical systems [25–27]. On the other hand,
nonequilibrium thermodynamics itself has continued to de-
velop away from dissipative structures. A major development
was the establishment of stochastic thermodynamics, which
deals with mesoscopic systems [28–30]. Stochastic thermody-
namics has developed some methods to quantitatively connect
time evolution with dissipation and has considered mini-
mum dissipation problems for stochastic systems [31–46].
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More recently, developments from stochastic thermodynam-
ics were imported into thermodynamics of chemical systems,
including RDSs [47–49]. This has provided a thermodynamic
framework for traveling waves [50] and phase separation [51]
and reveals thermodynamic constraints on a particular class
of RDSs that conserve mass [52]. Still, the universal relations
between the time evolution of the patterns and the dissipation,
which is valid in general RDSs, have not been found.

In this study, we reveal universal relations between the
time evolution of patterns and the dissipation in RDSs by
applying the wisdom of stochastic thermodynamics to general
deterministic RDSs. Our analysis also extends to systems
driven by particle exchange with the environment and external
mechanical forces [53,54] and nonideal mixtures such as those
describing phase separation [24,51,55–57]. Our first result is
a decomposition of EPR according to different sources, which
helps us to understand quantitatively where and how much
dissipation occurs during the time evolution. One decompo-
sition that has attracted particular attention is that of excess
EPR, which becomes zero in steady state, versus housekeep-
ing EPR, which remains positive even in the steady state
[58]. Although such a decomposition is not unique [59–61],
we mainly focus on the geometric decomposition because it
enables us to extract the part that genuinely contributes to time
evolution as excess EPR [62,63]. Our second result is a set of
thermodynamic trade-off relations, universal inequalities that
connect details of time evolution and dissipation. Although
various types of trade-off relations may be derived, we focus
specifically on thermodynamic speed limits (TSLs), that relate
the speed of time evolution and dissipation [39–45,64–69],
and thermodynamic uncertainty relations (TURs), that relate
precision and dissipation [70,71].

In addition, we extend optimal transport theory, which
deals with the transport between probability distributions
[72,73], to RDSs, where the concentration distribution
changes through reactions and diffusion. This extension is
directly related to the problem of minimizing dissipation in
pattern formation. In particular, we focus on the Wasserstein
distance, a fundamental quantity in optimal transport theory
[74–76] that also plays a central role in modern stochastic
thermodynamics. For example, the Wasserstein distance de-
termines the minimum dissipation [39–45,77] and has gained
attention in various problems, such as optimal control of
thermal engines [41,78,79] and information thermodynamics
[41,44,80,81]. It also enables us to reinterpret the geomet-
ric excess/housekeeping decomposition from the perspective
of optimal transport [45,62,63]. Furthermore, measuring the
speed of the time evolution with the Wasserstein distance
yields various TSLs [39–45,65–68] for stochastic systems.

We extend results from stochastic thermodynamics to de-
terministic RDSs by focusing on the common geometric
structure of nonequilibrium thermodynamics, called geomet-
ric thermodynamics [82]. This geometric approach makes it
possible to extend results for stochastic systems to determin-
istic systems as follows. The geometric excess/housekeeping
decomposition was originally obtained by focusing on a
geometry of thermodynamic forces for Langevin systems
[62,63,82]. Because the geometry of thermodynamic forces
is common to broad systems, the decomposition has been ex-
tended to deterministic CRNs [45] and fluid systems [83]. The

geometric interpretation of thermodynamic forces has also
induced TURs for such deterministic systems [45,66,83,84].
In addition, generalization of the Wasserstein distance has led
to the TSLs for deterministic CRNs by relating the excess
EPR and the speed of time evolution [45,67].

B. Road map

All results in this paper are based on the similarity between
Langevin systems and RDSs [Fig. 1(a)]. Before discussing the
results for RDSs, we begin this paper by explaining the frame-
work of geometric thermodynamics of Langevin systems and
other relevant background, including optimal transport theory,
in Sec. II. Although this part is essentially an aid to under-
standing the main result for RDSs, it also contains a new result
reimported from RDSs, the wavenumber decomposition of the
EPR (Sec. II C).

In Sec. III, we introduce nonequilibrium thermodynam-
ics of RDSs. This preliminary section also provides vector
notation, inner products, and generalizations of differen-
tial operators to simplify the description and calculation
(Sec. III D). The notation helps us establish an analogy
between stochastic systems and deterministic RDSs. In par-
ticular, the core of the subsequent results is that the EPR is
expressed as the squared norm of the thermodynamic force.

We provide a way to decompose EPR using orthogonal
decompositions of the thermodynamic force in Sec. IV. This
geometric method enables us to systematically decompose the
EPR into various contributions. In particular, extending the
geometric excess/housekeeping decomposition [62,63,82] to
RDSs [Fig. 1(b)] is important, since the excess part extracts
the dissipation that truly contributes to the time evolution. It
is obtained by projecting the thermodynamic force onto the
space of conservative forces, which describe the relaxation
(Sec. IV A). We also show that a similar approach based
on orthogonality decomposes EPR into contributions from
each point in the real or wavenumber space in Sec. IV B
[Fig. 1(c)]. The latter, named wavenumber decomposition, has
been unexplored even in stochastic thermodynamics. Finally,
we numerically demonstrate the usefulness of the decom-
positions with the Fisher–Kolmogorov–Petrovsky–Piskunov
(Fisher–KPP) equation and the Brusselator model, which
show the appearance of a chemical traveling wave and change
in the symmetry of patterns, respectively (Sec. IV C). The
numerical demonstration reveals the difference in how the
EPR and the excess EPR reflect the structure of the patterns
and its time evolution by combining the excess/housekeeping
decomposition with the local and wavenumber decomposi-
tions. In subsequent parts of this paper, we mainly study the
details of the excess EPR to focus on the relations between the
time evolution of patterns and the dissipation.

In Sec. V, we establish the optimal transport theory for
RDSs and use it to establish TSLs [Fig. 1(d)] and minimum
dissipation formulas for RDSs. In stochastic thermodynamics,
two types of Wasserstein distances, the 1-Wasserstein and
2-Wasserstein distances, have provided different insights. We
extend both of them to RDSs, which enables us to measure
the distance between patterns and the speed of change in
patterns. The extension of the 2-Wasserstein distance is an
improvement over previous attempts [85,86] (Sec. V B), and
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FIG. 1. Schematics of the results in this paper. The red letters in the figure indicate the corresponding chapters. (a) The similarity between
RDSs and Langevin systems. For Langevin systems, we consider the time evolution from the probability p(0) at time t = 0 to the probability
p(τ ) at time t = τ . For RDSs, we consider the time evolution from the initial concentration �c(0) to the final concentration �c(τ ). Dissipation
is quantified by the EPR σ for both systems. (b) The excess/housekeeping decomposition, the local decomposition, and the wavenumber
decomposition. The EPR σ is decomposed into the excess EPR σ ex and the housekeeping EPR σ hk, which correspond to the contributions of
the conservative force and the nonconservative force, respectively. This decomposition is introduced by projecting the force onto the space of
conservative forces. (c) The EPR σ is also given by the integral of the local EPR σ loc(r) in real space, and the integral of the wavenumber EPR
σ wn(k) in Fourier space. (d) TSLs refer to a trade-off between dissipation and speed. If the speed of the transition between initial and final
states is slower, the dissipation can be smaller. The distance between initial and final states is measured by the Wasserstein distance and the
minimal amount of dissipation also depends on this distance. (e) TURs refer to the trade-off between dissipation and the change in the spatial
pattern. More dissipation is required to change the mode corresponding to smaller wavenumbers.

the extension of the 1-Wasserstein distance is essentially new
(Sec. V A). The 2-Wasserstein distance leads to a series of
TSLs, because it is closely related to excess EPR. It uni-
versally links the dissipation and the speed of the change in
patterns. In addition, we obtain another series of TSLs based
on the 1-Wasserstein distance by constructing a new quantity
that measures the intensity of diffusion and reaction consistent
with thermodynamics. It gives trade-off relations between
three pieces of information: the speed of the time evolution,
the dissipation, and the intensity of reaction and diffusion
(Sec. V D). We show that the lower bounds given by the TSLs
for the 1- and 2-Wasserstein distances are the minimum dissi-
pation achievable under some different conditions (Sec. V E).
We also provide protocols for achieving the minimum dissi-
pation, confirming that generalized optimal transport theory
can be applied to RDSs. Finally, we numerically demonstrate
the TSLs and the minimum dissipation with the two systems
in Sec. V F. In particular, we obtain several quantities related
to the 1-Wasserstein distance analytically for the Fisher–KPP
equation. The content of Sec. V integrates the two different
approaches recently developed in stochastic thermodynamics
based on optimal transport [44,45] within RDSs.

We also derive TURs, which bound the excess EPR using
partial information about the system, in Sec. VI. In particular,
we discover a myriad of TURs underlying the TUR for well-

mixed CRNs [84] by considering the Fourier transform of the
concentration distribution (Sec. VI B). These TURs reveal that
more dissipation is required to change the mode correspond-
ing to smaller wavenumbers, i.e., lower spatial frequencies
[Fig. 1(e)]. We numerically demonstrate the TURs using the
Brusselator model, which shows a notable change in symme-
try (Sec. VI C). It confirms that the TURs give lower bounds
on the EPR, reflecting the change in the spatial structure of
the patterns. In addition, we also compare the TURs with the
wavenumber decomposition, which gives lower bounds on the
EPR depending on the wavenumber.

II. BACKGROUND: GEOMETRIC THERMODYNAMICS
FOR LANGEVIN SYSTEMS

Before proceeding to RDSs, we briefly introduce geomet-
ric thermodynamics for Langevin systems [82]. Although this
section mainly consists of the existing results, it also includes
a novel result, the wavenumber decomposition of the EPR in
Sec. II C.

In the following, we consider a Brownian particle in a
d-dimensional Euclidean space Rd . We assume that the tem-
perature is homogeneous and we set the temperature and
Boltzmann’s constant to unity for simplicity. The following
Langevin equation describes the time evolution of the position
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of the particle:

dt ř(t ) = −D∇rU (ř(t ); t ) + DKnc(ř(t ); t ) +
√

2Dξ(t ), (1)

where dt = d/dt stands for the time derivative, ř(t ) indi-
cates the position of the Brownian particle at time t , ∇r

is the differential operator for spatial coordinates r ∈ Rd ,
−∇rU (ř(t ); t ) := −∇rU (r; t )|r=ř(t ) indicates the potential
force on the particle, Knc(ř(t ); t ) indicates the nonconservative
mechanical force on the particle, D is the diffusion constant
that is given by the mobility and temperature, and ξ(t ) =
(ξi(t ))d

i=1 is the white Gaussian noise satisfying 〈ξi(t )〉 = 0
and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). In later sections, we will use
some of the symbols introduced in this section to represent
their counterparts in RDSs.

A. Fokker–Planck equation and entropy production rate

The probability density p(r; t ) of the Brownian particle at
position r at time t described by the Langevin equation (1)
evolves according to the Fokker–Planck equation,

∂t p(r; t ) = −∇r · J(r; t ), (2)

J(r; t ) := Dp(r; t )[−∇r(U (r; t ) + ln p(r; t )) + Knc(r; t )],

(3)

where ∂t = ∂/∂t stands for the partial time derivative and
J(r; t ) is the thermodynamic current. Here, p(r; t ) is the prob-
ability density and thus

∫
Rd drp(r; t ) = 1 and p(r; t ) � 0 hold.

In the following, we assume the following boundary condi-
tions: p(r; t ) and its derivatives vanish as ‖r‖ → ∞, where
‖ · ‖ is the Euclidean norm.

Defining thermodynamic force F(r; t ) as

F(r; t ) := −∇r(U (r; t ) + ln p(r; t )) + Knc(r; t ), (4)

the thermodynamic current J and force F satisfy a linear
relation,

J(r; t ) = M(r; t )F(r; t ), (5)

where the d × d positive-definite matrix Mi j (r; t ) :=
Dp(r; t )δi j indicates the mobility tensor. We can rewrite
the Fokker–Planck equation in Eq. (2) as ∂t p = −∇r · (MF ).

The EPR σ for Langevin systems is written as an inner
product of J and F or a squared norm of F,

σ := 〈〈J, F〉〉 = 〈〈MF, F〉〉 = 〈〈F, F〉〉M

=
∫
Rd

dr Dp(r; t )‖F(r; t )‖2, (6)

where the inner products 〈〈·, ·〉〉 and 〈〈·, ·〉〉M are de-
fined as 〈〈J′, F ′〉〉 := ∫

Rd drJ′(r) · F ′(r) and 〈〈F ′, F ′′〉〉M :=
〈〈MF ′, F ′′〉〉 for all vector-valued functions J′(r), F ′(r) and
F ′′(r) that take values at Rd . The mobility tensor M can be
regarded as the metric tensor because M is positive-definite.
We also introduce the EP �τ as �τ := ∫ τ

0 dt σ .

B. Geometric excess/housekeeping decomposition of entropy
production rate for Langevin systems

The Langevin system in Eq. (1) is driven by two
contributions: one is the conservative contribution, which

causes relaxation to the equilibrium state corresponding to
U (r; t ), and the other is the nonconservative contribution
due to Knc(r; t ), which keeps the system out of equilib-
rium even in the steady state. The thermodynamic force
F in Eq. (4) contains the two contributions, the conserva-
tive force −∇r(U (r; t ) + ln p(r; t )), which is the gradient of
−(U (r; t ) + ln p(r; t )), and the nonconservative force Knc.
Thus, the EPR σ = 〈〈F, F〉〉M quantifies these two contribu-
tions simultaneously.

To quantify the conservative and nonconservative contribu-
tions separately, we construct the geometric decomposition of
the EPR by utilizing the generalized Pythagorean theorem for
the force space with the inner product 〈〈, 〉〉M,

〈〈F, F〉〉M = 〈〈F∗, F∗〉〉M + 〈〈F − F∗, F − F∗〉〉M, (7)

which is valid when we decompose F into two orthogonal
parts F∗ and F − F∗, satisfying

〈〈F∗, F − F∗〉〉M = 0. (8)

The force F∗ that allows for the Pythagorean theorem (7)
is not unique [63]. We focus on F∗, which enables us to regard
〈〈F∗, F∗〉〉M and 〈〈F − F∗, F − F∗〉〉M as dissipation owing to
conservative and nonconservative forces, respectively. For this
purpose, we assume that F∗(r; t ) is the gradient of a potential
as F∗(r; t ) = ∇rφ

∗(r; t ), inspired by the original form of the
conservative force −∇r(U (r; t ) + ln p(r; t )). Then, we can
derive the condition on φ∗ as the sufficient condition for the
orthogonality in Eq. (8),

∇r · (M∇rφ
∗) = ∇r · (MF ), (9)

which lets us determine F∗ uniquely (see Appendix A 1 for
details).

Using the decomposition of F into the conservative part
F∗ and the orthogonal part F − F∗, we define the excess
and housekeeping EPRs as σ ex := 〈〈F∗, F∗〉〉M and σ hk :=
〈〈F − F∗, F − F∗〉〉M, respectively. These EPRs are nonneg-
ative because they are represented by a squared norm. Then,
the Pythagorean theorem (7) is a decomposition of EPR into
the excess and the housekeeping EPRs,

σ = σ ex + σ hk. (10)

Time integration gives a decomposition of the EP �τ into the
excess EP �ex

τ and the housekeeping EP �hk
τ , �τ = �ex

τ +
�hk

τ . Here, the excess EP �ex
τ and the housekeeping EP �hk

τ

are defined as �ex
τ := ∫ τ

0 dt σ ex and �hk
τ := ∫ τ

0 dt σ hk.
Since the geometric decomposition (10) is a generalized

Pythagorean theorem, we can conceptualize the decomposi-
tion geometrically, as summarized in Fig. 2. Let us consider
the geometric nature of the excess EPR. The conservative
force F∗ = ∇rφ

∗, whose squared norm provides the excess
EPR, is uniquely given by the minimization problem

F∗ = arg min
F ′|∇r·(MF ′ )=∇r·(MF )

〈〈F ′, F ′〉〉M, (11)

which follows from condition Eq. (9) (see Appendix A 2 for
details). As a result, we can rewrite the excess EPR σ ex as the
following variational problem

σ ex = inf
F ′|∇r·(MF ′ )=∇r·(MF )

〈〈F ′, F ′〉〉M. (12)
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FIG. 2. The geometric decomposition of the EPR for Langevin
systems. The blue plane indicates Im∇r, and the red line indi-
cates {F ′ | ∇r · [M(F − F ′)] = 0}. The thermodynamic force, whose
squared norm is the EPR as σ = 〈〈F, F〉〉M, is decomposed into the
two orthogonal parts: F∗ is the projection of F onto Im∇r, whose
squared norm is the excess EPR as σ ex = 〈〈F∗, F∗〉〉M, and the re-
maining part F − F∗, whose squared norm is the housekeeping EPR
as σ hk = 〈〈F − F∗, F − F∗〉〉M. We can regard F∗ as the projection
of 0 onto the red line or of F onto the blue plane.

The minimization problem (11) means that F∗ is the closest
point to the origin 0 in the affine subspace {F ′ | ∇r · [M(F −
F ′)] = 0}. The excess EPR can be seen as the shortest distance
between this affine subspace and the origin.

We can also obtain a geometric interpretation of the
housekeeping EPR because the set of conservative forces is
the image of the gradient operator Im ∇r := {F ′ | ∃φ, F ′ =
∇rφ}, and F − F ′ for the element F ′ ∈ {F ′ | ∇r · [M(F −
F ′)] = 0} is in the orthogonal complement of Im ∇r with
respect to the inner product 〈〈·, ·〉〉M. Consequently, the ge-
ometric decomposition (10) can also be treated from the
viewpoint of the projection onto the subspace Im∇r: the con-
servative force F∗ is given by the minimization problem

F∗ = arg min
F ′∈Im∇r

〈〈F − F ′, F − F ′〉〉M. (13)

This is derived similarly to Eq. (11) by using the condition in
Eq. (9) (see Appendix A 2 for details). Then, we can rewrite
the housekeeping EPR σ hk as the variational problem

σ hk = inf
φ

〈〈F − ∇rφ, F − ∇rφ〉〉M, (14)

which shows that the housekeeping EPR is the squared
distance between the actual force and the subspace of con-
servative forces.

In addition to geometric interpretations, the constraint
in Eq. (12) allows us discuss the physical meaning of the
decomposition. The constraint with the Fokker–Planck equa-
tion ∂t p(r; t ) = −∇r · (MF ) yields the relation

∂t p = −∇r · (MF∗), (15)

so we can interpret the excess EPR as the minimum dissipa-
tion required to reproduce the original dynamics. In contrast,
the housekeeping EPR reflects the dissipation caused by the
cyclic current that does not affect the dynamics, because
Jhk := M(F − ∇rφ

∗) satisfies ∇r · Jhk = 0.

If the nonconservative force Knc in Eq. (4) is absent, then
the housekeeping EPR always vanishes, and the optimal po-
tential φ∗ is given by φ∗ = −U − ln p. Conversely, the excess
EPR vanishes when the system is in steady state since the
condition in Eq. (9) reduces to ∇r · (MF∗) = 0 in steady state,
which F∗ = 0 solves.

C. Local decomposition and wavenumber decomposition
of entropy production rate for Langevin systems

The EPR is the volume integral of the positive quantity
J(r; t ) · F(r; t ). From this viewpoint, we can decompose the
dissipation at each spatial location. Similarly, it is expected
that we can identify the dissipation at each wavenumber in
Fourier space. In this section, we introduce two new geomet-
ric decompositions of the EPR. One is a decomposition of
the EPR into contributions from each spatial location, and
the other is a decomposition into contributions from each
wavenumber.

Local decomposition.—We define the local EPR as

σ loc(r) := J(r; t ) · F(r; t ) � 0, (16)

which satisfies

σ =
∫
Rd

dr σ loc(r). (17)

The local EPR σ loc(r) is nonnegative and indicates dissipation
at location r.

We can also decompose the excess and housekeeping EPRs
as σ ex = ∫

Rd dr σ ex,loc(r), and σ hk = ∫
Rd dr σ hk,loc(r), where

the local excess and housekeeping EPRs are defined as

σ ex,loc(r) := ∇rφ
∗(r; t ) · M(r; t )∇rφ

∗(r; t )

= F∗(r; t ) · M(r; t )F∗(r; t ), (18)

σ hk,loc(r) := [F(r; t ) − ∇rφ
∗(r; t )]

· M(r; t )[F(r; t ) − ∇rφ
∗(r; t )]. (19)

The local excess and housekeeping EPRs are nonnegative
because the mobility tensor M is positive definite for all r ∈ V .
Note that φ∗ is a solution of the partial differential equation in
Eq. (9), which means that we need global information to
obtain the local excess and housekeeping EPRs.

Because these local excess and housekeeping EPRs are
not introduced by the geometric decomposition for the
local EPR σ loc, the geometric excess/housekeeping decom-
position can be locally violated as σ loc(r) 
= σ ex,loc(r) +
σ hk,loc(r). In other words, there may be a nonzero cross-
term σ cross(r) := σ loc(r) − σ ex,loc(r) − σ hk,loc(r) = 2∇rφ

∗ ·
M[F − ∇rφ

∗]. The cross-term may be negative or posi-
tive, but it satisfies

∫
Rd dr σ cross(r) = 0, thereby guaranteeing

that the geometric excess/housekeeping decomposition holds
globally as σ = σ ex + σ hk.

Wavenumber decomposition.—Next, we decompose the
EPR into nonnegative wavenumber components using Parse-
val’s identity. Because Parseval’s identity can be regarded as a
generalization of the Pythagorean theorem, we can regard this
decomposition as another kind of geometric decomposition.
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We define the wavenumber EPR as

σ wn(k) := 1

(2π )d
‖F̂(k; t )‖2 � 0, (20)

where we introduced the weighted Fourier transform of a
vector field F ′ with a weight

√
Mii = √

Dp(r; t ) defined as

F̂ ′
i (k; t ) :=

∫
Rd

dr
√

Dp(r; t )F ′
i (r; t )e−ik·r. (21)

Note that F̂(k; t ) is a complex vector and its Euclidean norm

is defined as ‖F̂‖ :=
√∑d

i=1 F̂iF̂i with the overline indicating
complex conjugate. The wavenumber EPR σ wn(k) provides a
decomposition of EPR as

σ =
∫
Rd

dk σ wn(k). (22)

Although this can be understood as a consequence of Parse-
val’s identity, we can show it directly as∫

Rd

dk σ wn(k) = 1

(2π )d

∫
Rd

dk‖F̂(k; t )‖2.

=
∫
Rd ×Rd

drdr′
[{

1

(2π )d

∫
Rd

dk eik·(r−r′ )
}

× D
√

p(r; t )p(r′; t )F(r; t ) · F(r′; t )

]

=
∫
Rd

dr Dp(r; t )‖F(r; t )‖2 = σ. (23)

Here, we use the Fourier transform of the delta function
δ(r − r′) = ∫

Rd dk eik·(r−r′ )/(2π )d .
As we did for local EPR, we can also decompose the excess

and housekeeping EPRs into wavenumber contributions as
σ ex = ∫

Rd dk σ ex,wn(k), and σ hk = ∫
Rd dk σ hk,wn(k) by defin-

ing the wavenumber excess and housekeeping EPRs as

σ ex,wn(k) := 1

(2π )d
‖F̂

∗
(k; t )‖2 (24)

σ hk,wn(k) := 1

(2π )d
‖F̂(k; t ) − F̂

∗
(k; t )‖2. (25)

We remark that the geometric excess/housekeeping decompo-
sition can also be violated at each wavenumber as σ wn(k) 
=
σ ex,wn(k) + σ hk,wn(k), and there is a nonzero cross term
σ cross,wn(k) := σ wn(k) − σ ex,wn(k) + σ hk,wn(k), which satis-
fies

∫
Rd dk σ cross,wn(k) = 0.

The wavenumber decomposition is based on the orthonor-
mality of the Fourier basis. Therefore, it may be possible to
generalize the geometric decomposition of the EPR using an
orthonormal basis other than the Fourier basis, e.g., a wavelet
basis [87,88]. It may also be interesting to consider the spec-
tral decomposition of the EPR [89] based on the Harada–Sasa
relation [90] in terms of our wavenumber decomposition.

D. Wasserstein distance

The excess EPR obtained in the previous section can
be interpreted as a geometric quantity using the Wasser-
stein geometry developed in optimal transport theory [63,72].
Here, we briefly review the Wasserstein distance and its
dynamical reformulation, which is intrinsically important in
thermodynamics.

The q-Wasserstein distance for a positive number q � 1
between two probability distributions pA and pB is defined as

Wq(pA, pB)

:=
(

inf
π∈
(pA,pB )

∫
Rd ×Rd

drdr′‖r − r′‖qπ (r, r′)
) 1

q

, (26)

where 
(pA, pB) is the set of joint probability distributions
with marginals pA and pB,


(pA, pB) :=
{
π

∣∣∣∣ pA(r) =
∫
Rd

dr′π (r, r′),

pB(r′) =
∫
Rd

dr π (r, r′), π (r, r′) � 0

}
.

Here, we assume that the moments up to the qth order are
finite for the two probability distributions pA and pB. We can
confirm that Wq satisfies the axioms of distance. We can also
prove

Wq(pA, pB) � Wq′ (pA, pB) for q � q′, (27)

by Hölder’s inequality [72].
For every q, we can reformulate the q-Wasserstein dis-

tance as an optimization problem related to the dynamics
of a probability distribution subject to a continuity equation.
In particular, we can obtain the square of the 2-Wasserstein
distance by the minimization problem

W2(pA, pB)2 = inf
p,F ′

τ

∫ τ

0
dt
∫
Rd

dr‖DF ′(r; t )‖2 p(r; t ) (28)

with the following three constraints:

p(·; 0) = pA(·), p(·; τ ) = pB(·), ∂t p = −∇r · (pDF ′).
(29)

In other words, we minimize the right-hand side in Eq. (28)
over trajectories of probability distributions that start and end
on pA and pB and satisfy a continuity equation. This reformu-
lation for the case q = 2 was initially made by Benamou and
Brenier, so the equation (28) is called the Benamou–Brenier
formula in optimal transport theory [77]. We can also consider
an extension of the Benamou–Brenier formula for general q
[91–93]. For the special case of q = 1, we can express the
Benamou–Brenier formula as an optimization problem of the
current, which is known as the Beckmann problem [94]

W1(pA, pB) = inf
J′

∫ τ

0
dt
∫
Rd

dr‖J′(r; t )‖, (30)

where we impose the following condition on J′: there exists a
time series of probability distribution p′ satisfying

p′(·; 0) = pA(·), p′(·; τ ) = pB(·), ∂t p′ = −∇r · J′. (31)

Both expressions of the 1-Wasserstein distance in the
original definition (26) and the Beckmann problem (30) are re-
duced to an expression known as the Kantorovich–Rubinstein
duality,

W1(pA, pB) = sup
φ∈Lip1

{∫
Rd

dr φ(pB − pA)

}
, (32)
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where the set of 1-Lipschitz functions is denoted by

Lip1 := {φ|‖∇rφ‖ � 1}. (33)

The derivation of Eq. (32) from the original definition of the
1-Wasserstein distance in Eq. (26) is well known and based
on the method of Lagrange multipliers [72]. The Beckmann
problem (30) can be directly obtained from Kantorovich–
Rubinstein duality (32) by again using the method of
Lagrange multipliers [93,95].

E. Wasserstein geometry and thermodynamic
trade-off relations

Considering a trajectory of probability distribution
{p(t )}t∈[0,τ ] obeying the Fokker–Planck equation (2), we can
define the length of the trajectory using the q-Wasserstein
distance as

lq,τ :=
∫ τ

0
dt vq(t ) , (34)

with vq(t ) defined as

vq(t ) := lim
Δt→0

Wq(p(t ), p(t + Δt ))

Δt
. (35)

This quantity vq(t ) indicates the speed of the dynamics of
p(t ) in the space of probability distributions. The form of
the mobility tensor M, the Benamou–Brenier formula for the
2-Wasserstein distance (28), and the variational form of the
excess EPR (12) lead to

σ ex = v2(t )2

D
, (36)

which means the square root of the excess EPR at time t is
proportional to the speed of the dynamics of the probability
distribution.

