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Turing machines (TMs) are the canonical model of computation in computer science and physics. We combine
techniques from algorithmic information theory and stochastic thermodynamics to analyze the thermodynamic
costs of TMs. We consider two different ways of realizing a given TM with a physical process. The first
realization is designed to be thermodynamically reversible when fed with random input bits. The second
realization is designed to generate less heat, up to an additive constant, than any realization that is computable
(i.e., consistent with the physical Church-Turing thesis). We consider three different thermodynamic costs: The
heat generated when the TM is run on each input (which we refer to as the “heat function”), the minimum
heat generated when a TM is run with an input that results in some desired output (which we refer to as the
“thermodynamic complexity” of the output, in analogy to the Kolmogorov complexity), and the expected heat
on the input distribution that minimizes entropy production. For universal TMs, we show for both realizations
that the thermodynamic complexity of any desired output is bounded by a constant (unlike the conventional
Kolmogorov complexity), while the expected amount of generated heat is infinite. We also show that any
computable realization faces a fundamental trade-off among heat generation, the Kolmogorov complexity of
its heat function, and the Kolmogorov complexity of its input-output map. We demonstrate this trade-off by
analyzing the thermodynamics of erasing a long string.
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I. INTRODUCTION

The relationship between thermodynamics and information
processing has been an important area of research since
at least the 1960s, when Landauer proposed that any pro-
cess which erases a bit of information must release at least
kT ln 2 of heat into its environment [1–16]. This research
has greatly benefited from the dramatic progress in nonequi-
librium statistical physics in the past few decades, in par-
ticular the development of trajectory-based and stochastic
thermodynamics [17–19]. These developments now permit us
to quantify and analyze heat, work, entropy production, and
other thermodynamic properties of individual trajectories in
far-from-equilibrium systems. They have also have led to a
much deeper understanding of the relationship between ther-
modynamics and information processing, both for informa-
tion erasure [20–25] and other more elaborate computations
[10,26–39].

In this paper we extend this line of research by deriving
new results on the thermodynamic costs of performing general
computations, as formalized by the notion of Turing machines
(TMs). A TM is an abstraction of a conventional modern
computer, which run programs written in a conventional pro-
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gramming language (C, Python, etc.) [40–45]. A TM reads
an input string of arbitrary length (a “program”) and runs
until it produces an output string. In the same way that any
modern computer can simulate other computers (e.g., via
an emulator), there exists an important class of TMs called
universal Turing Machines (UTMs), each of which is able to
simulate the operation of any other TM.

TMs are a keystone of the theory of computation [46] and
touch on several foundational issues that lie at the intersection
of mathematics and philosophy, such as whether P = NP
and Gödel’s incompleteness theorems [47]. Their importance
is partly due to the celebrated Church-Turing thesis, which
postulates that any function that can be computed by a se-
quence of formal operations can also be computed by some
TM [48–50]. For this reason, in computer science, a function
is called computable if and only if it can be carried out by
a TM [42]. TMs also play important roles in many facets
of modern physics. For instance, TMs are used to formalize
the difference between easy and hard computational problems
in quantum computing [51–55]. There has also been some
speculative, broader-ranging work on whether the foundations
of physics may be restricted by some of the properties of TMs
[56,57]. Finally, there has been extensive investigation of the
physical Church-Turing thesis, which states that any function
that can be implemented by a physical process can also be
computed with a TM [51,53,58–70].

One of the most important concepts in the theory of TMs
is Kolmogorov complexity. The Kolmogorov complexity of a
string y, written as K (y), is the length of the shortest input
program which causes a UTM to produce y as the output (for-
mal definitions are provided in Sec. II B). The Kolmogorov
complexity of a string y captures the amount of randomness in
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y, because a string with a nonrandom pattern can be produced
by a short input program. For example, the string containing
the first billion digits of π can be generated by running a
very short program and so has small Kolmogorov complexity.
In contrast, for a random string y without any patterns, the
shortest program that produces y is a program of the type
“print ‘y‘”, which has about the same length as y. An im-
portant variant of Kolmogorov complexity is the conditional
Kolmogorov complexity of y given x, written K (y|x), which
is the length of the shortest program which causes a UTM
to produce y as output, when the UTM is provided with x as
an additional input. Kolmogorov and conditional Kolmogorov
complexity have many formal connections with entropy and
conditional entropy from Shannon’s information theory [43]
and are studied in a field called algorithmic information theory
(AIT) [42,71].