The relation between σ ex and v2(t ) leads to the hierarchy
of TSLs as [41]

W2(p(0), p(τ ))2

D
�

l2
2,τ

D
� τ�ex

τ � τ�τ . (37)

The inequality l2,τ � W2(p(0), p(τ )), which comes from the
triangle inequality, yields the first inequality in Eq. (37). This
inequality reflects the fact that W2(p(0), p(τ )) is the geodesic
length between p(0) and p(τ ). The second inequality is de-
rived from the Cauchy–Schwarz inequality [

∫ τ

0 dt v2(t )]2 �
[
∫ τ

0 dt ][
∫ τ

0 dt v2(t )2] and the relation between v2 and σ ex

(36). The third inequality is a consequence of the nonnegativ-
ity of the housekeeping EP �hk

τ � 0 and the decomposition
of the EP. Overall, the inequalities in Eq. (37) tell us that
transitioning to a more distant distribution in less time requires
more dissipation.

The inequality between Wasserstein distances in Eq. (27)
leads to another hierarchy of TSLs as

W1(p(0), p(τ ))2

D
�

l2
1,τ

D
� τ�ex

τ � τ�τ . (38)

These lower bounds on the EPs are weaker than those in
Eq. (37) because Eq. (27) shows

l2
1,τ

D
�

l2
2,τ

D
� τ�τ ,

W1(p(0), p(τ ))2

D
� W2(p(0), p(τ ))2

D
� τ�τ , (39)

where we used the fact that Eq. (27) leads to v2(t ) � v1(t )
and l2,τ � l1,τ . The generalization of the TSLs discussed here
from Langevin dynamics to Markov jump processes (MJPs)
is rather complicated, and we only note that there are multiple
ways of generalizing [44,45].

Using the excess EPR, we can obtain a TUR for time-
independent observable ϕ(r) as(

dt 〈ϕ〉pt

)2 � D
〈‖∇rϕ‖2

〉
pt
σ ex, (40)

where the bracket indicates the average over the probability
distribution p(r; t ), 〈ϕ〉pt := ∫

Rd dr p(r; t )ϕ(r) [62]. The TUR
represents a trade-off relation between the excess EPR σ ex,
the speed of the observable dt 〈ϕ〉pt , and the average squared
magnitude of the gradient of the observable 〈‖∇rϕ‖2〉pt . In
other words, we need more dissipation to make a flatter ob-
servable change faster. It is derived from the Cauchy–Schwarz
inequality, 〈〈∇rϕ,∇rφ

∗〉〉2
M � 〈〈∇rϕ,∇rϕ〉〉M〈〈∇rφ

∗,∇rφ
∗〉〉M,

and the fact that φ∗ reproduces the dynamics as ∂t p = −∇r ·
(M∇rφ

∗). Here, the quantities appearing in the Cauchy–
Schwarz inequality are given by 〈〈∇rϕ,∇rφ

∗〉〉M = dt 〈ϕ〉pt ,
〈〈∇rϕ,∇rϕ〉〉M = D〈‖∇rϕ‖2〉pt and 〈〈∇rφ

∗,∇rφ
∗〉〉M = σ ex,

which proves the TUR.
We note our usage of the term TUR. Conventionally, a

TUR refers to a lower bound on dissipation using the expecta-
tion value and the variance of a general current. Although the
trade-off in Eq. (40) appears different from the conventional
form of a TUR, we refer to it as a TUR. This is because
the TUR (40) represents a specific case of the short-time
limit of the conventional TUR for any initial state [96–98],
as discussed in detail in Ref. [62].

We can also interpret the TUR from the viewpoint of the
Wasserstein geometry by rewriting Eq. (40) as

vϕ (t ) :=
∣∣dt 〈ϕ〉pt

∣∣√
〈‖∇rϕ‖2〉pt

� v2(t ), (41)

using the relation between v2(t ) and σ ex in Eq. (36). Here,
we define vϕ (t ) as the speed of the observable ϕ normalized
by the spatial fluctuation of ϕ. Therefore, the TUR means
that the normalized speed of an observable is less than the
speed of the probability distribution moving on the manifold
of distributions equipped with the Wasserstein metric. This is
similar to the Cramér–Rao bound [99] with parameter t , called
the information geometric speed limit [100,101], written as

vI
ϕ (t ) :=

∣∣dt 〈ϕ〉pt

∣∣
√

Var[ϕ]
� vI (t ), (42)

where vI (t ) :=
√

〈(dt ln p(t ))2〉pt is the square root of the
Fisher information and Var[ϕ] is the variance defined as
Var[ϕ] = 〈ϕ2〉pt − 〈ϕ〉2

pt
. From an information geometric

point of view, we can regard vI (t ) as the speed of the
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TABLE I. Summary of essential quantities appearing in the total
RDSs, the diffusion part, and the reaction part. Forces and currents
take values in the second row at each spatial and temporal point.
Operators

↔
M, m, and M map forces to the corresponding currents

locally. Gradient operators can generate diffusion and reaction forces
from a single potential function as �F = ∇r �φ and f = ∇s �φ.

Total Diffusion Reaction

Value RN×d ⊕ RM RN×d RM

Force F = ( �F, f ) �F = [F (α)]N
α=1 f = ( fρ )M

ρ=1

Current J = (�J, j) �J = [J (α)]N
α=1 j = ( jρ )M

ρ=1

Mobility M = ↔
M ⊕ m

↔
M = [M(αβ )] m = (δρρ′ mρ )

Gradient ∇ = ∇r ⊕ ∇s ∇r ∇s

Potential �φ(r) ∈ RN

probability distribution, p(t ), on the manifold equipped with
the information-geometric (Fisher) metric.

We can derive the inequality v1(t ) � v2(t ), which provides
the hierarchy of TSLs (39), from the TUR by taking the
optimal potential of the Kantorovich–Rubinstein duality (32)
as observable in Eq. (41).

III. THERMODYNAMICS OF REACTION-DIFFUSION
SYSTEMS

Hereafter, we will focus on reaction-diffusion systems
(RDSs). We will refer to the geometric framework reviewed
above and extend it with additional notions to generalize it.
We will need to use many kinds of symbols, which we sum-
marize in Table I.

This section introduces the two basics of RDSs: dynamics
and thermodynamics. We begin with a class of RDSs called
closed systems in Sec. III A. A closed RDS does not exchange
molecules with the outside, as opposed to an open RDS, the
other class of RDSs, as explained in Sec. III B. Section III C
introduces the thermodynamics of RDSs in terms of ther-
modynamic forces and the EPR. To simplify the discussion
in subsequent sections, we unify quantities associated with
reaction and diffusion by introducing appropriate vector fields
and operators in Sec. III D. We also introduce the concept
of conservative and nonconservative thermodynamic forces
for RDSs, which play a central role in the geometric ex-
cess/housekeeping decomposition of EPR in Sec. III E.

A. Closed reaction-diffusion systems

We consider an RDS that describes the time evolution
of a concentration distribution of N chemical species in the
d-dimensional area V ⊆ Rd due to reactions, advection, and
diffusion. If no particles interact with the outside of the
system, the system is called a closed RDS. Let S index the
chemical species as S := {1, 2, . . . , N}. We write the αth
chemical species (α ∈ S) as Zα , and its concentration distri-
bution at location r ∈ V and time t as cα (r; t ). We note that
cα (r; t ) is not a probability density, and

∫
drcα (r; t ) is not

necessarily equal to 1 or any other constant.
The time evolution of the concentration of the αth chemical

species under the assumption of Fick’s law are usually given

by the reaction-diffusion (RD) equation,

∂t cα (r; t ) = Dα∇2
r cα (r; t ) + Rα (r; t ), (43)

where Dα indicates the diffusion constant of Zα and Rα (r; t )
represents the effect of reactions. Note that the reaction term
Rα can depend on the concentration distribution. We can
rewrite the first term to −∇r · JFick

(α) (r; t ), where JFick
(α) (r; t ) :=

−Dα∇rcα (r; t ) is the current obeying Fick’s law.
However, assuming Fick’s law is optional to our discus-

sion. The diffusion current given by Fick’s law sometimes
fails to describe the dynamics of chemical species, for exam-
ple, under an electric field, which causes advection, or in a
nondilute solution. To include a wider range of phenomena,
we deal with the following more general RD equation for the
αth chemical species,

∂t cα (r; t ) = −∇r · J (α)(r; t ) + Rα (r; t ), (44)

where J (α)(r; t ) = [J(α)i(r; t )]i=1,...,d is the general diffusion
current for the αth species. The diffusion currents can de-
pend on the concentration distribution as in the case of Fick’s
law. Note that the general RD equation (44) reproduces the
usual one (43) if the diffusion current obeys Fick’s law as
J (α)(r; t ) = JFick

(α) (r; t ).
In this paper, we assume one of the following three bound-

ary conditions on diffusion currents. Note that the boundary
conditions on diffusion currents constrain concentration dis-
tributions through the dependence of diffusion currents on
concentration distributions. The first one is the no-flux bound-
ary condition, J (α)(r; t ) · n(r) = 0 for all α ∈ S , t , and r ∈ ∂V ,
where ∂V indicates the boundary of V , and n(r) is the unit
normal vector of the surface at r ∈ ∂V . This condition corre-
sponds to a chemical reaction system in a container, where
the exchange of particles via diffusion with the outside never
happens. The second one is the periodic boundary condition:
when the space V has a periodic structure, like a supercube,
we may assume that all quantities depending on r satisfy the
periodic boundary condition. Note that this rule applies not
only to currents but also to other quantities. The third one is
the fast decay of the diffusion currents at infinity, which we
consider when V = Rd . These conditions can be combined.
For example, considering an infinitely long pipe with a square
cross section, we may assume the no-flux boundary or the
periodic boundary on the sides of the pipe, while supposing
the fast decay for the current at infinity.

We can consider the thermodynamic structure of the RDS
by rewriting the reaction term Rα (r; t ) with reaction currents
based on the details of the reactions, as explained below.
We consider M reactions indexed by R := {1, 2, . . . , M}. We
write the ρth reaction (ρ ∈ R) as∑

α∈S
ν+

αρZα �
∑
α∈S

ν−
αρZα, (45)

where ν±
αρ indicates the number of Zα consumed (+) or

produced (–) by the ρth reaction. We assume ν±
αρ is inde-

pendent of location r and time t for all α and ρ. We write
the forward (+) and reverse (–) fluxes of the ρth reaction at
(r; t ) as j+ρ (r; t ) and j−ρ (r; t ), respectively. All the fluxes are
always assumed to be positive, j±ρ (r; t ) > 0. They can depend
on space and time (r; t ) directly and/or via concentration
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distributions (e.g., assuming mass action kinetics, a flux is
given by j±ρ (r; t ) = κ±

ρ (r; t )
∏

α[cα (r; t )]ν
±
αρ , where κ±

ρ (r; t ) is
the reaction rate constant for the forward/reverse reaction).
The reaction current of the ρth reaction jρ (r; t ) is given by
jρ (r; t ) = j+ρ (r; t ) − j−ρ (r; t ). Using these reaction currents,
we can rewrite Rα (r; t ) as

Rα (r; t ) =
∑
ρ∈R

Sαρ jρ (r; t ), (46)

where Sαρ := ν−
αρ − ν+

αρ is the (α, ρ)th element of the sto-
ichiometric matrix, which denotes the net increase of Zα

through the ρth reaction.
Finally, we rewrite the RD equation as a continuity

equation, which will be convenient for future calcula-
tions. Introducing the vector notation �c = (c1, . . . , cN )�, �J =
(J (1), . . . , J (N ) )�, and �R = (R1, . . . , RN )� with transposition
�, the RD equation (44) is rewritten in a simpler form ∂t �c =
−∇r · �J + �R. Here, we make the dependence on (r; t ) im-
plicit to simplify the notation. Rewriting the reaction term
as �R = ∇�

s j with the vector of the reaction current j :=
( j1, . . . , jM )� and the matrix (∇s)ρα := Sαρ , the RD equa-
tion reduces to a continuity equation

∂t �c = −∇r · �J + ∇�
s j. (47)

Here, the matrix ∇�
s is the stoichiometric matrix.

B. Open reaction-diffusion systems

We generally deal with an open RDS, where some of the N
species can be exchanged with the outside. We classify the
species into two categories: internal species, which are not
exchanged with the outside, and external species, which are
exchanged with the outside. Let NX (� N ) denote the number
of internal species. We index the internal and external species
as X := {1, . . . , NX } and Y := {NX + 1, . . . , N} = S \ X ,
respectively.

Taking into account the decomposition of S into X and Y ,
we introduce the following notation. Let �e = (e1, . . . , eN )� be
an arbitrary vector consisting of N elements such as �c, �J, or �R.
We define �eX and �eY as the vectors of the first NX elements
and the last N − NX elements of �e; therefore, they decompose
�e as �e = (�e�

X , �e�
Y )�.

We also define a subset of R, RX , as the set of the indexes
of reactions that change the concentrations of internal chemi-
cal species,

RX := {ρ ∈ R | ∃α ∈ X , Sαρ 
= 0}. (48)

Reactions whose index belongs to R \ RX only change the
concentrations of external species, while reactions whose in-
dex belongs to RX may also change the concentrations of
external chemical species.

The exchange of external species can be modeled in vari-
ous ways. For example, we can describe the interaction with
the outside by fixing the concentrations of the external species
on the boundary. We can also assume that the concentration
distributions of the external species are homogeneous both on
the boundary and in the bulk. In addition, we can control the
concentration distribution of the external species with external
currents.

Nonetheless, the time evolution of the internal species is
essential for further discussion. With the notation already
introduced in this section, they can be written as

∂t �cX = −∇r · �JX + (∇�
s j)X . (49)

We impose the same boundary conditions on the diffusion
current corresponding to the internal species in open systems
as in closed systems, e.g., the no-flux boundary condition,
the periodic boundary condition, or the fast decay of diffu-
sion currents. In the following results, we only consider the
time evolution of internal species, which is described by the
continuity-equation-like form (49), so that we do not need
to consider how to describe the interaction with the outside
of the system. The only exception is a generalization of the
2-Wasserstein distance, where we have to assume the homo-
geneity of the external species, as discussed in Sec. V B.

C. Thermodynamic force and entropy production rate

Here, we introduce the thermodynamic forces and the EPR.
Corresponding to the diffusion and reaction currents, two
kinds of forces, diffusion and reaction forces, are introduced.
In the following, we assume that the temperature is homoge-
neous in V , and we choose units so that the product of the
temperature T and the gas constant Rgas is equal to 1 [47] for
simplicity.

We also assume that the chemical potential can be defined
for each species at each location. We let μα (r; t ) denote the
chemical potential of the αth species at (r; t ). The chemical
potential can depend on the concentration distribution and
its spatial derivatives. For example, the chemical potential
in an ideal dilute solution without applied mechanical forces
is given by μid

α = μ◦
α + ln cα , with the standard chemical

potential μ◦
α , which is independent of t and r. In the Cahn–

Hilliard equation [55], the chemical potential also depends on
the concentration gradient as μα = c3

α − cα − γ∇2
r cα with a

constant γ .
Diffusion force.—We introduce the diffusion force. We

write the diffusion force for the αth species at (r; t ) as
F (α)(r; t ) = [F(α)i(r; t )]i=1,...,d . The diffusion force is defined
by using the chemical potential as

F (α)(r; t ) := −∇rμα (r; t ) + Knc
(α)(r; t ), (50)

where Knc
(α) denotes the nonconservative mechanical force on

particles of the αth chemical species. Note that all mechan-
ical forces on particles of the αth chemical species that can
be represented by the gradient of a potential, e.g., gravity
and Coulomb force, are included in the gradients of the
chemical potential −∇rμα (r; t ). We introduce the vector no-
tation as �F := (F (1), . . . , F (N ) )�, �μ := (μ1, . . . , μN )�, and
�Knc := (Knc

(1), . . . , Knc
(N ) )

�, which let us rewrite Eq. (50) as

�F := −∇r �μ + �Knc. (51)

Here, the first term in the right-hand side, ∇r �μ, indicates
(∇rμ1, . . . ,∇rμN )�.

We assume a linear relation between the diffusion current
and the diffusion force as

�J(r; t ) = ↔
M(r; t ) �F(r; t ), (52)
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where
↔
M(r; t ) = [M(αβ )(r; t )]α,β∈S is the mobility tensor,

each of whose elements is a d × d matrix as M(αβ ) =
[M(αβ )i j]i, j=1,...,d . It can be rewritten with the elements
of current, force, and mobility tensor as J(α)i(r; t ) =∑

β∈S
∑d

j=1 M(αβ )i j (r; t )F(β ) j (r; t ). We further assume that
↔
M(r; t ) is symmetric and positive-definite: M(αβ )i j = M(βα) ji

holds for all α, β ∈ S and for all 1 � i, j � d , and �F ′�↔
M �F ′ =∑

α,β∈S
∑d

i, j=1 F ′
(α)iM(αβ )i jF ′

(β ) j > 0 holds for all �F ′ 
= �0 (�0
indicates a diffusion force or current all of whose elements
are zero).

The mobility tensor possibly depends on the concentration
distribution. In the special case where the diffusion current
obeys Fick’s law, J (α)(r; t ) = JFick

(α) (r; t ) and the force is given
by the chemical potential as F (α)(r; t ) = −∇rμ

id
α (r; t ), the

mobility tensor becomes

M(αβ )(r; t ) = Dαcα (r; t )δαβ I, (53)

where δαβ is the Kronecker delta and I is the d × d identity
matrix. In general, M(αα) will not be proportional to the iden-
tity matrix if the mobility of the αth species is not isotropic.
The off-diagonal entries M(αβ ) can also be nonzero matrices,
which represent inter-species effects on the diffusion currents
by the forces [85,102].

Reaction force.—We next define the reaction force f =
( f1, . . . , fM )�. The ρth element fρ (r; t ), which gives the re-
action force on the ρth reaction at (r; t ), is defined in terms of
the chemical potential as

fρ (r; t ) := −
∑
α∈S

Sαρμα (r; t ). (54)

Using the vector notations, we can rewrite Eq. (54) as

f := −∇s �μ. (55)

We also impose the condition of local detailed balance,

fρ (r; t ) = ln
j+ρ (r; t )

j−ρ (r; t )
, (56)

on the reaction force everywhere for all ρ ∈ R. It relates the
reaction force and the fluxes. In particular, when the fluxes
obey mass action kinetics and the chemical potential is μid

α ,
the local detailed balance condition reduces to ln(κ+

ρ /κ−
ρ ) =

−∇s �μ◦ with the vector �μ◦ := (μ◦
1, . . . , μ

◦
N )�. Note that we

can utilize the local detailed balance condition in Eq. (56) as
the definition of the reaction force even for systems where the
chemical potential cannot be defined or where some unrecog-
nized chemical species are present.

The local detailed balance condition (56) establishes a rela-
tionship between the reaction force and the current, analogous
to the one for diffusion force (52), as

j(r; t ) = m(r; t ) f (r; t ), (57)

with a diagonal matrix [m(r; t )]ρρ ′ := δρρ ′mρ (r; t ). Here, the
diagonal elements of m(r; t ) are defined as

mρ (r; t ) :=

⎧⎪⎨
⎪⎩

j+ρ (r; t ) − j−ρ (r; t )

ln j+ρ (r; t ) − ln j−ρ (r; t )
( j+ρ (r; t ) 
= j−ρ (r; t )),

j+ρ (r; t ) ( j+ρ (r; t ) = j−ρ (r; t )).
(58)

In the following, we refer to m as the edgewise Onsager coeffi-
cient matrix, inspired by the Onsager coefficient that provides
the linear relation between the force and the current in a steady
state [103]. We remark that the edgewise Onsager coefficient
matrix can depend on the concentration distribution owing to
the �c dependence of the fluxes j±ρ . In this sense, it differs from
the mobility tensor, which does not depend on the diffusion
current. Despite its dependence on fluxes, m is a physically
fruitful quantity, as shown in previous studies [44,45] and in
what follows in this paper.

As the mobility tensor
↔
M, the edgewise Onsager coefficient

matrix m is positive definite. This positive definiteness fol-
lows from the mathematical fact that the logarithmic mean
between two positive numbers a, b > 0, (a − b)/ ln(a/b), is
always positive. This is because the diagonal element of the
matrix mρ is the logarithmic mean between the forward and
reverse fluxes j±ρ > 0. Actually, the edgewise Onsager co-
efficient mρ can be regarded as a kind of activity, that is,
an indicator of the back-and-forth intensity of each reaction
measured by the average of the speed of the forward and
reverse reactions. For example, activity is conventionally eval-
uated by (double) the arithmetic mean j+ρ (r; t ) + j−ρ (r; t ) and

the geometric mean
√

j+ρ (r; t ) j−ρ (r; t ), which are called the
dynamical [104] and frenetic activity [105], respectively. The
edgewise Onsager coefficient is intermediate between these
conventional activities because the inequality between means,√

ab � (a − b)/ ln(a/b) � (a + b)/2, yields

√
j+ρ (r; t ) j−ρ (r; t ) � mρ (r; t ) �

j+ρ (r; t ) + j−ρ (r; t )

2
. (59)

Entropy production rate.—The product between the forces
and the currents defines the EPR σ as

σ :=
∫

V
dr

⎛
⎝∑

α∈S
J (α) · F (α) +

∑
ρ∈R

jρ fρ

⎞
⎠

=
∫

V
dr (�J� �F + j� f ), (60)

whose time integration provides the EP during time duration
[0, τ ] as �τ := ∫ τ

0 dt σ . The definition of the EPR (60) de-
rives the second law of thermodynamics, since the positivity
of

↔
M and the local detailed balance condition (56) lead to

�J� �F = �F�↔
M �F � 0 and j� f � 0, respectively. The equality

of the second law σ = 0 is satisfied if and only if the system
is in equilibrium, i.e., jρ (r; t ) = 0 and J (α)(r; t ) = 0 hold for
all α ∈ S , ρ ∈ R, and r ∈ V . It indicates that the EPR is a
measure of the irreversibility of the system.

When the temperature is constant, we can regard the EP
as dissipated work, which is the difference between the work
done on the system and the increased free energy [47,106].
Hence, a smaller EP means that the state of the system
changes with less work, that is, it is energetically efficient.
From this viewpoint, today’s nonequilibrium thermodynam-
ics, especially stochastic thermodynamics, usually considers
minimum dissipation problems [31–46] to control systems
optimally. We later see that some results in this paper also
directly relate to such minimization problems, which have not
been previously discussed for RDSs.
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Since RDSs consist of diffusive dynamics and reactions,
the EPR (60) accounts for the dissipation arising from mul-
tiple factors. Thus, it is essential to decompose the EPR
into contributions from different factors to understand the
thermodynamic properties of a system. One of the simplest
decompositions is into the EPR from diffusion σ diff and from
reactions σ react,

σ diff :=
∫

V
dr
∑
α∈S

J (α) · F (α), σ react :=
∫

V
dr
∑
ρ∈R

jρ fρ.

(61)

We provide a unified way to perform decompositions into
various factors in Sec. IV.

D. Unifying the diffusion and reaction

We consider the quantities associated with reaction and dif-
fusion separately in the previous sections. However, treating
these quantities together will be useful for further discussion.
Here, we introduce two inner products and some operators to
handle reactions and diffusion together.

Forces and currents.—We introduce the force F and the
current J by unifying the diffusion force (current) and the
reaction force (current) as

J := (�J, j), F := ( �F, f ). (62)

We refer to �F ′ and f ′ as the diffusion part and the reaction
part of F ′ = ( �F ′, f ′), respectively, and the same is true for
the current. We also define the inner product of two vector
fields J ′ = ( �J′, j′) and F ′ = ( �F ′, f ′) as

〈〈J ′,F ′〉〉 :=
∫

V
dr

⎛
⎝∑

α∈S
J′

α · F ′
α +

∑
ρ∈R

j′ρ f ′
ρ

⎞
⎠

=
∫

V
dr ( �J′� �F ′ + j′� f ′), (63)

which immediately leads to a new expression of the EPR as

σ = 〈〈J ,F〉〉. (64)

Potentials and concentrations.—We introduce the inner
product of two vector fields with N elements, e.g., the chem-
ical potential �μ, the concentration distribution �c, and its time
derivative ∂t �c, as〈 �φ, �ψ 〉 :=

∫
V

dr
∑
α∈S

φαψα =
∫

V
dr �φ � �ψ, (65)

with �φ = (φ1, . . . , φN )� and �ψ = (ψ1, . . . , ψN )�. We refer
to �ψX and �ψY as the internal part and the external part
of �ψ , e.g., ∂t �cX = (∂t c1, . . . , ∂t cNX )� is the internal part of
∂t �c = (∂t c1, . . . , ∂t cN )�.

Generalized gradient and divergence operators.—We de-
fine the generalized gradient operator ∇, taking a potential
�φ = (φ1, . . . , φN )� to a force, as

∇ �φ := (∇r �φ,∇s �φ), (66)

where ∇r �φ is defined as ∇r �φ := (∇rφ1, . . . ,∇rφN )�. We
remark that ∇s �φ(r) is an M-dimensional vector because ∇s
is an M × N matrix and �φ(r) is an N-dimensional vector.

The generalized gradient operator ∇ = ∇r ⊕ ∇s is regarded
as the direct sum between ∇r and ∇s, where ⊕ represents the
direct sum. The generalized gradient ∇ enables us to unify
the relations between the diffusion and reaction forces and the
chemical potential in Eqs. (51) and (55) as

F = −∇ �μ + Knc, (67)

where we define the nonconservative mechanical force vector
Knc as Knc := ( �Knc, 0).

We also define an operator ∇† that maps a current to the
time evolution caused by the current as

∇†J ′ := −∇r · �J′ + ∇�
s j′, (68)

where J ′ = ( �J′, j′) is a vector field with the reaction and dif-
fusion parts, and ∇†J ′ is a vector field with N elements. This
definition means −∇† is a generalized divergence operator.
The operator ∇† simplifies the form of the time evolution (49)
as

∂t �cX = (∇†J )X , (69)

which emphasizes that a continuity equation gives the time
evolution of the internal species.

The operator ∇† is conjugate to the generalized gradient
operator ∇ in terms of the two inner products 〈〈·, ·〉〉 and 〈·, ·〉
as

〈〈J ′,∇ �φ〉〉 = 〈∇†J ′, �φ〉, (70)

where �φ is a potential whose external part is the zero vec-
tor, and J ′ is a current whose diffusion part corresponds to
the internal species, J′

(α) for α ∈ X , satisfies the boundary
conditions on the system. To derive the conjugation relations
between ∇ and ∇†, we do partial integration and use Gauss’s
theorem to calculate 〈∇†J ′, �φ〉 as follows:

〈∇†J ′, �φ〉 =
∫

V
dr
∑
α∈S

{−∇r · J′
(α) + (∇�

s j′)α}φα

=
∫

V
dr

{∑
α∈S

(J′
(α) · ∇rφα ) + j′�∇s �φ

}

−
∫

V
dr
∑
α∈S

∇r · (φαJ′
(α) )

= 〈〈J ′,∇ �φ〉〉 −
∑
α∈S

∫
∂V

dn · (φαJ′
(α) ). (71)

Here, the summand in the second term of the last line,
∫
∂V dn ·

(φαJ′
(α) ), vanishes for all α ∈ S because φα = 0 holds for all

α ∈ Y , and J′
(α) satisfies the boundary conditions for all α ∈

X . Thus, we obtain Eq. (70). We remind the reader that we
also impose the periodic boundary condition on every field
containing �φ if we impose it on the system.

Onsager operator.—Unifying the mobility tensor and the
edgewise Onsager coefficient matrix, we introduce the On-
sager operator M := ↔

M ⊕ m as the direct sum between
↔
M and

m, which maps forces to currents as

MF ′ = (
↔
M �F ′, m f ′) (72)
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The Onsager operator M possibly depends on the concentra-
tion distribution in the same way that the mobility tensor and
the edgewise Onsager coefficient matrix do.

The Onsager operator allows us to unify the linear relations
between the diffusion and reaction forces and currents in
Eqs. (52) and (57) as

J (r; t ) = M(r; t )F (r; t ), (73)

and the positive-definiteness of
↔
M and m makes it invertible.