In this paper, we combine techniques from AIT and
stochastic thermodynamics to analyze the thermodynamics
of TMs. We imagine a discrete-state physical system that is
coupled to a heat bath at temperature T and that evolves
under the influence of a driving protocol. We identify the
initial and final states of the physical system with the logical
inputs and outputs of some TM, so that the dynamics over the
states of the physical system corresponds to a computation
performed by the TM. We refer to a physical process that
is consistent with the laws of thermodynamics and whose
dynamics correspond to the input-output map of a TM as a
realization of that TM.

We derive numerous results that concern the thermody-
namic properties of realizations of TMs. The core underlying
idea behind these results is that the logical properties a given
TM (such as the structure of the TM’s input-output map
or the Kolmogorov complexity of its inputs and outputs)
provide constraints on the thermodynamic costs incurred by
realizations of that TM (such as the amount of heat those real-
izations generate). Some of our results relate logical properties
and thermodynamic costs at the ensemble level (i.e., relative
to a probability distribution over computational trajectories
of a TM), thereby building on the thermodynamic analysis
initiated by Landauer and others. In addition to these, many
of our results also relate logical properties and thermodynamic
costs at the level of individual computational trajectories (i.e.,
individual runs of the TM), which goes beyond most existing
research on thermodynamics of computation.

A. Summary of results

We investigate three different kinds of thermodynamic
costs for a given realization of a TM:

(1) The amount of heat that is generated by running the
realization of a given (universal or nonuniversal) TM on
each individual input x. We refer to the map from inputs to
their associated heat values as the heat function of the TM’s
realization and write it as Q(x).

(2) The minimal amount of heat generated by running the
realization of a given TM on some individual input that results
in a desired output y. Here we assume that the TM is universal,
so that it can in principle produce any output. This second cost
is a function of the desired output y, rather than of the input x,
and can be viewed as a thermodynamic analog of conventional

Kolmogorov complexity. For this reason, we refer to this cost
as the thermodynamic complexity of y.

(3) The ensemble-level expected heat 〈Q〉 generated by the
realization of a TM, evaluated for the input distribution that
minimizes entropy production (EP). For this cost, we again
focus on the case of universal TMs.

In general, there are many physical processes that are
realizations of the same TM, which can have different thermo-
dynamic costs from one another. In this paper we consider the
above three thermodynamic costs for two important types of
realizations. The first realization we consider, which is called
the coin-flipping realization, is constructed to be thermody-
namically reversible when input programs are sampled from
the “coin-flipping” distribution p(x) ∝ 2−�(x), where �(x) in-
dicates the length of string x. This input distribution arises by
feeding random bits into a TM (hence its name) and plays a
fundamental role in AIT.

We show that the heat function of the coin-flipping re-
alization of a given TM is proportional to �(x) minus a
“correction term” which reflects the logically irreversibility of
the input-output map computed by the TM. Importantly, when
the realized TM is a universal TM U , this correction term can
be related to the Kolmogorov complexity of the output of U
on input x. In this case, the heat function is given by

Qcoin(x) = kT ln 2 {�(x) − K[φU (x)]} + O(1), (1)

where φU (x) indicates the output of U on input x and O(1)
indicates equality up to an additive constant independent of x
(see Sec. I C for a formal definition). Thus, up to an additive
constant, the heat generated by running input x on the coin-
flipping realization of some UTM U is proportional to the
excess length of the input program x, over and above the
length of the shortest program for U that produces the same
output as x.

It follows from Eq. (1) that if x is the shortest program
for U that produces output φU (x), then Qcoin(x) = O(1). This
means that by running the shortest program x that produces
some desired y as output, one can produce that y for an
amount of heat that is bounded by a constant. Thus, the
thermodynamic complexity for the coin-flipping realization
is a bounded function, unlike the Kolmogorov complexity,
which grows arbitrarily large [42]. On the other hand, we also
show that when inputs are sampled from the coin-flipping
distribution, the expected heat 〈Q〉 generated by the coin-
flipping realization of a UTM is infinite. This holds even
though the heat necessary to run the UTM on any given input
x is finite.

The second realization we analyze is inspired by the physi-
cal Church-Turing thesis. To begin, we refer to a realization of
a TM with heat function Q as a computable realization if the
function x �→ Q(x)/kT is computable [i.e., there exist some
TM that takes as input any desired x and outputs the corre-
sponding heat value Q(x) in units of kT ]. Under common in-
terpretations of the physical Church-Turing thesis [50,53,59–
61,64], any realization that is actually constructable in the real
world must be computable; in other words, a noncomputable
realization is a hypothetical physical process which does not
violate any laws of thermodynamics but which nonetheless
cannot be constructed because of computational constraints.
Motivated by these observations, we define the so-called
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dominating realization of a TM M to be “optimal” in the
following sense: The heat it generates on any input x is smaller
than the heat generated by any computable realization of M on
x, up to an additive constant which does not depend on x.1 The
heat function of the dominating realization is proportional to
the conditional Kolmogorov complexity of the output given
the input,