The linear relation (73) lets us rewrite the dynamics of the
internal species as

∂t �cX = (∇†MF )X . (74)

Since
↔
M and m are symmetric, we obtain 〈〈MF ′,F ′′〉〉 =

〈〈F ′,MF ′′〉〉 for any forces F ′ and F ′′, which means that
M is a self-adjoint operator. This property and the posi-
tive definiteness of M let us define a new inner product
〈〈·, ·〉〉M as 〈〈F ′,F ′′〉〉M := 〈〈MF ′,F ′′〉〉 = 〈〈F ′,MF ′′〉〉. The
positive-definiteness also guarantees that the inner product
is nondegenerate, i.e., 〈〈F ′,F ′〉〉M > 0 holds for any F ′ 
=
(�0, 0). This inner product induced by M rewrites the EPR as
the squared norm of the force as

σ = 〈〈J ,F〉〉 = 〈〈MF ,F〉〉 = 〈〈F ,F〉〉M. (75)

Now, the second law of thermodynamics is given by the non-
negativity of the norm, 〈〈F ,F〉〉M � 0.

E. Conservative and nonconservative forces

RDSs are driven by two types of forces: one is the force
solely due to the chemical potential of the internal species,
and the other is the force owing to the interaction with the
outside of the system, i.e., the chemical potential of the exter-
nal species and the nonconservative mechanical force �Knc.

From this viewpoint, we can rewrite the force (67) as

F = −∇
(

�μX

�0Y

)
− ∇

(�0X
�μY

)
+ Knc. (76)

Here, the first term is determined solely by the chemical
potential of the internal species. The remaining two terms are
the contributions from the chemical potential of the external
species and the nonconservative mechanical force.

Inspired by the form in Eq. (76), we can decompose the
force F into two parts as

F = ∇ �φ + Fnc, (77)

where �φ in the first term is a potential whose external part is
the zero vector, �φY = �0Y . Here, the second term Fnc is the re-
mainder F − ∇ �φ. We refer to ∇ �φ and Fnc as the conservative
force and the nonconservative force, respectively. We remark
that such a decomposition of the force into conservative and
nonconservative forces is not unique. The representation with
the chemical potential in Eq. (76) corresponds to the case
where �φ = −(�μ�

X , �0�
Y )� in Eq. (77). It indicates that − �φ may

be easier to interpret thermodynamically than �φ.

Using the decomposition in Eq. (77), we can rewrite the
EPR σ = 〈〈J ,F〉〉 as

σ = 〈〈J ,∇ �φ + Fnc〉〉
= 〈∂t �c, �φ〉 + 〈〈J ,Fnc〉〉, (78)

where we use the conjugation relation (70) and the assumption
that φα = 0 for all α ∈ Y . If the system is driven solely by the
conservative force ∇ �φ, the second term in Eq. (78) vanishes
so that the EPR becomes zero at a steady state, i.e., the system
is in equilibrium at the steady state. The conservative force
∇ �φ drives relaxation to a state corresponding to �φ (see also
Appendix C 2). On the other hand, the second term in Eq. (78)
arising from the nonconservative force Fnc may not be zero at
the steady state. The nonconservative force Fnc maintains the
system out of equilibrium even at the steady state.

IV. GEOMETRIC DECOMPOSITIONS OF ENTROPY
PRODUCTION RATE FOR REACTION-DIFFUSION

SYSTEMS

One way to understand the thermodynamics of RDSs is
to decompose dissipation into contributions from different
causes. These decompositions can be performed by focusing
on the geometry of the forces as follows. Since the EPR is
given by the squared norm of the force as σ = 〈〈F ,F〉〉M, we
can decompose it by using the Pythagorean theorem as

〈〈F ,F〉〉M = 〈〈F⊥,F⊥〉〉M + 〈〈F − F⊥,F − F⊥〉〉M,

(79)

with the force F⊥ satisfying the orthogonality 〈〈F⊥,F −
F⊥〉〉M = 0. For example, the decomposition into the contri-
butions from diffusion and reactions (61) is rewritten using
the Pythagorean theorem as

〈〈F ,F〉〉M = 〈〈Fdiff ,Fdiff〉〉M + 〈〈F react,F react〉〉M, (80)

where the forces Fdiff := ( �F, 0) and F react := (�0, f ) provide
an orthogonal decomposition of the force as F = Fdiff +
F react with 〈〈Fdiff ,F react〉〉M = 0.

In this section, we introduce more complicated decom-
positions, using the same geometric method. In Sec. IV A,
we derive the geometric excess/housekeeping decomposition
of the EPR by constructing an orthogonal decomposition of
the force into the conservative and nonconservative parts.
Notably, the excess EPR plays a central role in relating time
evolution and dissipation, since it extracts the part of the
dissipation rate that contributes to the change in the pattern.
We also develop the local decomposition and the wavenumber
decomposition, which enable us to identify the dissipation at
each point in real space and Fourier space, in Sec. IV B. We
demonstrate our geometric decompositions using two models,
which are simple but present typical behaviors of RDSs, in
Sec. IV C. We remark that we can further decompose the de-
compositions obtained in this section into contributions from
reaction and diffusion in the same way as in Eq. (61).
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A. Excess and housekeeping entropy production rate
for reaction-diffusion systems

The EPR σ = 〈〈F ,F〉〉M includes contributions from
both conservative and nonconservative sources, as shown in
Eq. (77). To quantify these two contributions separately, we
construct the geometric excess/housekeeping decomposition
of EPR for RDSs by using the Pythagorean theorem,

〈〈F ,F〉〉M = 〈〈F∗,F∗〉〉M + 〈〈F − F∗,F − F∗〉〉M, (81)

where F∗ is a conservative force satisfying the orthogonality
〈〈F∗,F − F∗〉〉. In contrast to the simple case (80), it is diffi-
cult to find F∗ directly. Instead, we obtain it by projecting the
force F onto the conservative force space, which is defined as

ImX∇ := {∇ �φ | ∀α ∈ Y, φα = 0}. (82)

Here, we use that conservative forces can be written as the
generalized gradient of a potential whose external part is the
zero vector, as discussed in Sec. III E. As we will confirm
shortly afterward, the conservative force F∗ obtained by the
projection satisfies the orthogonality and allows us to use the
Pythagorean theorem (81) to decompose EPR into contribu-
tions from conservative and nonconservative forces.

Projection of the force onto the conservative force space.—
The projection of the force onto the conservative force space
is defined by a variational problem

F∗ := arg min
F ′∈ImX ∇

〈〈F − F ′,F − F ′〉〉M, (83)

where we impose the same boundary condition on the diffu-
sion part of MF ′ as we do on J = MF . For example, if we
consider a system with the no-flux boundary condition on the
diffusion currents of the internal species, then we also impose
the same condition on (

↔
M �F ′)X in the minimization problem.

By definition, F∗ can be given as F∗ = ∇ �φ∗ with

�φ∗ ∈ arg min
�φ| �φY=�0Y

〈〈F − ∇ �φ,F − ∇ �φ〉〉M. (84)

Here, we also impose the same boundary condition on the
diffusion part of M∇ �φ as we do on J = MF in the min-
imization problem. The minimization problem in Eq. (84)
reduces to solving the partial differential equation, which is
obtained as the Euler–Lagrange equation,

(∇†MF )X = (∇†M∇ �φ∗)X , (85)

with the same boundary condition on (
↔
M∇r �φ∗)X as we im-

posed on the original dynamics of internal species. Note that
we can uniquely determine F∗ since the inner product 〈〈·, ·〉〉M
is nondegenerate (see Appendix B 1 for details).

A notable property of the projected conservative force
F∗ = ∇ �φ∗ is that it preserves the time evolution of the orig-
inal dynamics of internal species, since Eq. (85) provides the
same time evolution of �cX :

∂t �cX = (∇†MF )X = (∇†M∇ �φ∗)X . (86)

From this dynamics-conservation viewpoint, we may come up
with another representation of F∗ as

F∗ = arg min
F ′|(∇†MF ′ )X =(∇†MF )X

〈〈F ′,F ′〉〉M, (87)

FIG. 3. The geometric decomposition of the EPR for RDSs.
Here, the blue plane indicates ImX∇, and the red line indicates
{F ′|[∇†{M(F − F ′)}]X = �0X }. The thermodynamic force, whose
squared norm is the EPR σ = 〈〈F ,F〉〉M, is decomposed into the
two orthogonal parts: the projection of F onto ImX∇, F∗, whose
squared norm is the excess EPR σ ex = 〈〈F∗,F∗〉〉M, and the remain-
ing part, F − F∗, whose squared norm is the housekeeping EPR
σ hk = 〈〈F − F∗,F − F∗〉〉M. This description is parallel to the case
of the Langevin systems shown in Fig. 2.

with the same boundary condition as Eq. (83). We can actually
check that the minimization problem in Eq. (87) leads to the
same Euler–Lagrange equation as Eq. (85). Note that the po-
tential �φ, whose external part is the zero vector, is introduced
as the Lagrange multiplier for the constraint (∇†MF ′)X =
(∇†MF )X in Eq. (87) (see Appendix B 2).

As already mentioned, the projected conservative force
F∗ is orthogonal to F − F∗ with respect to the inner prod-
uct 〈〈·, ·〉〉M as 〈〈F − F∗,F∗〉〉M = 〈〈M(F − F∗),∇ �φ∗〉〉 =
〈∇†M(F − F∗), �φ∗〉 = 0. Here, we used the boundary con-
dition on (

↔
M∇r �φ∗)X , the condition that φ∗

α = 0 for all α ∈ Y ,
and Eq. (70) in the second transformation. We also used
the condition φ∗

α = 0 for all α ∈ Y and the Euler–Lagrange
equation (85) in the third transformation. This orthogonality
finally leads to the Pythagorean theorem (81), which enables
us to define a decomposition of the EPR.

Excess/housekeeping decomposition of EPR.—Defining
the excess and housekeeping EPRs (see also Fig. 3) as

σ ex := 〈〈F∗,F∗〉〉M, σ hk := 〈〈F − F∗,F − F∗〉〉M, (88)

the Pythagorean theorem (81) leads to the geometric ex-
cess/housekeeping decomposition of the EPR

σ = σ ex + σ hk. (89)

Here, the nonnegativity of the EPRs is ensured, since each
term is the squared norm of the corresponding force. The
time integration of the decomposition (89) immediately yields
the geometric excess/housekeeping decomposition of the
EP as

�τ = �ex
τ + �hk

τ . (90)

The physical meaning of the excess and housekeeping EPRs
is explained based on the properties of F∗ in the following.

We focus on the excess EPR, which plays a central role in
the following sections. The minimization problems, Eq. (83)
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and Eq. (87), imply that the excess EPR σ ex is the minimum
dissipation incurred by any conservative force that induces the
original dynamics of the internal species. Indeed, the property
of F∗ (87) gives the excess EPR by the following optimization
problem,

σ ex = inf
F ′|(∇†MF ′ )X =(∇†MF )X

〈〈F ′,F ′〉〉M, (91)

which means that the excess EPR extracts the unavoidable
dissipation due to the time evolution of the pattern. The
variational expression (91) also shows that the excess EPR
vanishes at the steady state when the system is closed, since
the zero function F∗ = (�0, 0) then satisfies the constraints. If
the system is open, the excess EPR will be zero as long as
the concentrations of the internal species are stationary, even
if those of the external species are not. We also remark that
we can rewrite σ ex as the time derivative of a quantity, defined
in terms of the conservative force, that drives relaxation [45]
(see also Appendix C).

We emphasize that the excess EPR defined here is different
from Prigogine’s one for RDSs [22]. The latter is defined only
near the steady state and introduced to predict the stability of
the steady state by its sign. On the other hand, the former is
always nonnegative and can be defined far from the steady
state or even in systems without steady states. In essence,
it identifies the minimum dissipation required for the time
evolution. The common feature of both is that they become
zero in the steady state.

We also reveal the physical meaning of the remaining con-
tribution, namely, the housekeeping EPR

σ hk = inf
F ′∈ImX ∇

〈〈F − F ′,F − F ′〉〉M

= inf
�φ| �φY=�0Y

〈〈F − ∇ �φ,F − ∇ �φ〉〉M. (92)

Although this paper mainly focuses on the excess EPR, the
remaining housekeeping EPR also has an important physi-
cal meaning: it is the dissipation caused by the current that
maintains the pattern without changing it. To show this, we
rewrite the Euler–Lagrange equation (85) with the current cor-
responding to the projected conservative force J ∗ = MF∗ as
(∇†J )X = (∇†J ∗)X . This indicates that J − J ∗ is a cyclic
current, which does not affect the dynamics of the internal
species as

∂t �cX = (∇†J ∗)X + (∇†[J − J ∗])X = (∇†J ∗)X . (93)

It is worth noting that while the cyclic currents are cyclic
in terms of internal species, physically they are driven by
external factors, such as external species or nonconservative
mechanical forces. This is also the case with homogeneous
CRNs without detailed balance, where external species are of-
ten made implicit. If no external species exist, the system will
be detailed balanced, and no cyclic motion will be observed.

We also remark that the cyclic current J − J ∗ can af-
fect the concentrations of the external species. Observe that
∂t �cY = (∇†J ∗)Y + (∇†[J − J ∗])Y , where the second term
on the right-hand side does not vanish generally. In other
words, the housekeeping EPR consists of the cyclic contri-
bution plus the contribution from the diffusion of external
species. Suppose that the mobility tensor has no direct

interaction terms between internal and external species,
M(αβ ) = O if (α, β ) ∈ X × Y or Y × X , where O is the
zero matrix. Then, the interpretation is clearly depicted by
the decomposition σ hk = σ

cyc
X + σ diff

Y with two nonnegative
contributions

σ
cyc
X :=

∫
V

dr

[
( f − ∇s �φ∗)�m( f − ∇s �φ∗)

+
∑

α,β∈X
(F (α) − ∇rφ

∗
α )�M(αβ )(F (β ) − ∇rφ

∗
β )

]
� 0,

(94)

σ diff
Y :=

∫
V

dr
∑
α∈Y

J (α) · F (α) � 0. (95)

The first term σ
cyc
X reflects the cyclic motion of the internal

species, arising from the cyclic current J − J ∗. The remain-
der reflects the dissipation stemming from diffusion of the
external species. This term is particular to RDSs, as the house-
keeping EPR in a homogeneous CRN can be written only with
cyclic contributions [45]. The decomposition is straightfor-
wardly proved using the definition of σ hk and the fact that
F (α) − ∇rφ

∗
α = F (α) for any α ∈ Y because φ∗

α = 0 for any
α ∈ Y with the assumption M(αβ ) = O if (α, β ) ∈ X × Y or
(α, β ) ∈ Y × X .

B. Local decomposition and wavenumber
decomposition of entropy production rate

In this section, we discuss the local and wavenumber
decomposition of EPR for RDSs, analogous to the decom-
position for Langevin systems from Sec. II C. The local and
wavenumber EPRs enable us to quantify the dissipation at
each point in the real and wavenumber spaces, respectively.
Thus, we can detect local dissipation caused by pattern for-
mation via the local and wavenumber EPRs for RDSs.

Local decomposition.—We define the local EPR at the
position r as

σ loc(r) := �J�(r; t ) �F(r; t ) + j�(r; t ) f (r; t ). (96)

The nonnegativity σ loc(r) � 0 holds locally as it is locally that↔
M is assumed to be positive-definite and j and f have the same
sign. The volume integral gives the EPR,

σ =
∫

V
dr σ loc(r). (97)

This equality (97) indicates a decomposition of the EPR into
the local EPRs, the dissipation at each location.

We also decompose the excess and housekeeping EPRs
into the contributions from each location as

σ ex,loc(r) := (∇r �φ∗)�
↔
M∇r �φ∗ + (∇s �φ∗)�m∇s �φ∗, (98)

σ hk,loc(r) := ( �F − ∇r �φ∗)�
↔
M( �F − ∇r �φ∗)

+ ( f − ∇s �φ∗)�m( f − ∇s �φ∗), (99)

which satisfy
∫

V dr σ ex,loc(r) = σ ex and
∫

V dr σ hk,loc(r) =
σ hk. The local excess and housekeeping EPRs are nonnegative
because

↔
M and m are positive-definite. Thus, we can interpret
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σ ex,loc(r) as the EPR due to the projected conservative force
F∗ at the location r. We can also regard σ hk,loc(r) as the
EPR due to the cyclic current at the location r. Note that
σ ex,loc(r) = 0 and σ hk,loc(r) = σ loc(r) hold for all r ∈ V if
and only if ∇ �φ∗ = (�0, 0). The time evolution of the internal
species needs to be stationary to achieve this condition be-
cause ∂t �cX = (∇†M∇ �φ∗)X = �0X holds when ∇ �φ∗ = (�0, 0).

We remark that the definitions of the local excess and
housekeeping EPRs include �φ∗, which is defined in terms of
global information about the RDS. For this reason, the local
excess and housekeeping EPRs cannot be defined solely from
local information. Reflecting this nonlocality, the local excess
and housekeeping EPRs do not sum up to the local EPR
σ loc(r) 
= σ ex,loc(r) + σ hk,loc(r). The nonzero cross-term can
be obtained as σ cross(r) := σ loc(r) − σ ex,loc(r) − σ hk,loc(r) =
2(∇r �φ∗)�

↔
M( �F − ∇r �φ∗) + 2(∇s �φ∗)�m( f − ∇s �φ∗), which

may be positive or negative in sign. It also satisfies∫
V dr σ cross(r) = 0, which maintains the geometric

decomposition globally as σ = σ ex + σ hk.
Wavenumber decomposition.—We also provide the

wavenumber decomposition of the EPR using Parseval’s
identity. We define the weighted Fourier transform of forces
�̂F ′ and f̂ ′ as

F̂ ′
(α)i(k; t ) :=

∫
V

dr
[↔
M

1
2 �F ′]

(α)ie
−ik·r, (100)

f̂ ′
ρ (k; t ) :=

∫
V

dr
[
m

1
2 f ′]

ρ
e−ik·r. (101)

Here, we use the square root of the mobility tensor
↔
M

1
2 and

the edgewise Onsager coefficient matrix m
1
2 , which satisfy∑

γ∈S
∑d

k=1[
↔
M

1
2 ](αγ )ik[

↔
M

1
2 ](γ β )k j = M(αβ )i j and [m

1
2 ]ρρ ′ =√

mρδρρ ′ . The existence of these operators is guaranteed by

the positive-definiteness of
↔
M and m. Note that the elements

of
↔
M

1
2 satisfy [

↔
M

1
2 ](αβ )i j (r; t ) = √

Dαcα (r; t )δαβδi j if the mo-
bility tensor has the simple form in Eq. (53).

Since periodic boundary conditions discretize the
wavenumber, the details of the wavenumber decomposition
differ slightly between cases where periodic boundary
conditions are imposed and cases where they are not. If we
do not impose periodic boundary conditions on the system,
we define the wavenumber EPR as

σ wn(k) := 1

(2π )d
[ �̂F†(k; t ) �̂F(k; t ) + f̂ †(k; t ) f̂ (k; t )]

= 1

(2π )d

⎡
⎣∑

α∈S

d∑
i=1

F̂(α)iF̂(α)i +
∑

ρ

f̂ρ f̂ρ

⎤
⎦ � 0,

(102)

where the superscript † indicates conjugate transpose. We can
obtain the decomposition

σ =
∫
Rd

dk σ wn(k), (103)

by Parseval’s identity. It follows from the Fourier transform
of the delta function, as was the case for Langevin systems
in Eq. (23) (see also Appendix D for the derivation). On the
other hand, if we consider a system with periodic boundaries,

we define the wavenumber EPR as

σ wn(k) := 1

|V | [ �̂F†(k; t ) �̂F(k; t ) + f̂ †(k; t ) f̂ (k; t )]

= 1

|V |

⎡
⎣∑

α∈S

d∑
i=1

F̂(α)iF̂(α)i +
∑

ρ

f̂ρ f̂ρ

⎤
⎦ � 0, (104)

Here, we let |V | denote the volume of the space V . We con-
sider discrete wavenumbers because of the periodic boundary
conditions. With periodic boundary conditions, we can also
obtain the decomposition

σ =
∑

k

σ wn(k), (105)

using the Fourier series expansion of the delta function, δ(r) =∑
k eik·r/|V | (see also Appendix D).
We can also define the wavenumber decomposition of

the excess and housekeeping EPRs, σ ex,wn and σ hk,wn, using

( �̂F∗, f̂ ∗) and ( �̂F − �̂F∗, f̂ − f̂ ∗) instead of ( �̂F, f̂ ), respec-
tively. We can interpret σ ex,wn(k) as the EPR owing to the
projected conservative force F∗ at the wavenumber k. We
can also regard σ hk,wn(k) as the EPR caused by the cyclic
current at the wavenumber k. Note that the geometric ex-
cess/housekeeping decomposition can be violated at each
wavenumber, σ wn(k) 
= σ ex,wn(k) + σ hk,wn(k), as in the case
for Langevin systems.

The local and wavenumber decompositions are based on
the orthonormality of the basis. Therefore, it is also possible to
decompose the EPR using an orthonormal basis other than the
Fourier basis. For example, a wavelet basis [87,88] may allow
us to quantify the dissipation corresponding to particular wave
packets.

C. Numerical examples: Geometric decompositions

Here, we show numerical examples of the geometric de-
compositions for open RDSs. We discuss the Fisher–KPP
equation and the Brusselator model in one dimension, V1 =
[−0.5, 0.5]. For numerical results here and in the following
sections, we use r, k, ∂r , J(α) and F(α) instead of r, k, ∇r,
J (α) and F (α) respectively, because we consider only one-
dimensional systems. We use the same models with the same
parameters for other numerical results in Secs. V F and VI C.

Fisher–KPP equation.—The Fisher–KPP equation consists
of an internal species Z1, an external species Z2, and an auto-
catalytic reaction

Z1 + Z2

κ+
1−⇀↽−

κ−
1

2Z1. (106)

Now, the index sets are S = {1, 2}, X = {1}, Y = {2}, R =
{1}, and RX = {1} = R, and the vectors �c = (c1, c2)�, �cX =
(c1), and �cY = (c2). The stoichiometric matrix is

∇�
s =

(
1

−1

)
. (107)

In this system, we assume that the concentration of the exter-
nal species is kept homogeneous by the interaction with the
outside: c2(r; t ) = 1 holds for all r ∈ V1. We let the mobility
tensor take the simple form in Eq. (53), and assume Fick’s
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law for the diffusion currents, J(α) = −Dα∂rcα . Here, J(2) = 0
because c2(r; t ) is homogeneous and ∂rc2 = 0. We also as-
sume mass action kinetics for the reaction fluxes: j+1 (r; t ) =
κ+

1 c1(r; t )c2(r; t ) = κ+
1 c1(r; t ), j−1 (r; t ) = κ−

1 c1(r; t )2. Then,
we can write the dynamics as

∂t c1 = D1∂
2
r c1 + κ+

1 c1 − κ−
1 c2

1. (108)

We impose the no-flux boundary condition, ∂rc1(r; t )|r=±0.5 =
0. We also use the parameters D1 = 10−4 and (κ+

1 , κ−
1 ) =

(1, 1).
In the Fisher–KPP equation, we can explicitly write down

the condition to determine the potential �φ∗ (85) as

D1∂
2
r c1 + κ+

1 c1 − κ−
1 c2

1

= −∂r (D1c1∂rφ
∗
1 ) + κ+

1 c1 − κ−
1 c2

1

ln (κ+
1 c1) − ln

(
κ−

1 c2
1

)φ∗
1 , (109)

which φ∗
1 = ln (κ+

1 /(κ−
1 c1)) solves.

Therefore, the excess EPR is

σ ex =
∫ 0.5

−0.5
dr

[
D1c1(∂rφ

∗
1 )2 +

(
κ+

1 c1 − κ−
1 c2

1

)
(φ∗

1 )2

ln (κ+
1 c1) − ln

(
κ−

1 c2
1

)
]

=
∫ 0.5

−0.5
dr

[
D1c1(∂r ln c1)2 + (

κ+
1 c1 − κ−

1 c2
1

)
ln

κ+
1

κ−
1 c1

]
.

This is the same as the total EPR σ , because F(1) = ∂r ln c1

and f1 = ln (κ+
1 /(κ−

1 c1)).
In Fig. 4, we numerically show the time series of the local

EPR σ loc and the concentration distribution of internal species
c1. As is well known, in the Fisher–KPP equation, the area
of high concentration of c1 spreads over time [107]: Unlike
standard diffusion, total concentration is not conserved. The
reaction does not occur inside the high-concentration area
because c1 = 1 is the equilibrium concentration of the reac-
tion in Eq. (106) with given parameters. No diffusion occurs
inside the high-concentration area because the concentration
gradient vanishes. As a result, the local EPR is larger at the
boundary between the high- and low-concentration areas, with
no dissipation inside the high-concentration area.

Brusselator model.—The Brusselator model consists of
two internal species, Z1 and Z2, an external species Z3, and
three reactions,

Z3

κ+
1−⇀↽−

κ−
1

Z1, Z1

κ+
2−⇀↽−

κ−
2

Z2, 2Z1 + Z2

κ+
3−⇀↽−

κ−
3

3Z1, (110)

where we label the reactions ρ = 1, 2, 3 from left to
right. The index sets are S = {1, 2, 3}, X = {1, 2}, Y = {3},
R = {1, 2, 3}, and RX = {1, 2, 3} = R, and the vectors �c =
(c1, c2, c3)�, �cX = (c1, c2)�, and �cY = (c3). The stoichio-
metric matrix is

∇�
s =

⎛
⎝ 1 −1 1

0 1 −1
−1 0 0

⎞
⎠. (111)

The concentration of the external species is again assumed
to be homogeneous due to the interaction with the outside:
c3(r; t ) = 1 for all r ∈ V1. We let the mobility tensor have
the simple form in Eq. (53) and assume Fick’s law for the
diffusion currents, J(α) = −Dα∂rcα . Here, J(3) = 0 because

FIG. 4. (a) The time series of c1 in the Fisher–KPP equation.
The area with high c1 (yellow) expands as time passes. (b) The local
EPR σ loc in the Fisher–KPP equation. The local EPR is colored on a
logarithmic scale. Comparing (a) with (b), we can see that dissipation
occurs at the boundary between high- and low-concentration areas.
(c) The EPR σ in the Fisher–KPP equation. Reflecting the relaxation
to the equilibrium state, the EPR is monotonically decreasing in time.

c3 is homogeneous and ∂rc3 = 0. We also assume the
mass action kinetics for the reaction fluxes: j+1 (r; t ) =
κ+

1 c3(r; t ) = κ+
1 , j−1 (r; t ) = κ−

1 c1(r; t ), j+2 (r; t ) = κ+
2 c1(r; t ),

j−2 (r; t ) = κ−
2 c2(r; t ), j+3 (r; t ) = κ+

3 c1(r; t )2c2(r; t ), and
j−1 (r; t ) = κ−

3 c1(r; t )3. Then, the dynamics are given by⎧⎨
⎩

∂t c1 = D1∂
2
r c1 + κ+

1 − κ−
1 c1

−κ+
2 c1 + κ−

2 c2 + κ+
3 c2

1c2 − κ−
3 c3

1
∂t c2 = D2∂

2
r c2 + κ+

2 c1 − κ−
2 c2 − κ+

3 c2
1c2 + κ−

3 c3
1.

(112)

(113)

In the following numerical examples, we use the pa-
rameters as follows: D1 = 1.6 × 10−4, D2 = 10−3, and
(κ+

1 , κ−
1 , κ+

2 , κ−
2 , κ+

3 , κ−
3 ) = (1, 1, 10, 0.1, 1, 1). We also im-

pose the periodic boundary conditions, which let each
wavenumber be determined by an integer n as

k(n) = 2nπ

|V1| = 2nπ, (114)

where |V1| = 1 is the system size. In the following, we abbre-
viate the wavenumber EPRs σ wn(k) and σ ex,wn(k) as σ wn(n)
and σ ex,wn(n).

We demonstrate how the EPR and the excess EPR change
quantitatively with the time evolution of the concentration
distribution. Note that we numerically compute the excess
EPR because the condition determining the potential φ∗ (85)
for the Brusselator model is difficult to solve analytically,
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FIG. 5. The comparison of the EPR and the excess EPR in the Brusselator model. (a) The time series of c1. (b) The time series of c2. The
symmetry of the pattern changes from threefold with time evolution. It reaches sixfold symmetry at around t = 25. (c) The local EPR σ loc

colored on a logarithmic scale. In contrast to the Fisher–KPP equation [Fig. 4(b)], σ loc is large on the peaks of the pattern (areas where c1 is
high), not on the edges of the pattern. (d) The local excess EPR σ ex,loc colored on a logarithmic scale. It tends to be larger on the edge of the
pattern. (e) The EPR and the wavenumber EPRs for some modes. The EPR σ (black line) does not vanish to maintain the pattern. Because
of the threefold symmetry of the pattern, the wavenumber EPR σ wn(n) is small if n 
= 3n′ for any integer n′. Further, while the wavenumber
EPRs of the form σ wn(6n′) do not decay, those with n 
= 6n′ decay even if n is a multiple of three. It reflects that the symmetry of the pattern
becomes sixfold as the system approaches the steady state. (f) The excess EPR and the wavenumber excess EPRs for some modes. The excess
EPR σ ex (black line) is considerably smaller than the EPR and decreases as the system approaches the steady state. The threefold symmetry
of the pattern makes the wavenumber excess EPR be small for n that are not multiples of three, as in the case of the wavenumber EPRs. In
contrast to the EPR, there is a qualitative order σ ex,wn(6n′) � σ ex,wn(3n′). This is caused by two facts: (1) the excess EPR reflects the change in
pattern, and (2) the Fourier components corresponding to wavenumbers that are multiples of three and not six decay as the system approaches
the steady state, while those corresponding to multiples of six barely change. (g) Concentrations c1(r; t ) (cyan line) and c2(r; t ) (orange line) as
a function of spatial location r at t = 40. (h) Values of σ loc(r) (gray line) and σ ex,loc(r) (blue line) as a function of spatial location r at t = 40.
The local EPR becomes large on the peaks of the pattern, while the local excess EPR has strong peaks at the edges of the pattern. (i) Values of
�cX (t ) as a function of spatial location r at t = 48. (j) The values σ loc(r) (gray line) and σ ex,loc(r) (blue line) as a function of spatial location r
at t = 48. Both of the local EPRs become large on the peaks of the pattern.

unlike the case of the Fisher–KPP equation. The time series
of the concentration distribution and the EPRs are shown in
Fig. 5.

We can see that the excess EPR [black line in Fig. 5(f)]
decreases (nonmonotonically) as the system approaches the
steady state. In addition, the excess EPR σ ex is much smaller
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than the EPR σ [black line in Fig. 5(e)] because the majority
of the dissipation is the housekeeping EPR, which is caused by
cyclic currents that do not affect the time evolution. In other
words, for these parameter values, more dissipation is used to
maintain the pattern than to change it.

The local EPRs show the difference between the EPR and
the excess EPR in more detail. In contrast to the previous
model, the local EPR σ loc is larger on the pattern [areas where
c1 is high in Fig. 5(a)], rather than the edges of the pattern.
This tendency reflects that the violation of the detailed balance
requires dissipation to maintain the pattern, even when the
change in the concentration is stationary. On the other hand,
the local excess EPR σ ex,loc is large at the edges of the pattern
unless the system is close to the steady state. This reflects the
following fact: When the system is far from the steady state,
the time evolution tends to be faster at the edges of the pattern,
where the gradients of concentrations are larger. We also show
the details of these tendencies in Figs. 5(g)–5(j): at t = 40, the
local excess EPR is large on the edge of the pattern, while the
local EPR is large on the pattern, as shown in Fig. 5(h). On the
other hand, both local EPRs take a large value on the pattern
once the system approaches steady state (t = 48), as shown in
Fig. 5(j).

The wavenumber decomposition shows the difference be-
tween the EPR and the excess EPR more explicitly. This is
because the symmetry of the pattern is clear in this numerical
example. Here, we focus on the change in the symmetry of
the pattern from threefold to sixfold. Near the steady state, the
wavenumber EPR σ wn(n) is larger at n that are multiples of
six than at other multiples of three [Fig. 5(e)]. This reflects
that the symmetry of the pattern is sixfold at the steady state.
On the other hand, near the steady state, the wavenumber
excess EPR is larger at n that are multiples of three but not
multiples of six [Fig. 5(f)]. This reflects the faster decay of
the wavenumber components of the pattern corresponding to
n that are multiples of three rather than multiples of six.

V. OPTIMAL TRANSPORT AND THERMODYNAMIC
SPEED LIMITS FOR REACTION-DIFFUSION SYSTEMS

We can understand dissipation in RDSs from the perspec-
tive of thermodynamic trade-off relations, which quantify
the minimum dissipation required to achieve an objective.
In particular, we focus on the thermodynamic speed limits
(TSLs), which are trade-off relations between the speed of
the dynamics and dissipation. They are geometric relations
since they typically use some measure of “distance” between
the initial and final patterns to quantify the speed. We mea-
sure the distance between two patterns of an RDS with the
Wasserstein distance, similar to Langevin systems and MJPs
[39–45,65–68].

An RDS is a composite of chemical reactions and diffusive
dynamics. Since some kinds of Wasserstein distance have
been studied for both types of dynamics, we can general-
ize the 1-Wasserstein and 2-Wasserstein distances to RDSs
to derive TSLs. Sections V A and V B are dedicated to
the generalization of the Wasserstein distances, while some
differences between these distances are discussed in Sec. V C.
We derive TSLs with the 1- and 2-Wasserstein distances for
RDSs using a connection between the 2-Wasserstein distance

and the excess EPR in Sec. V D. We revisit the TSLs in terms
of minimum dissipation in Sec. V E. The final section V F
provides numerical demonstrations of the TSLs.

Note that we need to specify boundary conditions to de-
fine the Wasserstein distance variationally (otherwise, it will
not be well defined). We adopt here the boundary conditions
discussed in Sec. III B for quantities that are considered as
currents, e.g., a quantity obtained by acting the mobility tensor
on a force.

A. 1-Wasserstein distance for reaction-diffusion systems

Fixing the boundary conditions and stoichiometry, we de-
fine the 1-Wasserstein distance by generalizing the Beckmann
problem (30) as

W1,X (�cA, �cB) := inf
J ′

{∫ τ

0
dt |J ′|RD

}
, (115)

with the norm of current | · |RD defined as

|J ′|RD :=
∫

V
dr

⎡
⎣∑

α∈S
‖J′

(α)‖ +
∑
ρ∈R

| j′ρ |
⎤
⎦. (116)

Here, we impose the following condition on J ′: there exists a
time series of concentration distributions �c′ satisfying

∂t �c′
X = (∇†J ′)X , �c′

X (0) = �cA
X , �c′

X (τ ) = �cB
X . (117)

The condition means that the minimization is performed over
all time series that obey the continuity equation with current
J ′ connecting �cA and �cB only with respect to the internal
species. Note that the concentrations of the external species
are irrelevant in the formula. As a result, the 1-Wasserstein
distance can be zero even if �cA 
= �cB as long as �cA

X = �cB
X .

Therefore, it should be regarded as a distance between con-
centration distributions of internal species rather than the full
concentration profiles.

We can reduce the optimization for time in Eq. (115) as

W1,X (�cA, �cB) = inf
U

|U |RD. (118)

with the constraint that U satisfies

�cB
X − �cA

X = (∇†U )X , (119)

and the boundary condition on the diffusion part of U for
the internal species. Using this reduced optimization problem,
we can compute W1,X numerically with less computational
complexity. We provide the derivation of Eq. (118) and its
geometric interpretation in Appendix E 1.

In addition, we can also generalize the Kantorovich–
Rubinstein duality (32) to RDSs by considering the dual
problem of the minimization problem in Eq. (118) (see the
details in Appendix E 2) as

W1,X (�cA, �cB) = sup
�φ∈Lip1

X

〈 �φ, �cB − �cA〉. (120)

Here, the set Lip1
X appearing in the conditions of optimization

is a generalization of the set of 1-Lipschitz functions Lip1 in
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Eq. (33), and defined as

Lip1
X := { �φ ∣∣∀α ∈ X , ‖∇rφα‖ � 1;

∀α ∈ Y, φα = 0;

∀ρ ∈ RX , |(∇s �φ)ρ | � 1
}
. (121)

This representation supports the justification for generalizing
the 1-Wasserstein distance as the form in Eq. (115). It was also
used to obtain an analytical form of the 1-Wasserstein distance
in the numerical example that appears in Sec. V F.

B. 2-Wasserstein distance for reaction-diffusion systems

We define the 2-Wasserstein distance between concen-
tration distributions of the internal species while fixing the
boundary conditions, the stoichiometry, the �c dependence of
the Onsager operator, and the concentration distribution of the
external species as

W2,X (�cA, �cB|�bY )2 := inf
�c′,F ′

{
τ

∫ τ

0
dt〈〈F ′,F ′〉〉M�c′

}
, (122)

where we impose the conditions

∂t �c′
X = (∇†M�c′F ′)X , (123)

�c′
X (0) = �cA

X , �c′
X (τ ) = �cB

X , (124)

and

�c′
Y (t ) = �cA

Y = �cB
Y = �bY , (125)

on �c′ and F ′. In particular, the conditions in Eq. (125) cor-
respond to the concentration of the external species being
fixed. Here, we write M�c′ instead of M because we want to
emphasize its dependence on concentration �c′. In addition, we
assume that

↔
M and m depend on time only through concentra-

tion and not explicitly, so that W2,X is invariant to changes
of the parameter τ . Note that the 2-Wasserstein distance
W2,X (�cA, �cB|�bY ) is not a distance between concentration dis-
tributions of all species, but only those of the internal species,
as in the case of the 1-Wasserstein distance. This is because
the condition (125) fixes the concentration distribution of the
external species to �bY .

This definition generalizes the Benamou–Brenier for-
mula of the 2-Wasserstein distance for Langevin systems in
Eq. (28), MJPs [108], and CRNs [45]. This 2-Wasserstein dis-
tance also extends the dissipation distance [85,86], defined in
the context of the gradient flow structure of detailed-balanced
RDSs, to general open systems.

We can also rewrite Eq. (122) in the form of an optimiza-
tion problem not for the force F ′ but for the potential �φ as

W2,X (�cA, �cB|�bY )2 := inf
�φ,�c′

{
τ

∫ τ

0
dt〈〈∇ �φ,∇ �φ〉〉M�c′

}
, (126)

with the conditions

∂t �c′
X = (∇†M�c′∇ �φ)X , �φY = �0Y , (127)

and the same conditions as in Eqs. (124) and (125) (see also
Appendices E 3 and E 4). This representation originates from
the following two facts: the definition of the 2-Wasserstein
distance corresponds to the minimization problem of EP, and

such the minimization is achieved by a conservative force in
short-time limit (91).

C. Features of 1- and 2-Wasserstein distances

The 1- and 2-Wasserstein distances are not distances
between concentration distributions of all the species but be-
tween those of the internal species, as mentioned in earlier
sections. In fact, we can prove that the axioms of distance
hold for W1,X and W2,X as distances between concentration
distributions of the internal species (see also Appendix E 5).

In addition, these distances cannot be defined between arbi-
trary concentration distributions. The constraints on dynamics
in Eq. (117) or Eq. (123) let us define the 1- and 2-Wasserstein
distances between the concentration distributions �cA and �cB

satisfying

�cB − �cA ∈ ImX∇†, (128)

where the set ImX∇† is defined as

ImX∇† := {�c′ | ∃J ′ , �c′
X = (∇†J ′)X }. (129)

Here, we impose the boundary condition that was imposed on
the RDS on the diffusion part of J ′ in Eq. (129). In other
words, we can define W1,X (�cA, �cB) and W2,X (�cA, �cB|�bY ) only
for �cB ∈ �cA + ImX∇† := {�c′ | �c′ − �cA ∈ ImX∇†}, which is a
generalization of the concentration space of a CRN restricted
by stoichiometry. We call this affine space the stoichiometric
manifold following Ref. [109] (it is also called the stoi-
chiometric compatibility class [110]). Thus, the form of the
operator ∇† and the boundary conditions determine whether
the Wasserstein distances between a given pair of concentra-
tion distributions are well defined. Note that the Wasserstein
distances between concentration distributions belonging to the
same time series obtained by the time evolution according to
the RDSs are always well defined.

The 1- and 2-Wasserstein distances require different infor-
mation to compute. We need two distributions of the internal
species �cA

X and �cB
X , the operator ∇ (or ∇†) and the boundary

conditions to obtain the 1-Wasserstein distance. In contrast,
we need the time-independent concentration distribution of
the external species �bY and the form of M as a functional
of the concentration distributions, in addition to them, to
obtain the 2-Wasserstein distance. We can regard ∇ and the
boundary conditions as having information on the topology
of the CRN and the topology of the space where diffusion
occurs, and M as having information on the kinetic aspect of
diffusion and reactions. Therefore, the topology determines
the 1-Wasserstein distance, and the topology and the kinetic
properties determine the 2-Wasserstein distance.

Because of the difference in the information required to
define the 1- and 2-Wasserstein distances, there is no simple
inequality between W1,X and W2,X , as seen in Eq. (27). To
compare the 1- and 2-Wasserstein distances, we define the fol-
lowing functional of the Onsager operator, which represents
the intensity of reactions and diffusive dynamics,

|M|tot
X :=

∫
V

dr

⎡
⎣Mmax

X (r; t ) +
∑

ρ∈RX

mρ (r; t )

⎤
⎦. (130)
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Here, the intensity of diffusive dynamics of the internal
species Mmax

X (r; t ) is defined by evaluating the magnitude of
the mobility tensor as

Mmax
X (r; t ) := max

�F ′
�F ′�↔

M(r; t ) �F ′, (131)

under the following conditions:

∀α ∈ X , ‖F ′
(α)‖ = 1, ∀α ∈ Y, F ′

(α) = 0. (132)

These conditions allow for the equal incorporation of contri-
butions from each internal chemical species when measuring
the intensity of diffusion. When we consider the simple mo-
bility tensor (53), our definition of Mmax

X (r; t ) reduces to

Mmax
X (r; t ) =

∑
α∈X

Dαcα (r; t ). (133)

This form confirms that Mmax
X (r; t ) represents the intensity of

diffusion, since it becomes large at (r; t ) where the concen-
tration of species with a large diffusion coefficient is high.
We also regard mρ as the intensity of the ρth reaction since it
measures the average reaction rate of the forward and reverse
fluxes with the logarithmic mean.

We consider the following situation: (i) the �c dependence
of the Onsager operator is fixed, and (ii) the t dependence of
the Onsager operator is based only on the t dependence of
�c. We represent its dependence as M�c. The intensity of the
Onsager operator enables us to obtain an inequality between
the 1- and 2-Wasserstein distances as

W1,X (�cA, �cB)2〈|M�c� |tot
X
〉
τ

� W2,X (�cA, �cB|�bY )2 (134)

under the same topology, namely, the same boundary con-
ditions and the same stoichiometry (see Appendix E 6 for
the proof). Here, the concentration distribution �c�(t ) is the
optimizer for the 2-Wasserstein distance (122), which satisfies
�c�
X (0) = �cA

X , �c�
X (τ ) = �cB

X , and �c�
Y (t ) = �bY . We also let 〈· · · 〉τ

denote the time average as 〈· · · 〉τ = (1/τ )
∫ τ

0 dt · · · .

D. Thermodynamic speed limits with Wasserstein distances

We can find a relation between the excess EPR and the
2-Wasserstein distance for RDSs as in the case of Langevin
systems, MJPs, and CRNs [45,62,63]. The relation leads to
TSLs based on the 2-Wasserstein distance. Moreover, the in-
equality between the 1- and 2-Wasserstein distances enables
us to obtain TSLs based on the 1-Wasserstein distance. We
focus on the 2-Wasserstein distance. We define the path length
between the initial and final concentration distributions of
internal species induced by the 2-Wasserstein distance as

l2,τ :=
∫ τ

0
dt v2(t ), (135)

with the speed of the dynamics of �c(t ) on the set �c(0) +
ImX∇† (see also Fig. 6),

v2(t ) := lim
Δt→0

W2,X (�c(t ), �c(t + Δt )|�cY (t ))

Δt
. (136)

Unlike the case of the 2-Wasserstein distance, we can define
v2(t ) even if M explicitly depends on time by fixing M as
the value at time t .

FIG. 6. Schematic illustration of the relation between the 2-
Wasserstein distance and the excess EPR. The trajectory of the
realized dynamics during the period [0, τ ] (light-blue curve) is a
curve with length l2,τ on the stoichiometric manifold �c(0) + ImX∇†

(gray space). We can define the geodesic between the initial and final
concentration distributions, �c(0) and �c(τ ) (yellow line) if the concen-
trations of the external species are constant in time as �cY (t ) = �cY (0).
The geodesic also lies on the stoichiometric manifold and has length
W2,X (�c(0), �c(τ )|�cY (0)). The speed of the concentration distribution
moving on the stoichiometric manifold v2(t ) equals the square root
of the excess EPR,

√
σ ex.

The speed of the dynamics squared equals the excess EPR,

σ ex = v2(t )2. (137)

We can prove this relation as follows. Taking Δt � 1, the
definition of the 2-Wasserstein distance in Eq. (122) and the
constraints in Eqs. (123)–(125) lead to

W2,X (�c(t ), �c(t + Δt )|�cY (t ))2

= Δt2 inf
F ′

〈〈F ′,F ′〉〉M�c(t ) + o(Δt2), (138)

with the constraint

�cX (t + Δt ) − �cX (t ) = Δt (∇†M�c(t )F ′)X + o(Δt ). (139)

We can obtain

lim
Δt→0

W2,X (�c(t ), �c(t + Δt )|�cY (t ))2

Δt2

= inf
F ′|∂t �cX (t )=(∇†M�c(t )F ′ )X

〈〈F ′,F ′〉〉M�c(t ) (140)

by taking limit Δt → 0 after dividing both sides of Eq. (138)
by Δt2 and both sides of Eq. (139) by Δt . Then we de-
rive the relation between the speed of the dynamics and
the excess EPR (137) by comparing the right-hand side
of Eq. (140) and a form of the excess EPR (91) because
∂t �cX (t ) = (∇†M�c(t )F )X holds for the force F in the original
dynamics.

This relation between the speed of the dynamics and the
excess EPR leads to the TSL,

l2
2,τ � τ�ex

τ � τ�τ . (141)
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The first inequality is derived from the Cauchy–Schwarz in-
equality [

∫ τ

0 dt v2(t )]2 � [
∫ τ

0 dt][
∫ τ

0 dt v2(t )2] and the prop-
erty of the excess EPR in Eq. (137). We remark that the
equality of the first inequality holds if and only if v2(t ) (or
equivalently σ ex) is independent of time, which follows from
the conditions for the equality of the Cauchy–Schwarz in-
equality to hold.

We also obtain a lower bound determined from more lim-
ited information, only the initial and final distributions,

W2,X (�c(0), �c(τ )|�cY (0))2 � l2
2,τ � τ�ex

τ � τ�τ , (142)

if we consider the system where the concentrations of all
the external species and the concentration dependence of
M are independent of time. Here, the first inequality is a
consequence of the triangle inequality for the 2-Wasserstein
distance, which is proved in Appendix E 5. The TSL for l2,τ

is tighter than the one for W2,X (�c(0), �c(τ )) reflecting the fact
that the path {�cX }t∈[0,τ ] is generally not the geodesic, whose
length is W2,X (�c(0), �c(τ )).

The TSL for RDSs (141) implies a trade-off between the
dissipation due to pattern formation and the change speed
of the pattern because the TSL in Eq. (141) is rewritten as
(l2,τ /τ )2 � (�ex

τ /τ ), where l2,τ /τ means the change speed
from the initial pattern at t = 0 to the final pattern at t = τ ,
and �ex

τ /τ = 〈σ ex〉τ means the time average of dissipation
due to the time evolution of the pattern. This trade-off relation
means that the slower the speed of pattern formation, the
smaller the dissipation can be.

The 1-Wasserstein distance provides a different series of
TSLs. Similar to Eq. (135), we define the path length between
the initial and final distributions with the 1-Wasserstein dis-
tance as

l1,τ :=
∫ τ

0
dt v1(t ), (143)

where the integrand v1(t ) indicates the speed of dynamics
measured with W1,X ,

v1(t ) := lim
Δt→0

W1,X (�c(t ), �c(t + Δt ))
Δt

. (144)

The inequality between the 1- and 2-Wasserstein distances
(134) and this speed v1 provide a lower bound of the excess
EPR,

σ ex = v2(t )2 � v1(t )2

|M|tot
X

. (145)

This inequality leads to the TSLs based on the 1-Wasserstein
distance (see the derivations in Appendix E 7),

W1,X (�c(0), �c(τ ))2〈|M|tot
X
〉
τ

�
l2
1,τ〈|M|tot
X
〉
τ

� τ�ex
τ � τ�τ , (146)

which generalize TSLs obtained for MJPs [44] to RDSs
and tighten them by using the excess EP and the line
length l1,τ . As in the case of MJPs, equality between
the leftmost and rightmost sides is achievable as τ�τ =
W1,X (�c(0), �c(τ ))2/〈|M|tot

X 〉τ . We discuss this equality from
the viewpoint of minimum dissipation in the next section.

In contrast to the TSLs for the 2-Wasserstein distance
(142), we can always consider the leftmost term in Eq. (146).

This is because we can define the 1-Wasserstein distance
even when �cY and the �c dependence of M change in time.
We also remark that the TSL for l1,τ is tighter than the
one for W1,X (�c(0), �c(τ )). This reflects the fact that the path
{�cX }t∈[0,τ ] is generally not the geodesic, whose length is
W1,X (�c(0), �c(τ )), as in the case of the 2-Wasserstein distance
(142).

The TSL for the 1-Wasserstein distance provides a more
detailed physical insight than the one with the 2-Wasserstein
distance because the 1-Wasserstein distance lets us separately
treat the kinetic parameters and the speed of the time-
evolution, which are merged in the case of the 2-Wasserstein
distance. To obtain this physical insight, we rewrite the TSL
l2
1,τ /〈|M|tot

X 〉τ � τ�ex
τ in Eq. (146) as [(l1,τ /τ )2/〈|M|tot

X 〉τ ] �
(�ex

τ /τ ), where l1,τ /τ is the change speed of the pattern mea-
sured with the 1-Wasserstein distance, and 〈|M|tot

X 〉τ indicates
the time average of intensity of reactions and diffusive dynam-
ics. This rewriting allows us to regard the TSLs as trade-off
relations between the dissipation due to pattern formation,
speed of pattern change, and intensity of reactions and dif-
fusion. Simply put, smaller dissipation is possible when the
speed of pattern change is slower, or when the intensity of
reactions and diffusion is greater.

We also remark that it is not obvious which lower bound
of τ�ex

τ is tighter: W2,X (�c(0), �c(τ )|�cY (0))2 in Eq. (142)
or W1,X (�c(0), �c(τ ))2/〈|M|tot

X 〉τ in Eq. (146), even though
there is the hierarchy in short-time limit (145). This is
because the denominator in the left-hand side of the inequal-
ity between W1,X (�c(0), �c(τ )) and W2,X (�c(0), �c(τ )) (134) is
different from the denominator on the left-hand side of the
TSL for W1,X (�c(0), �c(τ )) (146): the former refers to the
optimal time series of concentration distributions for the 2-
Wasserstein distance, �c�, while the latter refers to the original
time series, �c. Similarly, it is not clear which lower bound is
tighter: l2

2,τ in Eq. (142) or l2
1,τ /〈|M|tot

X 〉τ in Eq. (146) (see also
Appendix E 7).

E. Minimum dissipation and optimal transport

We consider the minimum dissipation required to evolve
the concentration distribution of the internal species from the
initial distribution �cX (0) to the final distribution �cX (τ ) over
time τ . Here, we regard the dissipation as the functional of
the force F ′ and the Onsager operator M′ as

�τ [M′,F ′] =
∫ τ

0
dt〈〈F ′,F ′〉〉M′ , (147)

based on the form of the EPR (75).
In fact, the minimum dissipation can be made to vanish

by letting the intensity of reactions and diffusive dynamics
|M|tot

X be infinite. Therefore, minimum dissipation must be
considered under constraints on the Onsager operator M.
Here, we show that the 1- and 2-Wasserstein distances provide
the minimum dissipation under different physical constraints
on the Onsager operator M.

We can relate the 2-Wasserstein distance to the minimum
dissipation as follows. We consider the following minimiza-
tion problem

inf
�c′,F ′

�τ [M�c′ ,F ′] (148)
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under four conditions:
(i) the internal part of the concentration distribution �c′

X satis-
fies

�c′
X (0) = �cX (0), �c′

X (τ ) = �cX (τ ), (149)

(ii) the time evolution of �c′
X is given by

∂t �c′
X = (∇†M�c′F ′), (150)

(iii) the external part of the concentration distribution �c′
Y is

independent of time, i.e., it satisfies

�c′
Y (t ) = �cY (0), (151)

for all t ∈ [0, τ ], and
(iv) the Onsager operator M�c′ depends on time only through
�c′. This minimization is related to the 2-Wasserstein distance
as follows:

inf
�c′,F ′

�τ [M�c′,F ′] = W2,X (�c(0), �c(τ )|�cY (0))2

τ
. (152)

It is directly derived from the definition of the 2-Wasserstein
distance (122).

The optimal force in the minimization problem (152) is
given by the one in the minimization problem in the definition
of the 2-Wasserstein distance (122) and it is conservative. The
conservativeness is verified by the fact that the 2-Wasserstein
distance corresponds to the minimization problem over con-
servative forces (126). When the system is driven by the
optimal force, the concentration distribution moves on the
geodesic determined by the 2-Wasserstein distance with con-
stant speed,

v2 = W2,X (�c(0), �c(τ )|�cY (0))
τ

. (153)

This is verified by considering the optimizer of the 2-
Wasserstein distance (see also Appendix E 4).

The minimum dissipation (152) ensures that the equalities
of the TSLs for the 2-Wasserstein distance in Eq (142) are
achievable. It lets us regard the TSL for the 2-Wasserstein
distance as an achievable lower bound of dissipation. The
properties of the optimizer of the minimum dissipation (152)
yield the following consequences when the system achieves
the equality of the TSL for the 2-Wasserstein distance: The
conservativeness of the optimal force makes the housekeeping
EPR disappear, and the constant speed (153) makes the EPR
independent of time.