Qdom(x) = kT ln 2 K[x|φM (x)], (2)

where φM (x) indicates the output of TM M on input x. We
show that this heat function is smaller than the heat function
Q of any computable realization of M,

Qdom(x) � Q(x) + O(1). (3)

Note that this result holds whether or not M is a UTM.
For the special case where M is a UTM, we show that

for any desired output y, the thermodynamic complexity of y
under the dominating realization is bounded by a constant that
is independent of y, just like for the coin-flipping realization.
Moreover, for the dominating realization there is a simple
scheme for choosing the input x that will produce any desired
output y with a bounded amount of heat. This differs from the
coin-flipping realization, where one must know the shortest
program that generates y in order to produce y with a bounded
amount of heat (in general, finding the shortest program to
produce a given output y is not computable).

Finally, we consider the expected heat that is generated by
the dominating realization, given some probability distribu-
tion over input programs. A natural input distribution to con-
sider is the one that minimizes the entropy production of the
dominating realization. As for the coin-flipping realization,
we show that the expected heat across inputs sampled from
this distribution is infinite.

There are two important caveats concerning the dominating
realization. First, while the dominating realization is better
than any computable realization, in the sense of Eq. (3), it
itself is not computable. This is because its heat function is
defined in terms of the conditional Kolmogorov complexity,
which is not a computable function. Nonetheless, as we
discuss below, one can always define a sequence of com-
putable realizations whose heat functions approach Qdom from
above. Thus, the dominating realization presents a fundamen-
tal bound on the heat generation of computable realizations,
and this bound is achievable in the limit.

Second, for a given TM M, Eq. (3) states that the heat
generated by the dominating realization on input x, Qdom(x), is
smaller than the heat generated by any computable realization,
Q(x), up to an additive constant that does not depend on x.
This additive constant, however, can depend on the particular
alternative realization of M that is being compared, i.e., on
the choice of comparison heat function Q. In fact, depending

1Note that generating minimal heat is different from generating
minimal EP. For example, the coin-flipping realization of a TM is
thermodynamically reversible for the coin-flipping distribution over
inputs x and thus generates zero EP when run on inputs sampled from
that distribution. However, that does not mean that it generates less
heat on any particular input x relative to the heat generated by another
realization of the same TM on x.

on the alternative realization, that additive constant can be
arbitrarily large and negative. This means that for a given
TM M and some particular choice of input program x, there
may exist alternative realizations of M that generate arbitrarily
less heat than the dominating realization. It turns out, how-
ever, that the difference between Qdom(x) and Q(x) is upper
bounded by the sum of the Kolmogorov complexity of the
input-output function φM and the Kolmogorov complexity of
the comparison heat function Q. Using this result, we show
that any computable realization that produces output y from
input x faces a fundamental cost of K (x|y), which can be paid
either by producing a large amount of heat, by computing an
input-output map with high complexity or by having a heat
function with high complexity.

The paper is laid out as follows. In the following subsec-
tions, we review relevant prior work and introduce notation. In
Sec. II, we define TMs and review some relevant results from
AIT. In Sec. III, we review the basics of statistical physics
and discuss how a TM can be implemented as a physical
system. We present our main results on the coin-flipping and
dominating realizations in Sec. IV and Sec. V. In Sec. VI,
we demonstrate the trade-off between heat and complexity by
analyzing the thermodynamics of erasing a long string. In the
last section we discuss potential directions for future research.

B. Prior work on thermodynamics of TMs

Some of the earliest work on the thermodynamics of TMs
focused on TMs with deterministic and logically reversible
dynamics [72,73]. Logically reversible TMs can perform
computations without generating any heat or entropy produc-
tion, at the cost of having to store additional information in
their output, which logically irreversible TMs do not need
to store. Due to the thermodynamic costs that would arise
in reinitializing that extra stored information, there are some
subtleties in calculating the thermodynamic cost of running
a “complete cycle” of any logically reversible TM [34]. (See
also Refs. [74,75] for a discussion of the relationship between
thermodynamic and logical reversibility.) Logically reversible
TMs form a special subclass of TMs and require special
definitions of universality [76]. In this work, we focus on the
thermodynamics of general-purpose TMs, whose computa-
tions will generally be logically irreversible. However, we will
sometimes also discuss how our results apply in the logically
reversible case.

More recently, Ref. [36] analyzed the thermodynamics of
logically reversible TMs with stochastic forward-backward
dynamics along a computational trajectory, which causes the
state of the TM to become more uncertain with time.2 This
model incurs nonzero entropy production, even though each
computational trajectory encodes a logically reversible com-
putation. Note that this entropy production could in principle
be made arbitrarily small by driving the TM forward with
momentum (e.g., by coupling it to a large flywheel). In this

2This kind of “stochastic TM” should not be confused with what
are called “nondeterministic TMs” or “probabilistic TMs” in the
computer science literature [40,44].