We can also relate the 1-Wasserstein distance to the
minimum dissipation when the dependence of the Onsager
operator on the concentration distribution is controllable. We
consider the following minimization problem

inf
M′,F ′

�τ [M′,F ′] (154)

under two conditions:
(i) the current M′F ′ changes the concentration distribution
from the initial to the final distribution,

�cX (τ ) − �cX (0) =
(

∇†
∫ τ

0
dt M′F ′

)
X

, (155)

(ii) the intensity of reactions and diffusive dynamics has an
upper bound M0, 〈|M′|tot

X
〉
τ

� M0. (156)

This minimization is related to the 1-Wasserstein distance as
follows (see Appendix E 8 a for the proof),

inf
M′,F ′

�τ [M′,F ′] = W1,X (�c(0), �c(τ ))2

τM0
. (157)

As an optimizer of the minimization problem in Eq. (157),
we can take an Onsager operator M� = ↔

M� ⊕ m� and a
force F� = ( �F�, f �) that are independent of time and satisfy
|τM�F�|RD = W1,X (�c(0), �c(τ )) (see also Appendix E 8 a).
Thus, the concentration distribution moves on the geodesic
determined by the 1-Wasserstein distance with the constant
speed,

v1 = W1,X (�c(0), �c(τ ))
τ

, (158)

when the system is driven by the optimizer (M�,F�). We
remark that the time independence of the optimizer explicitly
provides the geodesic as follows: let �c� denote the concen-
tration distribution whose internal part evolves according to
∂t �c�

X = (∇†M�F�)X , then the internal part of �c� satisfies

�c�
X (t ) =

(
1 − t

τ

)
�cX (0) + t

τ
�cX (τ ), (159)

since M�F� does not depend on time.
We can also reinterpret the optimizer (M�,F�) from an

operational viewpoint. We recombine the reaction part of the
optimizer m� and f � into the forward and reverse fluxes as
below. Let us define the forward and reverse fluxes j±�

ρ as

j+�
ρ := e f �

ρ

e f �
ρ − 1

m�
ρ f �

ρ , j−�
ρ := 1

e f �
ρ − 1

m�
ρ f �

ρ . (160)

Then, these satisfy the following relations: f �
ρ = ln( j+�

ρ / j−�
ρ )

and m�
ρ = ( j+�

ρ − j−�
ρ )/ ln( j+�

ρ / j−�
ρ ). In particular, if the reac-

tions obey mass action kinetics, we can obtain the reaction rate
constants that realize the fluxes j±�

ρ . Similarly, if the mobility
tensor has the simple form (53) and the system is an ideal
dilute solution, we can also obtain the diffusion coefficients
and the mechanical forces that realize

↔
M� and �F� (see also

Appendix E 8 b).
The minimum dissipation (157) also ensures that the equal-

ities of the TSLs for the 1-Wasserstein distance in Eq. (146)
are achievable by setting M0 = 〈|M|tot

X 〉τ . It provides the TSL
for the 1-Wasserstein distance with physical meaning, as an
achievable lower bound on dissipation. When the system
achieves the equality of the TSL for the 1-Wasserstein dis-
tance, the EPR is independent of time, since the optimizer
of the minimum dissipation with the 1-Wasserstein distance
(157) does not depend on time. We also remark that the EP
equals the excess EP under the optimal protocol since the
leftmost and rightmost sides in the TSLs (146) coincide. It
implies that we can choose a conservative force as an opti-
mizer of the minimum dissipation problem (157), which is
verified with the Kantorovich–Rubinstein duality (see also
Appendix E 8 c).
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FIG. 7. The TSLs and optimal transport in the Fisher–KPP equation. (a) The time series of c1. The figure is the same as Fig. 4(a). (b) Various
lengths between �c(0) and �c(t ): l1,t , W1,X (�c(0), �c(t )), LX (�c(0), �c(t )), and Ltot

X (�c(0), �c(t )). They have the same value for all time in the time
series. (c) The original time series of the concentration distribution embedded in a two-dimensional plane by multidimensional scaling, which
preserves the 1-Wasserstein distance between distributions as much as possible. Each point represents the concentration distribution at the time
specified by the color. In this case, the time series is placed strictly on a straight line since l1,t = W1,X (�c(0), �c(t )) holds for all t . (d) The TSLs.
All the TSLs are confirmed to hold, and the one based on the path length with the 2-Wasserstein distance l2,t is relatively tighter. The gray line
indicates zero. (e) The time series generated by the optimal protocol that achieves the minimum dissipation given by the 1-Wasserstein distance
(157). We use τ = 10 and M0 = 〈|M|tot

X 〉τ , which is obtained by the original time evolution. It is embedded in the same two-dimensional plane
as (c). The optimal protocol moves the pattern along the shortest path from the initial distribution �c(0) to the destination �c(τ ) with constant
speed. (f) The achievement of the equality of the TSL for the 1-Wasserstein distance by the same optimal protocol as the one used in (e). The
black line and the red-dotted line are t�t and the TSL for the 1-Wasserstein distance under the optimal protocol, respectively.

F. Numerical examples: Optimal transport
and thermodynamic speed limits

We show numerical results for the TSLs [Eqs. (146) and
(141)] by using the same time series as in Sec. IV C. We
show the results for the Fisher–KPP equation in Fig. 7,
and those for the Brusselator in Fig. 8. We compute the 1-
Wasserstein distance by the primal-dual algorithm [111,112].
We utilize the multidimensional scaling [113] to embed
the orbit of the time evolution on the stoichiometric man-
ifold into a two-dimensional plane. This method keeps the
pairwise 1-Wasserstein distances between the concentration
distributions at any two times as close as possible (for de-
tails, see Appendix E 9). To compare with the behavior of
the 1-Wasserstein distance, we use the L1 distance between

concentration distributions of the internal species,

LX (�c(0), �c(τ )) :=
∑
α∈X

∫
V

dr|cα (r; τ ) − cα (r; 0)|, (161)

and the L1 distance between total concentrations of the inter-
nal species,

Ltot
X (�c(0), �c(τ )) :=

∑
α∈X

∣∣∣∣
∫

V
dr cα (r; τ ) −

∫
V

dr cα (r; 0)

∣∣∣∣.
(162)

Note that LX accounts for not only changes in total concen-
trations but also changes in the shape of the pattern, which is
not taken into account in Ltot

X . The triangle inequality implies
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FIG. 8. The TSLs and optimal transport in the Brusselator model. (a) The time series of c1. The figure shows the time interval [0,30] from
Fig. 5(a). (b) Various lengths between �c(0) and �c(t ): l1,t , W1,X (�c(0), �c(t )), LX (�c(0), �c(t )), and Ltot

X (�c(0), �c(t )). We can see that the 1-Wasserstein
distance satisfies the triangle inequality l1,t � W1,X (�c(0), �c(t )) and has no obvious relationship with the other distances. (c) The original time
series of the concentration distribution embedded in a two-dimensional plane by multidimensional scaling, which preserves the 1-Wasserstein
distance between distributions as much as possible. Each point represents the concentration distribution at the time specified by the color. The
concentration first moves away from the initial distribution and later returns toward it. (d) The TSLs. All the TSLs are confirmed to hold, and
the one based on the path length with the 2-Wasserstein distance l2,t is relatively tight. The gray line indicates zero. (e) The time series generated
by the optimal protocol that achieves the minimum dissipation given by the 1-Wasserstein distance (157). We use τ = 30 and M0 = 〈|M|tot

X 〉τ ,
which is obtained from the original time evolution. It is embedded in the same two-dimensional plane as (c). The optimal protocol moves
the pattern along the shortest path from the initial distribution �c(0) to the destination �c(τ ) with a constant speed. (f) The achievement of the
equality of the TSL for the 1-Wasserstein distance by the same optimal protocol as the one used in (e). The black line and the red dotted line
are t�t and the TSL for the 1-Wasserstein distance under the optimal protocol, respectively.

LX (�c(0), �c(τ )) � Ltot
X (�c(0), �c(τ )). If the system is well mixed,

these distances become equivalent.
Fisher–KPP equation.—In Fig. 7(b), we show the four

lengths between �c(0) and �c(t ) for the Fisher–KPP equation,
l1,t , W1,X (�c(0), �c(t )), LX (�c(0), �c(t )), and Ltot

X (�c(0), �c(t )). We
can see that the lengths have the same value for all t . This
equivalence of lengths is due to the following two conditions:
(i) the system consists of only one internal species Z1 and only
one reaction, and (ii) the concentration is monotonically in-
creasing for all locations and time, i.e., ∂t c1 � 0 holds for all r
and t (see Appendix E 10 a for the proof). From the viewpoint
of the path on the stoichiometric manifold, the equivalence
W1,X (�c(0), �c(t )) = l1,t implies that the pattern evolves along
the geodesic as shown in Fig. 7(c). We also remark that the

speed of the time evolution is not constant, i.e., it slows down
over time.

Reflecting the monotonic increase of the area with a high
concentration of c1 shown in Fig. 7(a), the lengths between
�c(0) and �c(t ) increase monotonically over time. In particular,
the lengths increase approximately in proportion to t when
the concentration of Z1 is not saturated (roughly 0 � t � 5).
We remark that the lengths are strictly proportional to t if the
concentration distribution is a traveling wave solution with
one wavefront, which is a simpler case than the numerical
example (see also Appendix E 10 b).

In Fig. 7(d), we demonstrate the TSLs using the Fisher–
KPP equation. We use the EP �t instead of the excess EP
�ex

t because �t = �ex
t holds as explained in Sec. IV C. The
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squared length l2
2,t bounds t�t especially tight when the con-

centration of Z1 is not saturated (roughly 0 � t � 5). This is
because the EPR for the traveling wave solution of the Fisher–
KPP equation is independent of time [50] so that v2(t ) satisfies
the condition for the equality of the TSL. However, in the
time region where the change in the concentration distribution
is small, all of the TSLs become looser because t�t keeps
increasing in proportion to time while the lengths saturate as
the system approaches the steady state.

We can construct an optimal protocol that reduces the
thermodynamic cost of changing the pattern from �cX (0) to
�cX (τ ) to the minimum value provided by the TSL for the
1-Wasserstein distance as discussed in Sec. V E. It is ob-
tained by solving the minimum dissipation problem (157)
with M0 = 〈|M|tot

X 〉τ . In the following, let us fix τ = 10. From
a geometric point of view, this protocol moves the pattern
from �c(0) to �c(τ ) along the geodesic (159) as in the original
time evolution; the difference with the original time evolution
is that the speed on the stoichiometric manifold is uniform, as
shown in Fig. 7(e).

In Fig. 7(f), we show that t�t and the TSL for the 1-
Wasserstein distance coincide under the optimal protocol.
This is verified as follows. Since the optimizer of the min-
imization problem in Eq. (157) is independent of time, we
obtain

t�t =
(

t

τ

)2

τ�τ . (163)

The time-independence of the optimizer also lets 〈|M|tot
X 〉t =

〈|M|tot
X 〉τ hold for all t . We also have W1,X (�c(0), �c(t )) =

(t/τ )W1,X (�c(0), �c(τ )) since the concentration distribution
moves on the geodesic with a constant speed. Thus, the lower
bound provided by the TSL for the 1-Wasserstein distance
satisfies

W1,X (�c(0), �c(t ))2〈|M|tot
X
〉
t

=
(

t

τ

)2 W1,X (�c(0), �c(τ ))2〈|M|tot
X
〉
τ

. (164)

Combining Eq. (163) and Eq. (164) concludes that t�t =
W1,X (�c(0), �c(t ))2/〈|M|tot

X 〉t holds for all t since the optimal
protocol achieves the minimum dissipation (157) as τ�τ =
W1,X (�c(0), �c(τ ))2/〈|M|tot

X 〉τ .
Brusselator model.—The time series used in the following

is the same as that used in Sec. IV C. We will focus on the
time interval t ∈ [0, 30] as shown in Fig. 8(a), where the
concentrations undergo significant changes.

In Fig. 8(b), we show the four lengths between
�c(0) and �c(t ) of the Brusselator. Unlike the Fisher–
KPP equation, they behave differently, with only l1,t

increasing monotonically. There is no definite order be-
tween W1,X (�c(0), �c(t )) and LX (�c(0), �c(t )) or between
W1,X (�c(0), �c(t )) and Ltot

X (�c(0), �c(t )). In particular, the 1-
Wasserstein distance decreases to almost zero at time t =
15 after increasing. This is because the total concentrations
at t = 0 and t = 15 are very close, which is evident from
Ltot
X (�c(0), �c(15)) � 0. From the viewpoint of the path on the

stoichiometric manifold, the behavior of the 1-Wasserstein
distance implies that the pattern goes back near the initial
state after once moving away from the initial state. The
time series of the concentration distribution embedded in a

two-dimensional plane [Fig. 8(c)] verifies this behavior. The
path of the pattern is not a geodesic of the 1-Wasserstein
distance, since l1,t and W1,X (�c(0), �c(t )) are different.

In Fig. 8(d), we demonstrate the TSLs using the Brusse-
lator. As in the case of the Fisher–KPP equation, the TSL
for l2,t is tighter than the TSLs for l1,t and W1,X (�c(0), �c(t )).
Moreover, the TSL for l1,t is tighter than the one with
W1,X (�c(0), �c(t )). This is because the path of the time series
{�c(t )}t∈[0,30] is not a geodesic as mentioned above. As in
the case of the Fisher–KPP equation, we can also see that
all of the TSLs become looser when the system approaches
the steady state. This is caused by the fact that the increase
proportional to t in t�ex

t persists while the pattern stops
changing.

As in the case of the Fisher–KPP equation, we can con-
struct an optimal protocol that reduces the thermodynamic
cost to the minimum value provided by the TSL for the 1-
Wasserstein distance. In the following, we take τ = 30 as the
final time in Eq. (157). Since the TSL for the 1-Wasserstein
distance is weak, the optimal protocol can significantly de-
crease the dissipation required to change the pattern. This
reduction of dissipation is due to the following circumstances:
as already discussed, the time series of the concentration
distribution takes a detour in the present system [Fig. 8(c)].
In contrast, the optimal protocol moves the pattern along the
shortest path to the destination, which is close to the initial
distribution, as shown in Fig. 8(e). As a result, the optimal
protocol significantly reduces the total change in the pattern,
which leads to low dissipation. In Fig. 8(f), we also show the
TSL for the 1-Wasserstein distance under the optimal proto-
col. It behaves the same way as in the case of the Fisher–KPP
equation: equality always holds, and t�t and the bound are
proportional to t2.

VI. THERMODYNAMIC UNCERTAINTY RELATIONS
FOR REACTION-DIFFUSION SYSTEMS

We now provide another thermodynamic trade-off relation,
the thermodynamic uncertainty relation (TUR). We refer to
the lower bound of the instantaneous (excess) EPR by partial
information about the pattern and system fluctuations as the
TUR following previous studies [45,66,84]. This is in contrast
to the TSLs, which bound the (excess) EP arising in finite
time using information about changes in the entire pattern.
After providing the TUR for general observables in Sec. VI A,
we obtain the TUR for the Fourier coefficients of the concen-
tration distribution as a special case of the general TUR in
Sec. VI B. The TUR for the Fourier coefficients generalizes
the TUR for CRNs found in previous study [84] by reflecting
the spatial structure of the pattern.

A. General thermodynamic uncertainty relation
for reaction-diffusion systems

Here, we derive the TUR for a general observable, which
can take complex values. The term observable is used to
refer to complex-valued, time-independent vector functions
whose external parts are zero; i.e., an observable belongs to
the set {�ϕ : Rd → CN | ∀α ∈ Y, ϕα = 0}. We impose peri-
odic boundary condition on �ϕ if we consider systems with
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periodic boundaries. Since we extend the scope of treatment
to complex-valued functions, we also extend the inner prod-
ucts 〈〈·, ·〉〉 and 〈·, ·〉 to complex-valued functions by taking
conjugate transpose, denoted by †, as

〈〈J ′,F ′〉〉 :=
∫

V
dr (�J′† �F ′ + j′† f ′), (165)

and

〈 �φ, �ψ〉 :=
∫

V
dr �φ† �ψ. (166)

Under these preparations, we obtain the TUR for RDSs as
a generalization of Eq. (40),

|dt 〈�c, �ϕ〉|2 � D�ϕσ ex, (167)

where the indicator of the fluctuation of �ϕ is defined as

D�ϕ :=
∫

V
dr [(∇r �ϕ)†

↔
M∇r �ϕ + �ϕ†D̆�ϕ]. (168)

Here, the first term on the right-hand side of Eq. (168) orig-
inates from the spatial inhomogeneity of �ϕ and the mobility
of the system. The matrix in the second term D̆ is the scaled
diffusion coefficient matrix defined as

D̆αβ (r; t ) :=
∑
ρ∈R

j+ρ (r; t ) + j−ρ (r; t )

2
SαρSβρ (169)

=
∑
ρ∈R

aρ (r; t )SαρSβρ. (170)

This matrix appears in the diffusion coefficient matrix of the
chemical Langevin equation, which is a microscopic descrip-
tion of chemical reactions. In the chemical Langevin equation,
the diffusion coefficient matrix is inversely proportional to the
system size, and D̆ is its proportional coefficient. This implies
that the scaled diffusion coefficient reflects the intrinsic fluc-
tuations of chemical reactions [84]. Thus, the second term in
D�ϕ (168) corresponds to the fluctuation of the reactions.

The TUR (167) is derived as follows. We can obtain an
inequality between the scaled diffusion coefficient and the
edgewise Onsager coefficient as

D̆αβ �
∑
ρ∈R

mρSαρSβρ =
∑

ρ,ρ ′∈R
[m]ρρ ′SαρSβρ ′ , (171)

by using the inequality in Eq. (59). This yields

D�ϕ � 〈〈∇ �ϕ,∇�ϕ〉〉M. (172)

Then, we can derive the TUR as

|dt 〈�c, �ϕ〉|2 = |〈∇†MF , �ϕ〉|2 = |〈∇†MF∗, �ϕ〉|2

= |〈〈MF∗,∇�ϕ〉〉|2 = |〈〈F∗,∇�ϕ〉〉M|2
� 〈〈∇ �ϕ,∇�ϕ〉〉M〈〈F∗,F∗〉〉M
� D�ϕσ ex,

where we use Eqs. (69) and (85) in the first line, the bound-
ary condition for F∗ between the first and second line, the
Cauchy–Schwarz inequality for the inner product 〈〈·, ·〉〉M
between the second and third line, and Eq. (172) in the last
transformation.

We can also interpret the TUR from the viewpoint of the
Wasserstein geometry, as we did for the TUR for Langevin
systems in Eq. (41). By rewriting Eq. (167), we obtain

v�ϕ := |dt 〈�c, �ϕ〉|√
D�ϕ

� v2, (173)

where we used σ ex = v2
2 . This inequality means that the speed

of the observable change v�ϕ , normalized by the indicator of
fluctuation D�ϕ , can always be upper bounded by the speed
of the concentration distribution v2 measured with the 2-
Wasserstein distance.

B. Thermodynamic uncertainty relations for Fourier
component of concentration distribution

Here, we prove a TUR for the Fourier transform of a con-
centration distribution by properly choosing the observable in
the general TUR (167). In the following part, we only consider
internal species, α ∈ X . We define the Fourier transform of
the concentration distribution as

c̃α (k; t ) :=
∫

V
dr cα (r; t )e−ik·r, (174)

where we regard cα (r; t ) as zero outside of V . If we consider
the system with the periodic boundary condition, we obtain
cα (r; t ) = ∑

k c̃α (k; t )eik·r/|V |. In this case, the vector k takes
discrete values depending on the details of V .

Fixing α ∈ X and letting �ϕ satisfy (�ϕ(r))β = δαβe−ik·r in
Eq. (167) yields a TUR for the Fourier transform,

|dt c̃α (k; t )|2
k · Mtot

(αα)(t )k + D̆tot
αα (t )

� σ ex, (175)

where Mtot
(αα)(t ) := ∫

V dr M(αα)(r; t ) and D̆tot
αα (t ) := ∫

V dr
D̆αα (r; t ). This TUR generalizes the one for well-mixed
CRNs studied in the previous work [84] because it reduces to
the same form as the TUR for CRNs,∣∣dt ctot

α (t )
∣∣2

D̆tot
αα (t )

� σ ex, (176)

if k is 0. Here, we let ctot
α (t ) denote the total concentration of

αth species at time t as ctot
α (t ) := ∫

V drcα (r; t ).
If the mobility tensor has the simple form in Eq. (53), we

obtain a simpler form of the TUR as

|dt c̃α (k; t )|2
‖k‖2Dαctot

α (t ) + D̆tot
αα (t )

� σ ex. (177)

The first term of the denominator in Eq. (177) monotonically
increases for ‖k‖, while the second term is independent of
‖k‖. Thus, the TUR (177) indicates that we can realize large
|dt c̃(k; t )| with small dissipation if ‖k‖ is large. We can also
detect which mode and which species is dominant in the
time evolution by considering the tightness of the TUR (177)
depending on wavenumber k.

In the context of pattern formation, the trade-off relation
in Eq. (177) means that spatially global pattern formation,
which is given by the mode change |dt c̃α (k; t )| correspond-
ing to smaller wavenumber k, is more dissipative rather than
spatially local pattern formation, which is given by the mode
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FIG. 9. The TUR (177) in the Brusselator model. (a) The time series of c2 for comparison. In the early stage of the time evolution
(t ∈ [0, 0.5]), the symmetry of the pattern instantly changes from sixfold to threefold, as shown in the pink panel. After that, the pattern goes
to the steady state with sixfold symmetry. (b) Semilog plot of the excess EPR (black line) and the lower bounds σ TUR

2 (n; t ) for various n.
The lower bounds corresponding to multiples of three (n = 0, 3, 6, 9) are tighter than the bounds corresponding to n = 1, 2. (c) The ratio of
σ TUR

2 (n; t ) to the excess EPR for n = 0, 3, 6, 9. In the early stage (t ∈ [0, 0.5]), σ TUR
2 (3; t ) or σ TUR

2 (6; t ) provides the tightest bound as shown
in the pink panel. (d) n(2)

max(t ) (black dots). Reflecting the symmetry of the pattern, n(2)
max(t ) are multiples of three for all time t (red lines). Near

the stationary pattern, n(2)
max(t ) = 3 for almost all t . (e) The time series of |c̃2(k(n))|. We omit |c̃2(k(n))| for n � 32 because they are sufficiently

small. The threefold symmetry of the pattern lets |c̃2(k(n))| have large values when n = 3n′ for any integer n′. Since the symmetry of the
pattern transitions to sixfold as approaching the steady state, |c̃2(k(n))| decays if n is a multiple of three but not a multiple of six at large t .
In contrast, the magnitude |c̃2(k(6))| decays while |c̃2(k(3))| increases in the early stage of the pattern formation (pink panel) reflecting the
instant transition from the pattern with sixfold symmetry to the pattern with threefold symmetry. The light-blue panel shows the asynchronous
oscillations of the Fourier components corresponding to n = 3, 9 in t ∈ [20, 50]. Here, we let R[z] and I[z] denote the real part and imaginary
part of the complex number z, respectively. The oscillations of the two modes are not synchronized. Due to the asynchronous nature of the
oscillations, the times when |dt c̃2(k(3); t )| vanishes differ from the times when |dt c̃2(k(9); t )| vanishes.

change |dt c̃α (k′; t )| corresponding to larger wavenumber k′

(‖k′‖ > ‖k‖). Thus, the TUR (177) quantifies a required
dissipation to form spatial patterns according to its spatial
structure.

We can also obtain a TSL-like thermodynamic trade-off
relation

|c̃α (k; τ ) − c̃α (k; 0)|2
k · 〈Mtot

(αα)

〉
τ
k + 〈

D̆tot
αα

〉
τ

� τ�ex
τ , (178)

which is derived by integrating the TUR in Eq. (175) over time
and using the triangle inequality for time integration and the
Cauchy–Schwarz inequality (see also Appendix F for details).
Note that the initial time 0 can be arbitrarily set.

C. Numerical examples: Thermodynamic uncertainty relations

We demonstrate the TUR for the Fourier transform of a
concentration distribution (177), using the same time series of
the Brusselator as in Sec. IV C, shown in Fig. 5. Because of the
periodic boundary condition imposed on the system, we can
obtain the Fourier transform of the concentration distribution

as

c̃α (k(n); t ) =
∫ 0.5

−0.5
dr cα (r; t )e−ik(n)r (179)

with discrete wavenumbers k(n) (114). To discuss the prop-
erty of the TUR, we introduce the mode n(α)

max(t ) that provides
the tightest lower bound on dissipation at time t in the sense
of the TUR as

n(α)
max(t ) := arg max

n
σ TUR(n; t ), (180)

with

σ TUR
α (n; t ) := |dt c̃α (k(n); t )|2

k(n)2Dαctot
α (t ) + D̆tot

αα (t )
. (181)

Here, we focus on the chemical species Z2, as indexed by
α = 2 (see Appendix G for results for Z1, corresponding to
α = 1) and discuss the relations between the pattern dynamics
and the lower bound of dissipation.

In the following, we show that the lower bound in the TUR
reflects the symmetry of the pattern (Fig. 9). In this numerical

033011-27



NAGAYAMA, YOSHIMURA, KOLCHINSKY, AND ITO PHYSICAL REVIEW RESEARCH 7, 033011 (2025)

example, the pattern always has a threefold symmetry. Thus,
the pattern changes occur only in modes corresponding to
multiples of three. This leads to large σ TUR

2 (n; t ) for n that
are multiples of three, as shown in Fig. 9(b). After the pattern
with sixfold symmetry is formed (t > 20), |c̃2(k(n))| decays
if n is a multiple of three but not a multiple of six Fig. 9(e). In
particular, the decay of the mode n = 3 is significant. It leads
to n(2)

max(t ) = 3 for almost all t > 20 [Figs. 9(c) and 9(d)].
Rapid changes in the pattern have a significant impact

on the TUR. In the early stages of the time evolution, the
symmetry of the pattern instantly changes from sixfold to
threefold, as shown in the pink panel in Fig. 9(a). This change
is accompanied by a rapid decay of |c̃2(k(6))| and a rapid
increase of |c̃2(k(3))| [the pink panel in Fig. 9(e)]. It makes
σ TUR

2 (n; t ) be tighter for n = 3 and n = 6 than other modes,
as shown in the pink panel in Fig. 9(c).

The lower bound in the TUR also reflects oscillations in
the Fourier components of the pattern. The speed of change
of the Fourier component |dt c̃2(k(n); t )| intermittently goes
to zero owing to the oscillatory behavior of c̃2(k(n); t ). This
causes vanishing of the lower bounds σ TUR

2 (n; t ), shown as
sharp peaks in the semilog plot [Fig. 9(b)]. In particular, the
asynchronous oscillations of c̃2(k(n); t ) shown in the light-
blue panel of Fig. 9(e) induce the temporary deviations from
n(2)

max(t ) = 3 in t � 20, shown in Fig. 9(d). For example, the
light-blue panel of Fig. 9(e) shows that |dt c̃2(k(3); t )| vanishes
at t � 40, while |dt c̃2(k(9); t )| does not. It lets n(2)

max(t ) deviate
to nine from three at t � 39 in Fig. 9(d).

These observations imply that the new TUR determined by
the change of each Fourier component (175) may provide a
tighter bound of EPR than the TUR of the well-mixed CRN
[84] if we consider chemical systems with pattern changes.
Since the denominator of σ TUR

2 (n; t ) is smaller for smaller
n, the case n = 0 [corresponding simply to the TUR of the
well-mixed CRN as Eq. (176)] gives the tightest bound if
|dt c̃2(k(n); t )| is independent of n. In actual pattern formation,
however, the magnitude of dt c̃2(k(n); t ) is biased for each n,
reflecting the spatiotemporal structure of the pattern. It allows
σ TUR

2 (n; t ) be tighter when n is not zero.
We also compare the lower bounds provided by the TUR

and the wavenumber decomposition in Fig. 10. Since the
wavenumber excess EPR is nonnegative at each mode, we
obtain

σ ex =
∑

n′
σ ex,wn(n′) � σ ex,wn(n). (182)

Thus, the value of the wavenumber excess EPR provides
a lower bound of the excess EPR. The bound determined
by wave number as well as the TUR. We can see that the
bounds provided by the TUR are closer to the wavenumber
excess EPR on the corresponding mode than the excess EPR
itself, except for the points where |dt c̃α (n)| vanishes. It im-
plies that the TUR can estimate the wavenumber excess EPR
rather than the excess EPR. Note that, however, the lower
bounds provided by the TUR possibly become larger than
the wavenumber excess EPR at the corresponding mode. For
instance, we show that both σ TUR

1 (3; t ) and σ TUR
2 (3; t ) are

larger than σ ex,wn(3) at small t , where the pattern changes
rapidly, in Fig. 10(c).

FIG. 10. The comparison of the TUR (175) and the wavenumber
decomposition of the excess EPR. (a) The behavior of the excess
EPR and its lower bounds (n = 3). The three bounds σ ex,wn(3) (blue
line), σ TUR

1 (3; t ) (green line), and σ TUR
2 (3; t ) (orange line) are smaller

than the excess EPR (black line) for all t . In addition, the lower
bounds provided by the TUR are close to the wavenumber excess
EPR rather than the excess EPR. (b) The behavior of the excess EPR
and its lower bounds (n = 6). We can observe a similar trend as in
the case of n = 3. (c) The behavior of the excess EPR and its lower
bounds near the initial time (n = 3). The areas filled in light green
and light yellow indicate σ TUR

1 (3; t ) � σ ex,wn(3) and σ TUR
2 (3; t ) �

σ ex,wn(3), respectively.

VII. DISCUSSION

In this paper, we established universal relations between
the time evolution of patterns and dissipation by extending the
framework of geometric thermodynamics [45,62,63,66,82] to
RDSs. These relations clarify how dissipation constrains or
reflects the spatiotemporal dynamics of patterns. Our results
also enable the treatment of deterministic pattern dynamics,
which previous geometric thermodynamics could not address.

In particular, we constructed the geometric excess/
housekeeping decomposition of EPR and showed that the
excess EPR can be understood as the minimum dissipation
rate required to reproduce the original time evolution. We also
proposed a geometric decomposition of the EPR, excess EPR,
and housekeeping EPR into nonnegative contributions from
different spatial locations and Fourier modes (wave numbers).
Our decompositions were illustrated using detailed numerical
examples.

In addition, the excess EPR was related to the details
of the pattern and its time evolution by the newly derived
TSLs and TURs for RDSs. TSLs are trade-off relations be-
tween the speed of the time evolution and the dissipation.
These inequalities characterize the dissipation in a finite du-
ration using information about the whole pattern. In contrast,
TURs bound the instantaneous excess EPR using partial in-
formation about the pattern, such as the Fourier components
of the concentration distribution. Our trade-off relations are
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applicable to deterministic systems with large degrees of
freedom; in this way they differ from the existing attempts
that treat pattern formation in the presence of fluctuations
[114–117].

Our results advance nonequilibrium thermodynamics of
RDSs, suggesting engineering applications such as quanti-
fying energy efficiency and optimizing control. In this way,
we go beyond the traditional approach, which aim to predict
stationary patterns and analyze their stability. This goal cannot
be achieved in general cases [22,26,27], which may give the
impression that thermodynamics is useless for understanding
pattern formation. However, once RDSs are considered ob-
jects of control, thermodynamics becomes an essential tool
because it quantifies the required dissipation to achieve a
desired change in patterns. We have taken the first step in
developing this tool, by developing inequalities and extending
optimal transport theory so as to relate dissipation with the
change in patterns. We believe this new direction will become
increasingly important as RDSs undergo exploration by ex-
perimentalists and engineers.

Our results also provide insights into stochastic thermo-
dynamics. For instance, we have introduced the wavenumber
decomposition for Langevin systems. In addition, our results
indicate that optimal transport theory, which in stochastic
thermodynamics has been studied separately for systems with
discrete and continuous variables, can be applied to general
Markov processes with both kinds of variables. To be precise,
the master equation for such a general system consists of
diffusion terms for the continuous variables and Markov jump
terms for the discrete variables. It is equivalent to an RD
equation since the MJP is formally the same as an unimolec-
ular CRN. Therefore, all of our results, derived here for RD
equations, are also applicable to general master equations and
bring new fundamental tools, e.g., decompositions of EPR and
thermodynamic trade-off relations, for biological processes
modeled by Markov processes with discrete and continuous
variables, such as F1-ATPase [118].

One of the main contributions of this paper is to ex-
tend optimal transport theory by generalizing the 1- and
2-Wasserstein distances to RDSs. Optimal transport solves the
problem of minimizing the dissipation necessary to transition
between two given patterns, and it provides an operational
way to quantify the speed of evolution, as required for the
TSLs. Previously, the 2-Wasserstein distance was extended
to deterministic chemical systems by using its consistency
with gradient structures [45,85,86], but the generalizations do
not treat open systems explicitly. The generalization of the 1-
Wasserstein distance to deterministic chemical systems have
not received as much attention even though the usefulness
of the 1-Wasserstein distance in stochastic thermodynamics
has been revealed [43,44]. We have extended the 1- and 2-
Wasserstein distances to deterministic open RDSs and showed
that they relate to the EP associated with pattern forma-
tion. The Wasserstein distances have different advantages:
the 1-Wasserstein distance allows us to measure the distance
between patterns even if the 2-Wasserstein distance cannot
be defined, and it enables us to separately treat the distance
and the kinetic information (130). On the other hand, the
2-Wasserstein distance gives the excess EPR a geometric in-
terpretation and provides tight TSLs.

Another development relating to the 1-Wasserstein dis-
tance is the intensity of reactions and diffusive dynamics,
which represents the kinetic information and links the distance
to thermodynamics. The intensity of reactions measures the
average rate of forward and reverse reactions with the loga-
rithmic mean. It corresponds to the dynamical state mobility
defined in MJPs [44]. The intensity of diffusion is defined by
a variational problem, consistent with the diffusion coefficient
in Langevin systems. This definition enables us to quantify the
intensity of diffusion even for systems with spatial anisotropy
and interactions between species.

We remark that our geometric decompositions were de-
rived by expressing dissipation as the squared norm of the
thermodynamic forces. In fact, it is possible to express dis-
sipation in terms of other functionals, leading to alternative
geometric decompositions. In particular, geometric decom-
positions may be derived by using the fact that information
geometry and Hessian geometry generalize orthogonality and
the Pythagorean theorem [119–121]. Previously, this was used
to derive different extensions of the excess/housekeeping de-
composition by Maes and Netočný from Langevin systems to
MJPs and CRNs. One method involves fixing another mean of
the fluxes instead of the logarithmic mean mρ and constructing
a nonlinear relationship between the force and current based
on Hessian geometry [109]. Another method uses information
geometry to study one-way fluxes, instead of currents [66].
We may also generalize these methods to RDSs. However,
if we adopt the first alternative, we can no longer regard the
excess EPR as the minimum EPR required to realize the orig-
inal instantaneous change in patterns. It is not in keeping with
our original goal of clarifying the relations between the time
evolution of patterns and the unavoidable dissipation. The
second alternative avoids this problem, but does not directly
link the excess EPR to the Wasserstein distance. Thus, we
have taken the method based on the quadratic form of the
thermodynamic forces [45].

We would like to end this paper with an introduction to
some future directions. First, the wavenumber decomposition
can be extended to bases other than the Fourier basis (e.g., the
wavelet basis). Second, while our results are valid for general
RDSs, they may be specialized in useful ways to individ-
ual systems; for instance, the TUR for a general observable
(167) will yield interesting bounds on EPR by considering
specific observables depending on the nature of the system.
In addition, it may be possible to explore other expressions of
minimum dissipation by appropriately tailoring the imposed
constraints. This may allow quantifying minimum dissipation
in specific systems, such as active phase separation [122–125]
and systems used for computation [13–16], thus highlighting
system-specific thermodynamics bounds on pattern forma-
tion. Third, it may be possible to utilize the lower bounds of
EPR to estimate the dissipation of actual pattern formations
as studied in the growing field of thermodynamic inference
[98,126].

Although our framework already accommodates a broad
class of systems, including nonideal mixtures and systems
with complex boundary conditions, it would also be mean-
ingful to further extend our results to more complicated
situations. For example, we possibly generalize our results to
RDSs on general spaces, such as curved surfaces [127,128]
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or graphs [129,130]. This may be done by replacing the
differential operator ∇r with an appropriate counterpart for
curved surfaces or graphs. This generalization will reveal
trade-offs and help advance an energetic understanding of
pattern formations in living systems, e.g., chemical waves on
the cell membrane [131] and epidemics in metapopulation
models [132]. In addition, we may also generalize our frame-
work to systems involving additional physical fields, such as
mechanical stresses appeared in mechanochemical feedback
[133,134]. A promising direction may be to integrate our
thermodynamic approach with the results on general hydro-
dynamic systems [83].
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APPENDIX A: DETAILS OF THE PROJECTED FORCE
IN LANGEVIN SYSTEMS

In this Appendix, we provide the details of the conserva-
tive force F∗. We derive the condition in Eq. (9) from the
orthogonality (8) and the uniqueness of F∗ using the condition
in Appendix A 1. We also derive the minimization problem
in Eqs. (11) and (13) in Appendix A 2. In Appendix A 3,
we provide the way to obtain Eq. (9) from the minimization
problems in Eqs. (11) and (13).

1. Sufficiency of Eq. (9) for orthogonality,
and the uniqueness of its solution

Letting F∗ be the gradient of a potential as F∗ = ∇rφ
∗, we

can rewrite the inner product between F∗ and F − F∗ as

〈〈F∗, F − F∗〉〉M = 〈〈∇rφ
∗, F − ∇rφ

∗〉〉M

=
∫
Rd

dr ∇rφ
∗ · M(F − ∇rφ

∗)

= −
∫
Rd

dr φ∗∇r · [M(F − ∇rφ
∗)], (A1)

where we used the boundary condition for p(r; t ) to ignore
the surface term in the third line. Then, the orthogonality in
Eq. (8) reduces to∫

Rd

dr φ∗∇r · [M(F − ∇rφ
∗)] = 0, (A2)

which shows that Eq. (9) is a sufficient condition of the or-
thogonality.

Let φ1 and φ2 be solutions of Eq. (9), and F1 and F2

the corresponding gradient forces. The norm of the difference
between these forces is zero because

〈〈F1 − F2, F1 − F2〉〉M

=
∫
Rd

dr ∇r(φ
1 − φ2) · M∇r(φ

1 − φ2)

= −
∫
Rd

dr (φ1 − φ2)∇r · [M{∇r(φ
1 − φ2)}]

=
∫
Rd

dr (φ1 − φ2)∇r · [M(F − F )] = 0, (A3)

where we used the boundary condition for p(r; t ) to ignore
the surface term in the third line, and Eq. (9) in the fourth
line. Therefore, the two forces are identical as the norm is
nondegenerate. Note that the potential satisfying Eq. (9) is not
unique because φ∗ + C, where C is a constant, is a solution of
Eq. (9) when φ∗ is a solution.

2. The derivation of minimization problems [Eqs. (11) and (13)]

The condition in Eq. (9) also leads to the orthogonality

〈〈F∗, F ′ − F∗〉〉M = 0, (A4)

where F ′ satisfies the condition in Eq. (11). We can check
it by calculating in a similar way as in Eq. (A1). Using the
orthogonality in Eq. (A4), we obtain the inequality

〈〈F ′, F ′〉〉M = 〈〈F∗, F∗〉〉M + 〈〈F ′ − F∗, F ′ − F∗〉〉M

� 〈〈F∗, F∗〉〉M (A5)

for all F ′ satisfying the condition in Eq. (11). It immediately
leads to the minimization problem in Eq. (11) because the
equality in Eq. (A5) is achieved if and only if F ′ = F∗.

Similarly, the condition in Eq. (9) also leads to another
orthogonality

〈〈F − F∗, F∗ − F ′〉〉M = 0, (A6)

for all F ′ ∈ Im∇r. It yields the inequality

〈〈F − F ′, F − F ′〉〉M

= 〈〈F − F∗, F − F∗〉〉M + 〈〈F∗ − F ′, F∗ − F ′〉〉M

� 〈〈F − F∗, F − F∗〉〉M, (A7)

which leads to the minimization problem in Eq. (13) because
the equality in Eq. (A7) is achieved if and only if F ′ = F∗.

3. The derivation of the condition Eq. (9)
as the Euler–Lagrange equation

We remark that the conditions Eq. (9) and F∗ = ∇rφ
∗ are

conversely obtained from two variational problems Eqs. (12)
and (14). By considering the action functionals

Ihk[φ] := 1

2
〈〈F − ∇rφ, F − ∇rφ〉〉M =

∫
dr Ihk, (A8)

Iex[F ′, φ] := 1

2
〈〈F ′, F ′〉〉M +

∫
dr φ{∇r · [M(F − F ′)]}

=
∫

dr Iex (A9)
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with

Ihk := 1

2
(F − ∇rφ) · M(F − ∇rφ), (A10)

Iex := 1

2
F ′ · MF ′ − ∇rφ · M(F − F ′), (A11)

the two variational problems, Eqs. (12) and (14), are solved
by the Euler–Lagrange equations

δIhk[φ]

δφ

∣∣∣∣
φ=φ∗

=
[
∂Ihk

∂φ
− ∇r · ∂Ihk

∂ (∇rφ)

]∣∣∣∣
φ=φ∗

= 0, (A12)

δIex[F ′, φ]

δF ′

∣∣∣∣
F ′=F∗,φ=φ∗

= ∂Iex

∂F ′

∣∣∣∣
F ′=F∗,φ=φ∗

= 0. (A13)

Here, φ in Eq. (A9) is the Lagrange multiplier which
gives the condition in Eq. (9) from the variation
δIex[F ′, φ]/δφ|F ′=F∗,φ=φ∗ = 0. The first Euler–Lagrange
equation (A12) directly provides the condition in Eq. (9). On
the other hand, the second Euler–Lagrange equation (A13)
provides F∗ = ∇rφ

∗. Substituting it into the constraint
∇r · [M(F − F ′)] = 0, we obtain Eq. (9).

APPENDIX B: DETAILS OF THE PROJECTED FORCE
IN REACTION-DIFFUSION SYSTEMS

Here, we derive the Euler–Lagrange equation in Eq. (85)
from the optimization problem in Eq. (84) or (87). We also
derive the uniqueness of F∗. The derivation reduces to the
case of Langevin systems in Appendix A 3 by considering a
particular situation: There is only one species and no chemical
reactions.

1. The Euler–Lagrange equation for the projection and the
uniqueness of the projected conservative force

First, we derive Eq. (85) from Eq. (84). We define a func-
tional to minimize as Ihk[ �φ] := 〈〈F − ∇ �φ,F − ∇ �φ〉〉M/2 =∫

V drIhk with

Ihk := 1

2
[ �F − ∇r �φ]�

↔
M[ �F − ∇r �φ]

+ 1

2
[ f − ∇s �φ]�m[ f − ∇s �φ]. (B1)

The functional derivative of Ihk leads to the condition to be
satisfied by the optimal potential �φ∗ as

δIhk

δφα

∣∣∣∣ �φ= �φ∗
=
(

∂Ihk

∂φα

− ∇r · ∂Ihk

∂[∇rφα]

)∣∣∣∣ �φ= �φ∗

= [−∇�
s m( f − ∇s �φ∗) + ∇r · {↔

M( �F − ∇r �φ∗)}]α
= [−∇†M(F − ∇ �φ∗)]α = 0, (B2)

for all α ∈ X , while φ∗
α = 0 holds for all α ∈ Y . This con-

dition (B2) is nothing more than the condition indicated in
Eq. (85).

Second, we show that the projected conservative force F∗

is unique, while �φ∗ is not. If we consider a constant vector

�C satisfying �CY = �0Y , whose gradient ∇ �C is a zero vector,
�φ∗ + �C can also be a solution of the minimization problem in
Eq. (84) and thus �φ∗ is not unique. Supposing Eq. (85) has two
solutions, �φ1 and �φ2, which satisfy �φ1

Y = �φ2
Y = �0Y , under the

boundary condition, we obtain

〈〈F1 − F2,F1 − F2〉〉M = 〈〈M∇( �φ1 − �φ2),∇( �φ1 − �φ2)〉〉
= 〈∇†M∇( �φ1 − �φ2), �φ1 − �φ2〉
= 〈∇†M(F − F ), �φ1 − �φ2〉
= 0, (B3)

where we define F i := ∇ �φi for i = 1, 2. The second trans-
formation in Eq. (B3) is allowed because we are imposing
the appropriate boundary condition, and the third line fol-
lows from the Euler–Lagrange equation (85). We also use the
condition, φ1

α − φ2
α = 0 for all α ∈ Y , in these transforma-

tions. Therefore, the nondegenerateness of the inner product
〈〈·, ·〉〉M concludes F1 = F2, that is, the uniqueness of the
projected potential force.

2. The Euler–Lagrange equation for the minimum dissipation

We derive the condition (85) from the minimization
problem in Eq. (87). To solve this constraint minimization
problem, we execute the method of Lagrange multiplier with
the multiplier �φ, whose external part is the zero vector as
�φY = �0Y . Then, the functional to optimize is

Iex[F ′, �φ] := 1

2
〈〈F ′,F ′〉〉M + 〈 �φ,∇†M(F − F ′)〉

= 1

2
〈〈F ′,F ′〉〉M + 〈〈∇ �φ,F − F ′〉〉M. (B4)

We obtain the conditions to be satisfied by the optimizer F∗

and �φ∗ by taking the functional derivative of Iex[F ′, �φ] as

δIex[F ′, �φ]

δF ′
(α)

∣∣∣∣∣ �φ= �φ∗,F ′=F∗
=
∑
β∈S

M(αβ )(F∗
(β ) − ∇rφ

∗
β ) = 0,

(B5)

for all α ∈ S and

δIex[F ′, �φ]

δ f ′
ρ

∣∣∣∣∣ �φ= �φ∗,F ′=F∗
= mρ{ f ∗

ρ − (∇s �φ∗)ρ} = 0, (B6)

for all ρ ∈ R. The positive definiteness of
↔
M and m enables

us to obtain �F∗ = ∇r �φ∗ and f ∗ = ∇s �φ∗ from Eq. (B5) and
Eq. (B6). Unifying these results yields

F∗ = ∇ �φ∗. (B7)

We obtain the condition in Eq. (85) by substituting Eq. (B7)
into the constraint (∇†MF )X = (∇†MF∗)X .

APPENDIX C: GRADIENT FLOW AND RELAXATION
IN REACTION-DIFFUSION SYSTEMS

Gradient flow is the flow that causes a specific function
(functional) to become smaller. The gradient flow structure
of RDSs [53,85] is deeply related to the thermodynamics of

033011-31



NAGAYAMA, YOSHIMURA, KOLCHINSKY, AND ITO PHYSICAL REVIEW RESEARCH 7, 033011 (2025)

RDSs, e.g., the relaxation to the equilibrium of the closed
ideal dilute solution is described by the gradient flow to the
equilibrium concentration distribution (Appendix C 1). We
can also verify that the conservative force ∇ �φ provides a gra-
dient flow, which describes the relaxation to a state determined
by the potential �φ (Appendix C 2). Moreover, considering the
potential �φ∗, which provides the excess EPR, the time evo-
lution of the concentration distribution of the internal species
can be represented only by a gradient flow. The gradient flow
structure allows us to rewrite the excess EPR in a similar
form to the EPR of the ideal dilute solutions, which relax to
equilibrium (Appendix C 3).

1. Relaxation to equilibrium and gradient
flow of the ideal solutions

We consider relaxation to the equilibrium of a closed ideal
dilute solution without mechanical forces, where the chemical
potential is written as μid

α = μ◦
α + ln cα . Since the system is

closed and there is no mechanical force applied to the system,
there exists an equilibrium concentration distribution �ceq. The
equilibrium concentration distribution provides zero force as
−∇ �μid,eq = (�0, 0), where �μid,eq is the chemical potential of
the equilibrium state μ

id,eq
α = μ◦

α + ln ceq
α .

In this situation, the force F is written as

F = −∇(�μid − �μid,eq ). (C1)

Focusing on the concrete form of �μid, we can rewrite the
difference between the chemical potentials �μid − �μid,eq as

μid
α − μid,eq

α = ln
cα

ceq
α

= δ

δcα

DKL(�c‖�ceq ), (C2)

where DKL(·‖·) is the generalized Kullback–Leibler (KL) di-
vergence,

DKL(�c‖�c′) :=
∫

V
dr
∑
α∈S

(
cα ln

cα

c′
α

− cα + c′
α

)
. (C3)

Introducing the vector δ/δ�c = (δ/δc1, . . . , δ/δcN )�, we can
rewrite the force as

F = −∇ δ

δ�c DKL(�c‖�ceq ), (C4)

which rewrites the RD equation as the gradient flow toward
the equilibrium [53],

∂t �c = −∇†M∇ δ

δ�c DKL(�c‖�ceq ). (C5)

We can also rewrite the EPR as

σ = −〈〈J ,∇(�μid − �μid,eq )〉〉
= −〈∂t �c, �μid − �μid,eq〉

= −
∫

V
dr
∑
α∈S

(∂t cα ) ln
cα

ceq
α

= −∂t DKL(�c‖�ceq ), (C6)

where we can regard the KL divergence DKL(�c‖�ceq ) as the
Gibbs free energy difference between the state �c and the
equilibrium state �ceq.

2. Relaxation due to the conservative force

In Sec. III E, we decompose the force at time t as

F = ∇ �φ(t ) + Fnc. (C7)

Note that F and Fnc also depend on time, and the external
part of the potential �φ(t ) is the zero vector.

Using the potential �φ(t ), we can introduce a pseudocanon-
ical distribution corresponding to �φ [45] as

cpcan
α (r; t ) := cα (r; t )

eφα (r;t )

�α (t )
(C8)

Here, the parameter �α (t ) can be freely chosen to satisfy the
following conditions:

∀ρ,
∑
α∈X

Sαρ ln �α (t ) = 0 (C9)

for α ∈ X , and �α (t ) = 1 for α ∈ Y . This can be interpreted
as meaning that each ln �(s) = ( ln �α (s)) at time s is a
conservation law. That is, at any time t , we have

∂t

∫
V

dr
∑
α∈X

cα (r; t ) ln �α (s)

=
∫

V
dr
∑
α∈X

{−∇r · J (α) + (∇s j)α} ln �α (s)

=
∫

V
dr
∑
ρ∈R

jρ

(∑
α∈X

Sαρ ln �α (s)

)
= 0, (C10)

hence,
∫

V dr
∑

α cα (r; t ) ln �α (s) does not depend on t . Here,
we ignore the surface term by using the boundary condition
on the current and use ∇r ln �α (s) = 0 in the second line.
We can use the parameter �α (t ) to let conserved quantities,
quantities kept constant over time evolution, have the same
value in �c and �cpcan := (cpcan

1 , . . . cpcan
N )�. We may also choose

�α (t ) = 1 simply for all α ∈ X . When we consider closed
ideal solutions, the pseudocanonical distribution �cpcan reduces
to �ceq using �φ = −(�μid − �μid,eq ) and �α (t ) = 1.

Using the pseudocanonical distribution, we obtain

δ

δcα

DKL(�c‖�cpcan ) = ln
cα

cpcan
α

= −φα + ln �α, (C11)

where we consider �c and �cpcan to be independent, i.e., we
ignore cα appearing in the definition of cpcan

α in Eq. (C8) in the
variational calculations. Note that −φα + ln �α is zero for all
α ∈ Y because φα = 0 and �α = 1 hold for all α ∈ Y . Then,
we can rewrite the RD equation for the internal species as

∂t �cX = (∇†M∇ �φ + ∇†MFnc)X

=
(

−∇†M∇ δ

δ�c DKL(�c‖�cpcan ) + ∇†MFnc

)
X

, (C12)

where we use Eqs. (C11) and (C9), and r independence of
�α (t ). The rewritten form of the RD equation allows us to
regard the conservative force ∇ �φ as driving the relaxation
to the pseudocanonical distribution corresponding to �φ, since
the first term in the second line in Eq. (C12) is written as
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the gradient flow. This gradient flow is similar to the one for
the relaxation to the equilibrium in Eq. (C5).

3. The excess entropy production rate and gradient flow

To obtain the geometric excess/housekeeping EPR, we de-
compose the force as

F = ∇ �φ∗ + (F − F∗), (C13)

where F∗ = ∇ �φ∗. In the following, �φ∗(t ) indicates the poten-
tial for the excess EPR at time t . Using the pseudocanonical
distribution corresponding to �φ∗(t ), we can rewrite the RD
equation for the internal species as the gradient flow,

∂t �cX =
(

−∇†M∇ δ

δ�c DKL(�c‖�cpcan )

)
X

, (C14)

where we use [∇†M(F − F∗)]X = �0X . The gradient flow
(C14) means that the time evolution of the concentration
distribution of the internal species can be written solely in
terms of the relaxation to the pseudocanonical distribution
corresponding to �φ∗ determined independently at each time.

Corresponding to Eq. (C14) that the time evolution of
the concentration distribution of the internal species can be
described only by the relaxation to different states at different
times, the excess EPR has a similar informational geometric
form to Eq. (C6),

σ ex = −∂t DKL(�c(t )‖�cpcan(s))|s=t , (C15)

where �cpcan indicates the pseudocanonical distribution corre-
sponding to �φ∗. We can verify the representation of the excess
EPR in Eq. (C15) as

−∂t DKL(�c(t )‖�cpcan(s))|s=t

=
∫

V
dr
∑
α∈X

(∂t cα )(φ∗
α − ln �α )

=
∫

V
dr
∑
α∈X

(∂t cα )φ∗
α

= 〈∂t �c, �φ∗〉 = 〈∇†M∇ �φ∗, �φ∗〉
= 〈〈M∇ �φ∗,∇ �φ∗〉〉 = 〈〈∇ �φ∗,∇ �φ∗〉〉M
= σ ex. (C16)

In the calculation, we use Eq. (C10) in the second line, the
assumption φ∗

α = 0 for all α ∈ Y in the third line, and the
condition on �φ∗ (85) in the fourth line.

APPENDIX D: THE DERIVATION OF THE WAVENUMBER
DECOMPOSITION OF THE ENTROPY PRODUCTION

RATE IN REACTION-DIFFUSION SYSTEMS

Here, we provide the derivation of the wavenumber
decomposition of EPR in Eq. (103). For simplicity, we ab-

breviate the weighted Fourier transform in Eq. (101) as �̂F =∫
V dr

↔
M

1
2 �Fe−ik·r and f̂ = ∫

V dr m
1
2 f e−ik·r. If we do not im-

pose the periodic boundary condition on the system, the

Fourier transform of the delta function leads to

∫
Rd

dk σ wn(k) = 1

(2π )d

∫
Rd

dk[ �̂F† �̂F + f̂ † f̂ ]

=
∫

V ×V
drdr′

∫
Rd

dk
eik·(r−r′ )

(2π )d

×
[
�F�(r)

↔
M

1
2 (r)

↔
M

1
2 (r′) �F(r′)

+ f �(r)m
1
2 (r)m

1
2 (r′) f (r′)

]
=
∫

V ×V
drdr′δ(r − r′)

×
[
�F�(r)

↔
M

1
2 (r)

↔
M

1
2 (r′) �F(r′)

+ f �(r)m
1
2 (r)m

1
2 (r′) f (r′)

]
=
∫

V
dr [ �F�↔

M �F + f �m f ] = σ, (D1)

where we omit the argument t . We also obtain Eq. (105)
by replacing [1/(2π )d ]

∫
Rd dk with [1/|V |]∑k and using∑

k eik·(r−r′ )/|V | = δ(r − r′) in the case of the systems with
periodic boundaries.

APPENDIX E: THE DETAILS OF THE WASSERSTEIN
GEOMETRY

In this Appendix, we provide more details on the Wasser-
stein distances for RDSs. First, we justify the reformulation
of the 1-Wasserstein distance in Eq. (118) in Appendix E 1.
We also generalize the Kantorovich–Rubinstein duality (32)
in Appendix E 2. Second, we discuss the properties of the
optimizer of the 2-Wasserstein distance in Appendix E 3. We
introduce two reformulations of the 2-Wasserstein distance in
Appendix E 4. We also confirm that the Wasserstein distances
satisfy the axioms of distance in Appendix E 5. We derive
the inequality between the Wasserstein distances (134) and
the TSL based on the 1-Wasserstein distance (146) in Ap-
pendices E 6 and E 7. We provide details of the minimum
dissipation determined by the 1-Wasserstein distance in Ap-
pendix E 8. Finally, we see the property of the 1-Wasserstein
distance for the Fisher–KPP equation in Appendix E 10.

In the following, we often use �c(0) and �c(τ ) instead of �cA

and �cB since we need to solve the optimization problem for
time series �c = {�c(t )}t∈[0,τ ] such that �cA

X = �cX (0) and �cB
X =

�cX (τ ) hold from the constraints.

1. Reduction of computational complexity
of the 1-Wasserstein distance

Here, we derive the reduced form of the 1-Wasserstein
distance (118) from the original definition (115). In the fol-
lowing, J � = (�J�, j�) denotes an optimizer of Eq. (115).
Letting U� = ( �U�, u�) be the optimizer of the right-hand side
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in Eq. (118), the following inequality holds:

inf
U

|U |RD = |U�|RD

=
∫ τ

0
dt
∫

V
dr

⎡
⎣∑

α∈S

∥∥∥∥U�
(α)

τ

∥∥∥∥+
∑
ρ∈R

∣∣∣∣u
�
ρ

τ

∣∣∣∣
⎤
⎦

=
∫ τ

0
dt

∣∣∣∣U�

τ

∣∣∣∣
RD

� inf
J ′

∫ τ

0
dt |J ′|RD

= W1,X (�c(0), �c(τ )), (E1)

where we use that U�/τ satisfies the conditions imposed on
the minimization problem (115) because we can rewrite the
condition in Eq. (119) to ∂t �cX = [∇†(U�/τ )]X . On the other
hand, we can obtain the inequality in the opposite direction by
using J � as

W1,X (�c(0), �c(τ ))

=
∫ τ

0
dt |J �|RD

=
∫ τ

0
dt
∫

V
dr

⎡
⎣∑

α∈S

∥∥J�
(α)

∥∥+
∑
ρ∈R

∣∣ j�ρ
∣∣
⎤
⎦

�
∫

V
dr

⎡
⎣∑

α∈S

∥∥∥∥
∫ τ

0
dt J�

(α)

∥∥∥∥+
∑
ρ∈R

∣∣∣∣
∫ τ

0
dt j�ρ

∣∣∣∣
⎤
⎦

=
∣∣∣∣
∫ τ

0
dt J �

∣∣∣∣
RD

� inf
U

|U |RD, (E2)

where we define time-integrated current as∫ τ

0
dt J � :=

(∫ τ

0
dt �J�,

∫ τ

0
dt j�

)
,

with (∫ τ

0
dt �J�

)
(α),i

:=
∫ τ

0
dt J�

(α)i(∫ τ

0
dt j�

)
ρ

:=
∫ τ

0
dt j�ρ .

We also use that time integrated current (E 1) satisfies the
condition in Eq. (119) to obtain Eq. (118). Unifying the two
inequalities, Eqs. (E1) and (E2) leads to the new form of W1,X
(118). Such a rewrite means that the optimizer of Eq. (115) is
not unique because we can take

J�
(α)(t ) = �α (t )U�

(α), j�ρ (t ) = ϑρ (t )u�
ρ (E3)

as the optimal current of Eq. (115) with the arbitrary
nonnegative-valued functions �α (t ) and ϑρ (t ) that satisfy∫ τ

0
dt �α (t ) = 1,

∫ τ

0
dt ϑρ (t ) = 1. (E4)

The optimization problem in Eq. (118) provides a geomet-
ric interpretation of the 1-Wasserstein distance. To confirm
it, we rewrite the reduced form of the 1-Wasserstein distance

(118) with the original time series of current J , which satis-
fies �cX (τ ) − �cX (0) = (∇†

∫ τ

0 dt J )X , as follows:

W1,X (�c(0), �c(τ )) = inf
U

|U |RD

= inf
U

∣∣∣∣
∫ τ

0
dt J −

(∫ τ

0
dt J − U

)∣∣∣∣
RD

= inf
U cyc

∣∣∣∣
∫ τ

0
dt J − U cyc

∣∣∣∣
RD

, (E5)

where infimum at the third line is taken among all U cyc satis-
fying the condition (∇†U cyc)X = �0X , and U at the first and
second lines satisfies Eq. (119). Here, we use the identity
|U |RD = | ∫ τ

0 dt J − (
∫ τ

0 dt J − U )|RD in the first transform,
and let U cyc denote

∫ τ

0 dt J − U . Then, the condition on
U , namely, �cX (τ ) − �cX (0) = (∇†U )X , yields (∇†U cyc)X =
(∇†[

∫ τ

0 dt J − U ])X = �0X . This implies that the optimiza-
tion in the last line in Eq. (E5) is performed on all currents
that are cyclic in the sense explained in Sec. IV A, i.e., the
candidate U cyc does not affect the time evolution of the in-
ternal species. Obviously, the optimizer of Eq. (E5) is the
projection of the original time-integrated current

∫ τ

0 dt J onto
the space of cyclic (time-integrated) currents with respect to
the norm | · |RD. It indicates that the 1-Wasserstein distance
is the distance between the original time-integrated current
and the space of cyclic (time-integrated) currents measured
with | · |RD.

In the following, we consider the characteristics of the
optimizer U�. We can rewrite the reduced form of the 1-
Wasserstein distance (118) with Lagrange multiplier �φ, whose
external part is the zero vector, as

W1,X (�c(0), �c(τ )) = inf
U

sup
�φ| �φY=�0Y

I1,X [U , �φ], (E6)

where the functional I1,X [U , �φ] is defined as

I1,X [U , �φ] := |U |RD + 〈 �φ, �c(τ ) − �c(0) − ∇†U〉. (E7)

Here, we consider the supremum over the Lagrange multiplier
�φ under the condition �φY = �0Y because the term 〈 �φ, �c(τ ) −
�c(0) − ∇†U〉 only gives a contribution for the constraint on in-
ternal species (119) when �φY = �0Y . The boundary condition
imposed on U lets us transform Eq. (E7) by partial integration
to

I1,X [U , �φ] = |U |RD + 〈 �φ, �c(τ ) − �c(0)〉 − 〈〈∇ �φ,U〉〉. (E8)

Then, its functional derivative and �φY = �0Y lead to

U�
(α) = 0, u�

ρ = 0 (E9)

for all α ∈ Y and ρ ∈ R \ RX , and

U�
(α) = ‖U�

(α)‖∇rφ
�
α,

u�
ρ = |u�

ρ |(∇s �φ�)ρ, (E10)

for all α ∈ X and ρ ∈ RX . Thus, for all α ∈ X , the optimal
potential �φ� satisfies ‖∇rφ

�
α‖ = 1 unless U�

(α) = 0. Similarly,

for all ρ ∈ RX , |(∇s �φ�)ρ | = 1 holds unless u�
ρ = 0. Note

that these conditions indicate that the gradient of a potential
determines the direction of the optimal current. In addition,
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these conditions lead to a new expression,

W1,X (�c(0), �c(τ )) = |U�|RD

=
∫

V
dr

⎡
⎣∑

α∈X
‖U�

(α)‖ +
∑

ρ∈RX

|u�
ρ |
⎤
⎦

=
∫

V
dr

⎡
⎣∑

α∈X
∇rφ

�
α · U�

(α) +
∑

ρ∈RX

(∇s �φ�)ρu�
ρ

⎤
⎦. (E11)

This expression shows that the value of ∇rφα (r) does not
affect W1,X (�c(0), �c(τ )) if U�

(α)(r; t ) = 0 at the position r. The

value [∇s �φ�(r)]ρ also does not matter where u�
ρ (r; t ) = 0.

2. Kantorovich–Rubinstein duality
of the 1-Wasserstein distance

We here verify the Kantorovich–Rubinstein duality,

〈 �φ•, �c(τ ) − �c(0)〉 = |U�|RD, (E12)

where U� = ( �U�, u�) and �φ• denote the optimizer of
Eqs. (118) and (120), respectively. To obtain Eq. (E12), we
show the inequalities

〈 �φ•, �c(τ ) − �c(0)〉 � |U�|RD, (E13)

and

〈 �φ•, �c(τ ) − �c(0)〉 � |U�|RD. (E14)

The first inequality is easily obtained as

〈 �φ•, �c(τ ) − �c(0)〉
= 〈 �φ•,∇†U�〉 = 〈〈∇ �φ•,U�〉〉

=
∫

V
dr

⎡
⎣∑

α∈X
∇rφ

•
α · U�

(α) +
∑

ρ∈RX

(∇s �φ•)ρu�
ρ

⎤
⎦

�
∫

V
dr

⎡
⎣∑

α∈X
‖U�

(α)‖ +
∑

ρ∈RX

|u�
ρ |
⎤
⎦ = |U�|RD, (E15)

where we use the generalized 1-Lipschitz continuity (121),
‖∇rφ

•
α‖ � 1 for α ∈ X and |(∇s �φ•)ρ | � 1 for ρ ∈ RX , and

the conditions on U� in Eq. (E9).
To verify the second inequality, we consider the optimiza-

tion problem

sup
�ψ

〈 �ψ, �c(τ ) − �c(0)〉, (E16)

with the following conditions: �ψ ∈ Lip1
X and the diffusion

part of ∇ �ψ satisfies the same boundary conditions as the one
imposed on �U�. Using another representation of the condi-
tions for the generalized 1-Lipschitz continuity (121),

∀α ∈ X , ‖∇rψα‖2 − 1 � 0
∀ρ ∈ RX , |(∇s �ψ )ρ |2 − 1 � 0

, (E17)

we can rewrite the optimization problem (E16) with the La-
grange multipliers {U L

α � 0}α∈X and {uL
ρ � 0}ρ∈RX as

sup
�ψ

inf
{U L

α �0}α∈X ,

{uL
ρ�0}ρ∈RX

IKR

[
�ψ,
{
U L

α

}
α∈X ,

{
uL

ρ

}
ρ∈RX

]
, (E18)

with the following conditions: �ψY = �0Y and the diffusion part
of ∇ �ψ satisfies the same boundary conditions as the one
imposed on �U�. Here, the functional IKR is defined as

IKR := 〈 �ψ, �c(τ ) − �c(0)〉

− 1

2

∫
V

dr
∑
α∈X

U L
α (‖∇rψα‖2 − 1)

− 1

2

∫
V

dr
∑

ρ∈RX

uL
ρ (|(∇s �ψ )ρ |2 − 1). (E19)

Computing the functional derivatives of Eq. (E19),
we can verify that the optimizer of Eq. (E18),
( �ψ•, {U L•

α }α∈X , {uL•
ρ }ρ∈RX ), satisfies

cα (τ ) − cα (0)

= −∇r · (U L•
α ∇rψ

•
α ) +

∑
ρ∈RX

SαρuL•
ρ (∇s �ψ•)ρ, (E20)

for all α ∈ X as the Euler–Lagrange equation and

∀α ∈ X , U L•
α (‖∇rψ

•
α‖2 − 1) = 0

∀ρ ∈ RX , uL•
ρ (|(∇s �ψ•)ρ |2 − 1) = 0

, (E21)

as the complementary slackness conditions. These conditions
lead to

〈 �ψ•, �c(τ ) − �c(0)〉 = 1

2

∫
V

dr
∑
α∈X

U L•
α (‖∇rψ

•
α‖2 + 1)

+ 1

2

∫
V

dr
∑

ρ∈RX

uL•
ρ (|(∇s �ψ•)ρ |2 + 1)

=
∫

V
dr

⎡
⎣∑

α∈X
U L•

α +
∑

ρ∈RX

uL•
ρ

⎤
⎦, (E22)

where we substitute the Euler–Lagrange equation (E20) into
Eq. (E18) in the first transform and use the complementary
slackness conditions (E21) in the second transform. The non-
negativity of the Lagrange multipliers and the complementary
slackness conditions (E21) allow us to rewrite the right-hand
side of Eq. (E22) as |U•|RD, with a new time-integrated current
U• = ( �U•, u•) defined as

U•
(α) :=

{
U L•

α ∇rψ
•
α (α ∈ X )

0 (α ∈ Y )
,

(u•)ρ :=
{

uL•
ρ (∇s �ψ•)ρ (ρ ∈ RX )

0 (ρ ∈ R \ RX )
. (E23)

Thus, we obtain

〈 �ψ•, �c(τ ) − �c(0)〉 = |U•|RD � |U�|RD, (E24)
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where we use the fact that U• becomes a candidate of the opti-
mization problem in Eq. (118). This is because the conditions
on the diffusion part of ∇ �ψ• let U• satisfy the boundary con-
ditions imposed in the optimization problem in Eq. (118), and
the Euler–Lagrange equation (E20) leads to �cX (τ ) − �cX (0) =
(∇†U•)X . Finally, we can verify the second inequality (E14)
by combining this inequality (E24) and the consequence of
adding the conditions in the optimization in Eq. (E16),

〈 �φ•, �c(τ ) − �c(0)〉 � 〈 �ψ•, �c(τ ) − �c(0)〉. (E25)

We remark that the equality (E12) implies that U• is also an
optimizer for the 1-Wasserstein distance (118).

3. The optimizer of the 2-Wasserstein distance

We can rewrite the optimization problem in Eq. (122) using
Lagrange multiplier �φ as

W2,X (�c(0), �c(τ )|�bY )2 = inf
�c,F

sup
�φ| �φY=�0Y

τI2,X [�c,F , �φ], (E26)

where I2,X is the functional defined as

I2,X [�c,F , �φ] :=
∫ τ

0
dt
[〈〈F ,F〉〉M�c + 2〈 �φ, ∂t �c − ∇†M�cF〉].

(E27)

Here, we consider the supremum over the Lagrange multiplier
�φ under the condition �φY = �0Y because the term 〈 �φ, ∂t �c −
∇†M�cF〉 only gives a contribution for the constraint on inter-
nal species Eq. (123) when �φY = �0Y . Because we fix �c(0) and

�c(τ ), impose boundary conditions on
↔
M �F for internal species,

and let �φ satisfy φα = 0 for all α ∈ Y , partial integration
yields

I2,X [�c,F , �φ] = 2〈 �φ(τ ), �c(τ )〉 − 2〈 �φ(0), �c(0)〉

+
∫ τ

0
dt[〈〈F − 2∇ �φ,F〉〉M�c − 2〈∂t �φ, �c〉].

(E28)

In the following, we write the optimizer of the right-hand side
of Eq. (E26) as (�c�,F �, �φ�). As in case in Appendix B, the
functional derivative of Eq. (E28) leads to the conditions to be
satisfied by (�c�,F �, �φ�),∑

β∈S
M�

(αβ )(F
�
(β ) − ∇rφ

�
β ) = 0 (E29)

for all α ∈ S , and

m�
ρ{ f �

ρ − (∇s �φ�)ρ} = 0 (E30)

for all ρ ∈ R, where F � = ( �F�, f �), and M�
(αβ ) = [

↔
M�](αβ )

and m�
ρ = [m�]ρρ are given by M�c� = ↔

M� ⊕ m�.
↔
M� and m�

indicate the mobility tensor and the edgewise Onsager coef-
ficient matrix for the optimal concentration distribution �c�.
These results and positive-definiteness of

↔
M� and m� make

the optimal force be the gradient of potential,

F � = ∇ �φ�. (E31)

This condition means that in order to minimize EP, we should
drive the system by the conservative thermodynamic force
corresponding to the potential �φ�.

4. Reformulations of the 2-Wasserstein distance

Here, we introduce two reformulations of the 2-
Wasserstein distance. The condition for the optimal force in
Eq. (E31) let us rewrite the 2-Wasserstein distance as the form
in Eq. (126),

W2,X (�c(0), �c(τ )|�bY )2 = inf
�c, �φ| �φY=�0Y

τ

∫ τ

0
dt〈〈∇ �φ,∇ �φ〉〉M�c ,

(E32)

with the conditions

∂t �cX = (∇†M�c∇ �φ)X , �cY (t ) = �bY . (E33)

We can also rewrite the 2-Wasserstein distance as

W2,X (�c(0), �c(τ )|�bY ) = inf
�c, �φ| �φY=�0Y

∫ τ

0
dt
√

〈〈∇ �φ,∇ �φ〉〉M�c ,

(E34)

with the same conditions as Eq. (E33).
To prove the equivalence between Eqs. (E32) and (E34),

we consider the optimizer of Eq. (E34). Let (�c�, �φ�) denote
the optimizer of Eq. (E34). For the derivation of Eq. (E34), it
is sufficient to confirm

W2,X (�c(0), �c(τ )|�bY )2 �
(∫ τ

0
dt
√

〈〈∇ �φ�,∇ �φ�〉〉M�c�

)2

,

(E35)

and

W2,X (�c(0), �c(τ )|�bY )2 �
(∫ τ

0
dt
√

〈〈∇ �φ�,∇ �φ�〉〉M�c�

)2

.

(E36)

We can easily show the first inequality (E35)

W2,X (�c(0), �c(τ )|�bY )2

= τ

∫ τ

0
dt〈〈∇ �φ�,∇ �φ�〉〉M�c�

=
(∫ τ

0
dt

)(∫ τ

0
dt〈〈∇ �φ�,∇ �φ�〉〉M�c�

)

�
(∫ τ

0
dt
√

〈〈∇ �φ�,∇ �φ�〉〉M�c�

)2

�
(∫ τ

0
dt
√

〈〈∇ �φ�,∇ �φ�〉〉M�c�

)2

, (E37)

where we used the Cauchy–Schwarz inequality and the fact
that (�c�, �φ�) denote the optimizer of Eq. (E34).

To derive the second inequality (E36), we use arc-length
reparametrization by referring to the literatures [91,135]. In-
troducing a function sε (t ) for t ∈ [0, τ ] with sufficiently small
ε > 0 as

sε (t ) :=
∫ t

0
dt ′
√

ε + 〈〈∇ �φ�(t ′),∇ �φ�(t ′)〉〉M�c� (t ′ )
, (E38)
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we can define the inverse function tε := s−1
ε because dt sε (t ) >

0 holds so that sε (t ) is an increasing function of t . The inverse
function tε (s) satisfies

dstε (s) |s=sε (t ) = (dt sε )−1 = 1√
ε + 〈〈∇ �φ�,∇ �φ�〉〉M�c�

. (E39)

We define the reparametrized concentration distribution
�ω(s) as �ω(s) := �c�(tε (s)), and a potential �ζ (s) as �ζ (s) :=
(dstε (s)) �φ�(tε (s)). These quantities satisfy

�ω(0) = �c�(0) = �c(0), �ω(sε (τ )) = �c�(τ ) = �c(τ ), (E40)

�ωY (s) = �c�

Y (tε (s)) = �bY , (E41)

and

∂s �ωX (s) = (dstε (s))∂t �c�

X (t )
∣∣
t=tε (s)

= (dstε (s))
(∇†M�c�(tε (s))∇ �φ�(tε (s))

)
X

= (∇†M�ω(s)∇�ζ (s))X . (E42)

These conditions in Eqs. (E40)–(E42) are the same as the con-
ditions imposed on the optimization problem in Eq. (E32) if
we replace the time duration τ with sε (τ ). From the definition
in Eqs. (E32) and (E39), we thus obtain

W2,X (�c(0), �c(τ )|�bY )2

� sε (τ )
∫ sε (τ )

0
ds〈〈∇�ζ ,∇�ζ 〉〉M�ω

= sε (τ )
∫ τ

0
dt[dt sε (t )]

[
dstε (s) |s=sε (t )

]2〈〈∇ �φ�,∇ �φ�〉〉M�c�

= sε (τ )
∫ τ

0
dt

〈〈∇ �φ�,∇ �φ�〉〉M�c�√
ε + 〈〈∇ �φ�,∇ �φ�〉〉M�c�

�
(∫ τ

0
dt
√

ε + 〈〈∇ �φ�,∇ �φ�〉〉M�c�

)2

. (E43)

Taking the limit ε → 0 in Eq. (E43) leads to the inequality we
need to derive (E36).

The optimizer of Eq. (E32) (�c�, �φ�) is one of the optimizers
of Eq. (E34) because we can easily derive

W2,X (�c(0), �c(τ )|�bY ) =
∫ τ

0
dt
√

〈〈∇ �φ�,∇ �φ�〉〉M�c� , (E44)

by repeating the same argument above using

s�
ε (t ) :=

∫ t

0
dt ′
√

ε + 〈〈∇ �φ�(t ′),∇ �φ�(t ′)〉〉M�c� (t ′ )
, (E45)

instead of sε (t ). The form of the 2-Wasserstein distance in
Eq. (E44) means that the optimizer (�c�, �φ�) satisfies the equal-
ity condition of the Cauchy–Schwarz inequality in Eq. (E37)
so that the condition

W2,X (�c(0), �c(τ )|�bY )

τ
=
√

〈〈∇ �φ�,∇ �φ�〉〉M�c� (E46)

holds for all t ∈ [0, τ ]. This condition means that the geodesic
in Fig. 6 has the constant speed.

5. Axioms of distance

Here, we confirm that the Wasserstein distances satisfy the
axioms of distance: nondegenerateness, symmetry, and the
triangle inequality.

First, we prove the nondegenerateness of the Wasser-
stein distances. The nondegenerateness of the 1-Wasserstein
distance is W1,X (�c(0), �c(τ )) = 0 ⇔ �cX (0) = �cX (τ ). Letting
W1,X (�c(0), �c(τ )) = 0 hold, all the elements of the optimal
current are zero. Then, the constraint ∂t �cX = (∇†J ′)X leads
to �cX (0) = �cX (τ ). Conversely, assuming �cX (0) = �cX (τ ), the
current with zero elements satisfies the constraints imposed
on the optimization problem for the 1-Wasserstein distance
so that W1,X (�c(0), �c(τ )) = 0 holds. We can also prove the
nondegenerateness of the 2-Wasserstein distance by replacing
the current with the force and arguing similarly.

Second, we prove the symmetry of the Wasserstein
distance. The symmetry of the 1-Wasserstein distance is
W1,X (�cA, �cB) = W1,X (�cB, �cA). Letting �c� and J � denote
the optimizer for W1,X (�cA, �cB), the time reversal quan-
tities �c′(t ) := �c�(τ − t ) and J ′(t ) := −J �(τ − t ) satisfy
the constraints imposed on the optimization problem for
W1,X (�cB, �cA). Then, we obtain an inequality,

W1,X (�cA, �cB) =
∫ τ

0
dt |J �(t )|RD

=
∫ τ

0
dt | − J ′(τ − t )|RD

=
∫ τ

0
dt |J ′(t )|RD

� W1,X (�cB, �cA). (E47)

Similarly, we can obtain the inequality in the opposite di-
rection, W1,X (�cA, �cB) � W1,X (�cB, �cA). We can also prove the
symmetry of the 2-Wasserstein distance in the same way.

Third, we prove the triangle inequality of the 1-Wasserstein
distance, W1,X (�cA, �cB) + W1,X (�cB, �cC ) � W1,X (�cA, �cC ). Let-
ting the optimizer for W1,X (�cA, �cB) and W1,X (�cB, �cC ) be
(�c�,1,J �,1) and (�c�,2,J �,2), respectively, a new concentration
distributions �c′ and a new current J ′ defined as

�c′(t ) :=

⎧⎪⎨
⎪⎩

�c�,1(2t )
(

0 � t <
τ

2

)
�c�,2(2t − τ )

(τ

2
� t � τ

) , (E48)

J ′(t ) :=

⎧⎪⎨
⎪⎩

2J �,1(2t )
(

0 � t <
τ

2

)
2J �,2(2t − τ )

(τ

2
� t � τ

) , (E49)

satisfy the constraints imposed on the optimization prob-
lem for W1,X (�cA, �cC ): �c′(0) = �cA, �c′(τ ) = �cC , and ∂t �c′

X =
(∇†J ′)X . Thus, we obtain the triangle inequality as

W1,X (�cA, �cC ) �
∫ τ

0
dt |J ′(t )|RD

=
∫ τ

2

0
dt 2|J �,1(2t )|RD +

∫ τ

τ
2

dt 2|J �,2(2t − τ )|RD

=
∫ τ

0
dt |J �,1(t )|RD +

∫ τ

0
dt |J �,2(t )|RD

= W1,X (�cA, �cB) + W1,X (�cB, �cC ). (E50)

033011-37



NAGAYAMA, YOSHIMURA, KOLCHINSKY, AND ITO PHYSICAL REVIEW RESEARCH 7, 033011 (2025)

Finally, we prove the triangle inequality of the 2-
Wasserstein distance, W2,X (�cA, �cB|�bY ) + W2,X (�cB, �cC |�bY ) �
W2,X (�cA, �cC |�bY ). We need to use the reformulation of the
2-Wasserstein distance in Eq. (E34) to derive the triangle in-
equality [135]. Letting the optimizer of the optimization prob-
lem in Eq. (E34) for W2,X (�cA, �cB|�bY ) and W2,X (�cB, �cC |�bY ) be
(�c�,1, �φ�,1) and (�c�,2, �φ�,2), respectively, a new concentration
distributions �c′ and a new potential �φ′ defined as

�c′(t ) :=

⎧⎪⎨
⎪⎩

�c�,1(2t )
(

0 � t <
τ

2

)
�c�,2(2t − τ )

(τ

2
� t � τ

) , (E51)

�φ′(t ) :=

⎧⎪⎨
⎪⎩

2 �φ�,1(2t )
(

0 � t <
τ

2

)
2 �φ�,2(2t − τ )

(τ

2
� t � τ

) , (E52)

satisfy the constraints imposed on the optimization problem
for W2,X (�cA, �cC |�bY ): �c′

X (0) = �cA
X , �c′

X (τ ) = �cC
X , �c′

Y (t ) = �bY ,

and ∂t �c′
X = (∇†M�c′∇ �φ′)X . Thus, we obtain the triangle in-

equality as

W2,X (�cA, �cC |�bY ) �
∫ τ

0
dt
√

〈〈∇ �φ′,∇ �φ′〉〉M�c′

=
∫ τ

2

0
dt 2

√
〈〈∇ �φ�,1(2t ),∇ �φ�,1(2t )〉〉M�c�,1 (2t )

+
∫ τ

τ
2

dt 2
√

〈〈∇ �φ�,2(2t − τ ),∇ �φ�,2(2t − τ )〉〉M�c�,2 (2t−τ )

=
∫ τ

0
dt
√

〈〈∇ �φ�,1(t ),∇ �φ�,1(t )〉〉M�c�,1 (t )

+
∫ τ

0
dt
√

〈〈∇ �φ�,2(t ),∇ �φ�,2(t )〉〉M�c�,2 (t )

= W2,X (�cA, �cB|�bY ) + W2,X (�cB, �cC |�bY ). (E53)

6. Derivation of the inequality between
the Wasserstein distances

Here, we derive the inequality between the 1- and 2-
Wasserstein distances (134). In the following, we let (�c�,F �)
denote the optimizer of the minimization problem for the 2-
Wasserstein distance (122). The corresponding current J � =
(�J�, j�) is defined as J � = M�c�F �. We use a new current
J × = (�J×, j×) and a new force Funi = ( �Funi, f uni ), defined
as

J×
(α) :=

{
J�

(α) (α ∈ X )

0 (α ∈ Y )
, j×ρ :=

{
j�ρ (ρ ∈ RX )

0 (ρ ∈ R \ RX )
,

and

Funi
(α) :=

⎧⎪⎨
⎪⎩

J�
(α)

‖J�
(α)‖

(α ∈ X , ‖J�
(α)‖ 
= 0)

0 (otherwise)

,

f uni
ρ :=

⎧⎪⎨
⎪⎩

j�ρ
| j�ρ |

(ρ ∈ RX , | j�ρ | 
= 0)

0 (otherwise)

.

The current J × satisfies∫ τ

0
dt |J ×|RD � W1,X (�c(0), �c(τ )), (E54)

since the conditions imposed on (�c�,F �) let J × be a can-
didate of the optimization problem in the definition of the
1-Wasserstein distance (115). The force Funi also satisfies

〈〈Funi,Funi〉〉M�c� � |M�c� |tot
X . (E55)

We obtain this using the following two facts: the diffusion
part �Funi(r; t ) is a candidate of the maximization problem
in the definition of Mmax

X (r; t ) (131), and the reaction part
satisfies | f uni

ρ (r; t )|2 � 1 for all ρ ∈ RX and f uni
ρ (r; t ) = 0

for all ρ ∈ R \ RX . Using the notation M�c� = ↔
M� ⊕ m�, we

can derive Eq. (E55) from these facts as 〈〈Funi,Funi〉〉M�c� =∫
V dr[ �Funi�↔

M� �Funi + ∑
ρ∈R m�

ρ ( f uni
ρ )2] �

∫
V dr[Mmax

X +∑
ρ∈RX

m�
ρ] = |M�c� |tot

X . The force Funi also relates to |J ×|RD

as

|J ×|RD = 〈〈Funi,F �〉〉M�c� , (E56)

which is verified as

|J ×|RD =
∫

V
dr

⎡
⎣∑

α∈S
‖J×

(α)‖ +
∑
ρ∈R

| j×ρ |
⎤
⎦

=
∫

V
dr

⎡
⎣∑

α∈X
‖J�

(α)‖ +
∑

ρ∈RX

| j�ρ |
⎤
⎦

=
∫

V
dr

⎡
⎣∑

α∈X
Funi

(α) · J�
(α) +

∑
ρ∈RX

f uni
ρ j�ρ

⎤
⎦

= 〈〈Funi,J �〉〉 = 〈〈Funi,F �〉〉M�c� . (E57)

To obtain the desired inequality (134), we use the Cauchy–
Schwarz inequality,

〈〈Funi,F �〉〉M�c� �
√

〈〈Funi,Funi〉〉M�c� 〈〈F �,F �〉〉M�c�

�
√

|M�c� |tot
X 〈〈F �,F �〉〉M�c� . (E58)

Here, we also use the property of Funi in Eq. (E55). Integrat-
ing both sides of this inequality (E58), we obtain∫ τ

0
dt
√

|M�c� |tot
X 〈〈F �,F �〉〉M�c� �

∫ τ

0
dt〈〈Funi,F �〉〉M�c�

=
∫ τ

0
dt |J ×|RD

� W1,X (�c(0), �c(τ )), (E59)

where we use Eq. (E56) in the first transform and Eq. (E54)
in the second transform. The Cauchy–Schwarz inequality also
provides the following inequality:(∫ τ

0
dt
√

|M�c� |tot
X 〈〈F �,F �〉〉M�c�

)2

�
(∫ τ

0
dt |M�c� |tot

X

)(∫ τ

0
dt〈〈F �,F �〉〉M�c�

)
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=
(

1

τ

∫ τ

0
dt |M�c� |tot

X

)(
τ

∫ τ

0
dt〈〈F �,F �〉〉M�c�

)

= 〈|M�c� |tot
X 〉τW2,X (�c(0), �c(τ )|�cY (t ))2. (E60)

Here, �cY (t ) does not depend on time. Combining Eqs. (E59)
and (E60) leads to the desired inequality (134).

7. Derivation of thermodynamic speed limit based
on the 1-Wasserstein distance

Here, we derive the TSLs in Eqs. (145) and (146) from
the inequality between the Wasserstein distances in Eq. (134).
Substituting �cA = �c(t ), �cB = �c(t + Δt ), and �bY = �cY (t ) with
Δt � 1 into Eq. (134), we obtain

W1,X (�c(t ), �c(t + Δt ))2

1
Δt

∫ t+Δt
t ds |M|tot

X
� W2,X (�c(t ), �c(t + Δt )|�cY (t ))2.

(E61)

Expanding the denominator of the left-hand side with respect
to Δt , we can rewrite this inequality as

W1,X (�c(t ), �c(t + Δt ))2

|M|tot
X

+ o(Δt2)

� W2,X (�c(t ), �c(t + Δt )|�cY (t ))2. (E62)

Then, dividing both sides by Δt2 and taking the limit Δt → 0
yields Eq. (145). Rewriting Eq. (145) as v1 �

√|M|tot
X σ ex and

using the Cauchy–Schwarz inequality, we obtain a part of the
TSLs in Eq. (146) as

l2
1,τ =

[∫ τ

0
dt v1(t )

]2

�
[∫ τ

0
dt
√

|M|tot
X σ ex

]2

�
(∫ τ

0
dt |M|tot

X

)(∫ τ

0
dt σ ex

)

= 〈|M|tot
X
〉
τ
τ�ex

τ . (E63)

We also obtain l1,τ � W1,X (�c(0), �c(τ )) as a direct con-
sequence of the triangle inequality for the 1-Wasserstein
distance. Unifying these results, we reach the TSLs in
Eq. (146).

Although it is not obvious which is tighter, l2
2,τ or

l2
1,τ /〈|M|tot

X 〉τ in the TSLs, we can obtain the following in-
equality directly from Eq. (145),

l2
2,τ �

l2
1,τ

maxt∈[0,τ ] |M|tot
X

. (E64)

8. Details of the minimum dissipation formula
with the 1-Wasserstein distance (157)

a. Derivation of the minimum dissipation formula
with the 1-Wasserstein distance (157)

Here, we prove the minimum dissipation formula with the
1-Wasserstein distance (157).

First, we verify that the right-hand side in Eq. (157)
provides a lower bound of the EP under the conditions in

Eqs. (155) and (156) as

�τ [M′,F ′] � W1,X (�c(0), �c(τ ))2

τ 〈|M′|tot
X 〉τ � W1,X (�c(0), �c(τ ))2

τM0
.

(E65)

Here, the first inequality is obtained in the same way as in
the case of Eq. (134). It is enough to use (M′,F ′) instead of
(M�c� ,F �) in Appendix E 6. The second inequality is due to
the inequality (156).

Second, we construct an optimizer (M�,F�), which
achieves

�τ [M�,F�] = W1,X (�c(0), �c(τ ))2

τM0
. (E66)

Let U� = ( �U�, u�) be the optimizer of the right-hand side
in Eq. (118), which satisfies W1,X (�c(0), �c(τ )) = |U�|RD and
�cX (τ ) − �cX (0) = (∇†U�)X . Using U�, we can obtain the op-
timal Onsager operator M� = ↔

M� ⊕ m� as

M�
(αβ ) := M0‖U�

(α)‖
|U�|RD

δαβ I, m�
ρ := M0|u�

ρ |
|U�|RD

, (E67)

and the optimal force F� = ( �F�, f �) as

F�
(α) :=

⎧⎪⎨
⎪⎩

|U�|RD

τM0

U�
(α)

‖U�
(α)‖

(U�
(α) 
= 0)

0 (U�
(α) = 0)

, (E68)

f �
ρ :=

⎧⎪⎨
⎪⎩

|U�|RD

τM0

u�
ρ

|u�
ρ |

(u�
ρ 
= 0)

0 (u�
ρ = 0)

. (E69)

The optimizer (M�,F�) satisfies the constraint (155) because
M�F� = U�/τ holds. We can also verify the remaining con-
dition (156) and the equality (E66) by direct calculation.

b. Operational interpretation of the optimizer of the minimization
problem in Eq. (157)

The optimization problem for M′ and F ′ in Eq. (157)
can be reformulated in terms of of control parameters. This
allows us to interpret the optimizer of the minimization prob-
lem in Eq. (157) that is constructed in the previous section,
(M�,F�), from an operational viewpoint. Here, we provide
such an operational interpretation of the optimizer (M�,F�).

We consider the ideal dilute solution with the two assump-
tions: the mobility tensor has the simple form (53), and the
reactions obey the mass action law. Under these assumptions,
the time evolution of the concentration distribution of the
internal species α ∈ X is given by

∂t cα =∇r · {Dαcα

(∇r ln cα − Fmech
(α)

)}
+

∑
ρ∈RX

Sαρ

(
κ+

ρ

∏
α∈S

c
ν+
αρ

α − κ−
ρ

∏
α∈S

c
ν−
αρ

α

)
, (E70)

where we let Fmech
(α) denote the force acting on the αth species.

Let us regard the diffusion coefficient Dα , the force Fmech
(α) ,

and the reaction rate constant κ±
ρ in Eq. (E70) as the control-

lable parameters. Then, using the concentration distribution
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�c� introduced in Sec. V E, we can obtain the optimal diffusion
coefficient and the optimal force as

D�
α (t ) := M0‖U�

(α)‖
|U�|RDc�

α (t )
, (E71)

and

Fmech�
(α) (t ) := F�

(α) + ∇r ln c�
α (t ), (E72)

for all α ∈ S . We can also construct the optimal reaction rate
constant as

κ+�
ρ (t ) := 1∏

α∈S {c�
α (t )}ν+

αρ

e f �
ρ

e f �
ρ − 1

u�
ρ

τ

κ−�
ρ (t ) := 1∏

α∈S {c�
α (t )}ν−

αρ

1

e f �
ρ − 1

u�
ρ

τ
, (E73)

for all ρ ∈ R. We can easily verify that these optimal param-
eters reproduce (M�,F�) as

D�
αc�

αδαβ I = M0‖U�
(α)‖

|U�|RD
δαβ I = M�

(αβ ), (E74)

κ+�
ρ

∏
α∈S c�

α
ν+
αρ − κ−�

ρ

∏
α∈S c�

α
ν−
αρ

ln κ+�
ρ

∏
α∈S c�

α
ν+
αρ − ln κ−�

ρ

∏
α∈S c�

α
ν−
αρ

= M0|u�
ρ |

|U�|RD
= m�

ρ,

(E75)

Fmech�
(α) (t ) − ∇r ln c�

α (t ) = F�
(α), (E76)

and

ln
κ+�

ρ

∏
α∈S c�

α
ν+
αρ

κ−�
ρ

∏
α∈S c�

α
ν−
αρ

= f �
ρ . (E77)

Note that the dependence of the optimal parameters on time
is completely determined by �c�(t ) because the optimizer
(M�,F�) is independent of time.

c. Conservative force as an optimizer of the minimization
problem in Eq. (157)

We remark that we can take a conservative force as an
optimal force of the minimization problem (157) by using U•
introduced in Appendix E 2 instead of U�. In this case, a new
optimal Onsager operator M• = ↔

M• ⊕ m• is given by

M•
(αβ ) := M0‖U•

(α)‖
|U•|RD

δαβ I, m•
ρ := M0|u•

ρ |
|U•|RD

, (E78)

and we can take the conservative force

F• := ∇
( |U•|RD

τM0

�ψ•
)

, (E79)

as a new optimal force. They satisfy M•F• = U•/τ due to the
complementary slackness condition (E21) and the definition
of U• (E23). To derive M•F• = U•/τ , we used ‖U•

(α)‖ =
U L•

α for α ∈ X and ‖u•
ρ‖ = uL•

ρ for ρ ∈ RX . Since the time-
integrated current U• is an optimizer of the 1-Wasserstein
distance as remarked in Appendix E 2, the Onsager operator
M• and the force F• achieve the equality

�τ [M•,F•] = W1,X (�c(0), �c(τ ))2

τM0
, (E80)

and satisfy the constraints in Eqs. (155) and (156).

9. Embedding time series of concentration distributions
into Euclidean space by multidimensional scaling

We introduce the procedure of the multidimensional scal-
ing [113]. This method is used to visualize the similarity of a
data set in a low-dimensional Euclidean space. Let [0, τ ] be
the time interval of the reaction-diffusion dynamics. We used
the multidimensional scaling for n + 1 samples of the concen-
tration �c(ta) where ta = (a/n)τ and a ∈ {0, 1, . . . , n}. We aim
to find the points {r(0), r(1), . . . , r(n)} in the d0-dimensional
Euclidean space such that ‖r(a) − r(b)‖ � W1,X (�c(ta), �c(tb))
is approximately satisfied for all (a, b) ∈ {0, 1, . . . , n}2. In
the numerical examples, we use (d0, n) = (2, 40) for the
Fisher–KPP equation and (d0, n) = (2, 200) for the Brusse-
lator model. The detailed procedure is as follows.

We define a (n + 1) × (n + 1) matrix W as

(W)ab := W1,X (�c(ta), �c(tb))2, (E81)

for (a, b) ∈ {0, 1, . . . , n}2. In general, when determining co-
ordinates solely from the distance structure between each
point, there is an ambiguity in the choice of the origin. To
determine the origin, we apply the double centering to W, i.e.,
we transform W with a matrix (C)ab := δab − 1/(n + 1) as

WC := −1

2
CWC. (E82)

We note that WC satisfies the following two properties: (i)∑
a(WC)ab = 0 and

∑
b(WC)ab = 0, and (ii) the square of the

distance is recovered as

(WC)aa + (WC)bb − 2(WC)ab = (W)ab

= W1,X (�c(ta), �c(tb))2. (E83)

Here, the property (i) corresponds to the center of gravity be-
ing the origin, and the property (ii) corresponds to considering
each component (WC)ab as an inner product between vectors
from the origin to each point. We can verify these properties
using

(WC)ab = − 1

2

[
(W)ab +

∑
a′,b′ (W)a′b′

(n + 1)2

]

+
∑

a′ (W)a′b +∑
b′ (W)ab′

2(n + 1)
, (E84)

(W)aa = 0, and (W)ab = (W)ba.
Since WC is symmetric, it is diagonalizable with an orthog-

onal matrix Q as

WC = Q�Q�, (E85)

with � := diag(λ0, λ1, . . . , λn). Here, we assume that the
eigenvalues of WC are in descending order, i.e., λ0 � λ1 �
· · · � λn. We note that some eigenvalues can be negative
because the 1-Wasserstein distance is non-Euclidean. We can
obtain r(a) if λd0−1 is nonnegative as

(r(a) )i = (Q)ai

√
λi, (E86)

for 0 � i � d0 − 1. Note that we cannot embed the time series
in the d0 dimensional Euclidean space if λd0−1 is negative.

We also discuss the accuracy of the multidimensional scal-
ing. To do so, we define the estimation error of the distance
between �c(ta) and �c(tb) as

εab := |W1,X (�c(ta), �c(tb))2 − ‖r(a) − r(b)‖2|. (E87)
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The definition of r(a) (E86) yields

‖r(a) − r(b)‖2

=
d0−1∑
i=0

λi(Q)2
ai +

d0−1∑
i=0

λi(Q)2
bi − 2

d0−1∑
i=0

λi(Q)ai(Q)bi

= (WC)aa + (WC)bb − 2(WC)ab −
n∑

i=d0

λi((Q)ai − (Q)bi )2

= W1,X (�c(ta), �c(tb))2 −
n∑

i=d0

λi((Q)ai − (Q)bi )2 (E88)

where we use the element of Eq. (E85), i.e., (WC)ab =∑n
i=0 λi(Q)ai(Q)bi, in the second line. We also use Eq. (E83)

in the last transform. Thus, we obtain

εab =
∣∣∣∣∣∣

n∑
i=d0

λi((Q)ai − (Q)bi )2

∣∣∣∣∣∣. (E89)

We can derive the upper bound of εab for a 
= b as

εab �
(

max
d0�i�n

|λi|
) n∑

i=d0

((Q)ai − (Q)bi )2

�
(

max
d0�i�n

|λi|
) n∑

i=0

((Q)ai − (Q)bi )2

= 2 max
d0�i�n

|λi|, (E90)

where we use the orthogonality of Q, namely,∑n
i=0(Q)ai(Q)bi = δab, in the last transform. This upper

bound implies that the eigenvalues truncated in the embedding
determine the error. The error becomes small if the following
two conditions are satisfied: (i) the dimension d0 is sufficiently
large to express the trajectory that we embed, and (ii) the
absolute values of the negative eigenvalues are enough small,
i.e., the effect of non-Euclideanity is enough small.

10. The property of the 1-Wasserstein distance
for the Fisher–KPP equation

a. The equivalence of the lengths in the Fisher–KPP equation
and other simple reaction-diffusion systems

In this section, we consider an RDS in V ⊂ Rd , which
satisfies X = {1} and RX = {1}. The dynamics of the con-
centration distribution of the internal species Z1 is given by a
simple RD equation,

∂t c1(r; t ) = −∇r · J (1) + j1. (E91)

The way to interact with the outside of the system and the
boundary conditions can be whatever is appropriate. The
Fisher–KPP equation is an example of such a system.

Here, we prove that each monotonic increase,

∂t c1(r; t ) � 0 for all r ∈ V and t ∈ [0, τ ], (E92)

or decrease,

∂t c1(r; t ) � 0 for all r ∈ V and t ∈ [0, τ ], (E93)

of the concentration leads to the equivalence of the lengths,

l1,τ = W1,X (�c(0), �c(τ ))

= LX (�c(0), �c(τ )) = Ltot
X (�c(0), �c(τ )). (E94)

We first verify the hierarchy of lengths,

l1,τ � W1,X (�c(0), �c(τ ))

� LX (�c(0), �c(τ )) � Ltot
X (�c(0), �c(τ )), (E95)

to obtain the equivalence (E94). It is enough to show the
second inequality in Eq. (E95) since we can easily derive
the first and third inequalities from the triangle inequality.
To obtain the desired inequality, we take a potential φ′

1(r)
as φ′

1(r) = 1 if the concentration is monotonically increasing
(E92) or φ′

1(r) = −1 if the concentration is monotonically
decreasing (E93). This potential (φ′

1(r), �0�
Y )� =: �φ′ belongs

to the set Lip1
X (121) because ‖∇rφ

′
1‖ � 1 and |φ′

1| � 1 hold.
Thus, the potential �φ′ is a candidate for the Kantorovich–
Rubinstein duality (120), which leads

W1,X (�c(0), �c(τ )) = sup
�φ∈Lip1

X

〈 �φ, �c(τ ) − �c(0)
〉

� 〈 �φ′, �c(τ ) − �c(0)〉

=
∫

V
dr φ′

1(r){c1(r; τ ) − c1(r; 0)}

=
∫

V
dr |c1(r; τ ) − c1(r; 0)|

= LX (�c(0), �c(τ )) (E96)

Second, we show that the maximum length in the hierarchy
equals the minimum one as

l1,τ = Ltot
X (�c(0), �c(τ )). (E97)

The minimization problem for the 1-Wasserstein distance
(118) provides the variational form of v1(t ),

v1(t ) = inf
J′

(1), j′1

∫
V

dr {‖J′
(1)‖ + | j′1|}, (E98)

with the following condition: the currents (J′
(1), j′1) satisfies

∂t c(r; t ) = −∇r · J′
(1)(r; t ) + j′1(r; t ). (E99)

We can obtain the lower bound of v1 as

v1(t ) �
∫

V
dr |∂t c1(r; t )|, (E100)

by replacing (0, τ ) with (t, t + Δt ) in Eq. (E96), dividing
this equation by Δt , and taking the limit Δt → 0. This
lower bound is achievable by taking J′

(1) = 0 and j′1 = ∂t c1

in Eq. (E98). Here, we can easily verify that J′
(1) = 0 and

j′1 = ∂t c1 satisfy the condition (E99). Thus, we obtain

v1(t ) =
∫

V
dr |∂t c1(r; t )|. (E101)
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Integrating Eq. (E101) leads to the desired equality (E97) as

l1,τ =
∫ τ

0
dt v1(t )

=
∫ τ

0
dt
∫

V
dr |∂t c1(r; t )|

=
∣∣∣∣
∫ τ

0
dt
∫

V
dr ∂t c1(r; t )

∣∣∣∣
=
∣∣∣∣
∫

V
dr {c1(r; τ ) − c1(r; 0)}

∣∣∣∣
= Ltot

X (�c(0), �c(τ )) (E102)

where we used the fact that the sign of ∂t c1 is invariant to
obtain the third line. Combining Eqs. (E95) and (E97) yields
the desired result in Eq. (E94).

b. The 1-Wasserstein distance for the traveling wave solution
in the Fisher–KPP equation

In this section, we focus on the Fisher–KPP equation in the
one-dimensional Euclidean space R. Letting the concentration
of the external species c2(r; t ) = c2 be homogeneous, the time
evolution of c1 is given by

∂t c1 = D1∂
2
r c1 + (κ+

1 c2)c1

(
1 − c1

ceq
1

)
, (E103)

where ceq
1 is the equilibrium concentration given by ceq

1 =
κ+

1 c2/κ
−
1 . For each wave speed vwave � 2

√
D1κ

+
1 c2 , the equa-

tion admits traveling wave solutions [107], whose form is
given by

c1(r; t ) = cwave(r − vwavet ) = cwave(x). (E104)

The function cwave(x) is a monotonically decreasing function
of x, and thus

∂xcwave(x) � 0, (E105)

holds for all x ∈ R. The function cwave(x) also satisfies the
boundary conditions

lim
x→−∞ cwave(x) = ceq

1 , lim
x→∞ cwave(x) = 0. (E106)

For these traveling wave solutions c1(r; t ) = cwave(r −
vwavet ), we can obtain the closed form of the lengths,

l1,τ = W1,X (�c(0), �c(τ ))

= LX (�c(0), �c(τ )) = Ltot
X (�c(0), �c(τ ))

= ceq
1 vwaveτ. (E107)

We can verify it as follows. Combining Eqs. (E104) and
(E105) leads to

∂t c1(r; t ) = −vwave∂xcwave(x)|x=r−vwavet � 0, (E108)

for all r ∈ R and t ∈ [0, τ ], which lets the traveling wave
solutions satisfy the monotonicity (E92). Thus, the result of
the previous section (E94) confirms the first, second, and third

equalities in Eq. (E107). We can also verify the remaining
part,

l1,τ = ceq
1 vwaveτ, (E109)

using Eq. (E101) as

l1,τ =
∫ τ

0
dt
∫
R

dr |∂t c1(r; t )|

= −vwave

∫ τ

0
dt
∫ ∞

−∞
dx ∂xcwave(x)

= ceq
1 vwaveτ, (E110)

where we used Eq. (E106) in the space integration.

APPENDIX F: THE DERIVATION OF THE TRADE-OFF
RELATION IN EQ. (178)

We provide the derivation of Eq. (178). The triangle in-
equality for the time integration leads to

|c̃α (k; τ ) − c̃α (k; 0)| =
∣∣∣∣
∫ τ

0
dt[dt c̃α (k; t )]

∣∣∣∣
�
∫ τ

0
dt |dt c̃α (k; t )|. (F1)

The right-hand side of Eq. (F1) has an upper bound from the
TUR (175) as∫ τ

0
dt |dt c̃α (k; t )| �

∫ τ

0
dt

√
σ ex

√
k · Mtot

(αα)(t )k + D̆tot
αα (t ).

(F2)

The Cauchy–Schwarz inequality provides an upper bound for
the right-hand side of Eq. (F2) as∫ τ

0
dt

√
σ ex

√
k · Mtot

(αα)(t )k + D̆tot
αα (t )

�
√∫ τ

0
dtσ ex

√∫ τ

0
dt
[
k · Mtot

(αα)(t )k + D̆tot
αα (t )

]

=
√

τ�ex
τ

[
k · 〈Mtot

(αα)〉τ k + 〈D̆tot
αα〉τ

]
. (F3)

We obtain Eq. (178) by unifying Eqs. (F1)–(F3).

APPENDIX G: COMPLEMENTARY NUMERICAL
DEMONSTRATION OF THE THERMODYNAMIC
UNCERTAINTY RELATION FOR c̃1(k; t ) IN THE

BRUSSELATOR

In Fig. 11, we show the TURs σ TUR
1 (n; t ) for various n and

scatter plots of n(1)
max(t ), corresponding to the chemical species

Z1 (α = 1). Compared to the case of α = 2, the mode n(1)
max

tends to be larger than n(2)
max. This is probably because the

pattern of c1 has more extreme peaks than the pattern of c2,
resulting in a large time variation of the mode corresponding
to a large n.
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FIG. 11. (a) The time series of c1. The symmetry of the pattern changes from threefold to sixfold. (b) The excess EPR (black line) and its
lower bounds σ TUR

1 (n; t ) for various n. (c) The time series of |c̃1(k(n))|. We omit |c̃1(k(n))| for n � 32. Since the symmetry of the pattern goes
from threefold to sixfold, |c̃1(k(n))| decays if n is a multiple of three but not a multiple of six. (d) n(1)

max(t ) (black dots). Reflecting the symmetry
of the pattern, n(1)

max(t ) is multiples of three (red lines) for all time t . Near the stationary pattern (t > 20), n(1)
max(t ) is nine for almost all t .
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[104] C. Maes and K. Netočný, Canonical structure of dynami-
cal fluctuations in mesoscopic nonequilibrium steady states,
Europhys. Lett. 82, 30003 (2008).

[105] C. Maes, Non-Dissipative Effects in Nonequilibrium Systems
(Springer International Publishing, New York, 2018).

[106] E. Penocchio, R. Rao, and M. Esposito, Thermodynamic ef-
ficiency in dissipative chemistry, Nat. Commun. 10, 3865
(2019).

[107] J. D. Murray, Mathematical Biology: I. An Introduction, In-
terdisciplinary Applied Mathematics (Springer, New York,
2002).

[108] J. Maas, Gradient flows of the entropy for finite Markov
chains, J. Funct. Anal. 261, 2250 (2011).

[109] T. J. Kobayashi, D. Loutchko, A. Kamimura, and Y.
Sughiyama, Hessian geometry of nonequilibrium chemical
reaction networks and entropy production decompositions,
Phys. Rev. Res. 4, 033208 (2022).

[110] M. Feinberg, Foundations of chemical reaction network the-
ory, in Applied Mathematical Sciences (Springer, New York,
2019).

[111] A. Chambolle and T. Pock, A first-order primal-dual algorithm
for convex problems with applications to imaging, J. Math.
Imaging Vision 40, 120 (2011).

[112] W. Li, E. K. Ryu, S. Osher, W. Yin, and W. Gangbo, A parallel
method for earth mover’s distance, J. Sci. Comput. 75, 182
(2018).

[113] I. Borg and P. J. Groenen, Modern Multidimensional Scaling:
Theory and Applications, Springer Series in Statistics
(Springer, New York, NY, 2007).

[114] O. Niggemann and U. Seifert, Field-theoretic thermodynamic
uncertainty relation: General formulation exemplified with
the Kardar–Parisi–Zhang equation, J. Stat. Phys. 178, 1142
(2020).

[115] S. Rana and A. C. Barato, Precision and dissipation of
a stochastic Turing pattern, Phys. Rev. E 102, 032135
(2020).

[116] Y. Song and C. Hyeon, Cost-precision trade-off relation deter-
mines the optimal morphogen gradient for accurate biological
pattern formation, Elife 10, e70034 (2021).

[117] M. Nguyen, Y. Qiu, and S. Vaikuntanathan, Organization and
self-assembly away from equilibrium: Toward thermodynamic
design principles, Annu. Rev. Condens. Matter Phys. 12, 273
(2021).

[118] E. Zimmermann and U. Seifert, Efficiencies of a molecular
motor: A generic hybrid model applied to the F1-APTase, New
J. Phys. 14, 103023 (2012).

[119] S.-I. Amari and H. Nagaoka, Methods of Information Geom-
etry, Vol. 191 (American Mathematical Soc., Providence, RI,
2000).

[120] S.-I. Amari, Information Geometry and Its Applications
(Springer Japan, Tokyo, 2016).

[121] H. Shima, The Geometry of Hessian Structures (World Scien-
tific, Singapore, 2007).

[122] C. A. Weber, D. Zwicker, F. Jülicher, and C. F. Lee, Physics
of active emulsions, Rep. Prog. Phys. 82, 064601 (2019).

[123] J. Kirschbaum and D. Zwicker, Controlling biomolecular con-
densates via chemical reactions, J. R. Soc. Interface. 18,
20210255 (2021).

[124] J. Bauermann, C. A. Weber, and F. Jülicher, Energy and matter
supply for active droplets, Ann. Phys. (Leipzig) 534, 2200132
(2022).

[125] D. Zwicker, The intertwined physics of active chemical reac-
tions and phase separation, Curr. Opin. Colloid Interface Sci.
61, 101606 (2022).

[126] S. K. Manikandan, D. Gupta, and S. Krishnamurthy, Inferring
entropy production from short experiments, Phys. Rev. Lett.
124, 120603 (2020).

[127] R. G. Plaza, F. Sanchez-Garduno, P. Padilla, R. A. Barrio, and
P. K. Maini, The effect of growth and curvature on pattern
formation, J. Dyn. Differ. Equations 16, 1093 (2004).

[128] R. Nishide and S. Ishihara, Pattern propagation driven by
surface curvature, Phys. Rev. Lett. 128, 224101 (2022).

[129] H. G. Othmer and L. Scriven, Instability and dynamic pattern
in cellular networks, J. Theor. Biol. 32, 507 (1971).

[130] H. Nakao and A. S. Mikhailov, Turing patterns in network-
organized activator–inhibitor systems, Nat. Phys. 6, 544
(2010).

[131] T. H. Tan, J. Liu, P. W. Miller, M. Tekant, J. Dunkel, and N.
Fakhri, Topological turbulence in the membrane of a living
cell, Nat. Phys. 16, 657 (2020).

[132] V. Colizza, R. Pastor-Satorras, and A. Vespignani, Reaction–
diffusion processes and metapopulation models in heteroge-
neous networks, Nat. Phys. 3, 276 (2007).

[133] J. Howard, S. W. Grill, and J. S. Bois, Turing’s next steps: The
mechanochemical basis of morphogenesis, Nat. Rev. Mol. Cell
Biol. 12, 392 (2011).

[134] M. Mercker, F. Brinkmann, A. Marciniak-Czochra, and T.
Richter, Beyond turing: Mechanochemical pattern formation
in biological tissues, Biol. Direct 11, 22 (2016).

[135] J. Dolbeault, B. Nazaret, and G. Savaré, A new class of trans-
port distances between measures, Calc. Var. 34, 193 (2009).

033011-46

http://eudml.org/doc/281681
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1038/s41467-019-11676-x
https://doi.org/10.1016/j.jfa.2011.06.009
https://doi.org/10.1103/PhysRevResearch.4.033208
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10915-017-0529-1
https://link.springer.com/book/10.1007/0-387-28981-X
https://doi.org/10.1007/s10955-019-02479-x
https://doi.org/10.1103/PhysRevE.102.032135
https://doi.org/10.7554/eLife.70034
https://doi.org/10.1146/annurev-conmatphys-031218-013309
https://doi.org/10.1088/1367-2630/14/10/103023
https://doi.org/10.1088/1361-6633/ab052b
https://doi.org/10.1098/rsif.2021.0255
https://doi.org/10.1002/andp.202200132
https://doi.org/10.1016/j.cocis.2022.101606
https://doi.org/10.1103/PhysRevLett.124.120603
https://doi.org/10.1007/s10884-004-7834-8
https://doi.org/10.1103/PhysRevLett.128.224101
https://doi.org/10.1016/0022-5193(71)90154-8
https://doi.org/10.1038/nphys1651
https://doi.org/10.1038/s41567-020-0841-9
https://doi.org/10.1038/nphys560
https://doi.org/10.1038/nrm3120
https://doi.org/10.1186/s13062-016-0124-7
https://doi.org/10.1007/s00526-008-0182-5