033312-3



ARTEMY KOLCHINSKY AND DAVID H. WOLPERT PHYSICAL REVIEW RESEARCH 2, 033312 (2020)

work, we will ignore possible stochasticity in the progression
of a TM along its computational trajectory.

Finally, there has been recent work which interprets the
coin-flipping distribution over strings x, as defined in Sec. IV,
as a “Boltzmann distribution” induced by the “energy func-
tion” �(x) [77]. Doing this allows one to formulate a set
of equations concerning TMs that are formal analogs of
Maxwell’s relations for equilibrium thermodynamic systems.

In our own earlier work, we began to analyze the thermo-
dynamic complexity of computing desired outputs, focusing
on the coin-flipping realization and a three-tape UTM [78].
We first showed explicitly how to construct a system that
is thermodynamically reversible for the coin-flipping distri-
bution and then derived the associated heat function. We
showed that for this realization, the minimal amount of heat
needed to compute any given output y equals the Kolmogorov
complexity of y, plus what we characterized as a “correction
term.” In other, more recent work, we rederived these results
using stochastic thermodynamics and single-tape machines
[79].

In this paper, we extend this earlier work on the coin-
flipping realization. For simplicity, we consider the thermo-
dynamics of systems that implement the entire computation
of a given UTM in some fixed time interval. (In contrast,
our earlier work considered systems that implement a given
UTM’s update function iteratively, taking varying amounts
of time to halt, depending on the input to the UTM.) We
then go further and use Levin’s Coding theorem to show that
the thermodynamic complexity of the coin-flipping realiza-
tion is bounded, even though the conventional Kolmogorov
complexity function is not. We also extend this earlier work
by showing that the coin-flipping realization generates infinite
expected heat when inputs are sampled from the coin-flipping
distribution.

The other main contributions of this paper concern the
thermodynamic costs of the dominating realization. These
results are related to a series of groundbreaking papers begun
by Zurek [5,6,80–86]. Those papers were generally written
before the widespread adoption of trajectory-based analyses
of thermodynamics [18] and contained a semiformal argument
that computing an output string y from an input x has a min-
imal “thermodynamic cost” of at least K (x|y). Even though
that semiformal argument is quite different from our analysis,
the same “thermodynamic cost” function also appears in our
analysis of the dominating realization. We discuss connec-
tions between our results and this earlier work in more detail
in Sec. VI.

C. Notation

We use uppercase letters, such as X and Y , to indicate
random variables. We use lowercase letters, like x and y, to
indicate their outcomes. We use pX to indicate a probability
distribution over random variable X and pX |Y to indicate
a conditional probability distribution of random variable X
given random variable Y . We also use pX |Y =y to indicate
the probability distribution of X conditioned on one par-
ticular outcome Y = y. Finally, we use supp pX to indicate
the support of distribution pX and notation like 〈 f (X )〉pX =∑

x pX (x) f (x) to indicate expectations.

A partial function f : A → B is a map from some subset
of A, which is called the domain of definition of f , into B. We
write dom f ⊆ A to indicate the domain of definition of f and
img f := { f (a) : a ∈ dom f } to indicate the image of f . The
value of f (a) is undefined for any a 	∈ dom f .

For any set A, we use A∗ to indicate the set of finite strings
of elements from A. We use A∞ to indicate the set of infinite
strings of elements from A. In particular, {0, 1}∗ indicates the
set of all finite binary strings. Note that for any finite A, A∗ is
a countably infinite set.

The Kronecker delta is indicated by δ(·, ·). We sometimes
write δx to indicate a δ-function probability distribution over
outcome x of random variable X , δx(x′) = δ(x, x′).

We use standard asymptotic notation, such as f (x) =
g(x) + O(1), which indicates that | f (x) − g(x)| � κ for some
κ ∈ R and all x. Similarly, notation like f (x) � g(x) + O(1)
indicates that f (x) − g(x) � κ for some κ ∈ R and all x.

II. BACKGROUND ON TURING MACHINES AND AIT

A. Turing machines

In its canonical definition, a TM comprises three variables
and a rule for their joint dynamics. First, there is a tape
variable whose state is a semi-infinite string s ∈ A∞, where
A is a finite set of tape symbols which includes a special blank
symbol. Second, there is a pointer variable v ∈ {1, 2, 3, . . . },
which is interpreted as specifying a “position” on the tape
(i.e., an index into the infinite-dimensional vector s). Finally,
there is a head variable h whose state belongs to a finite
set, which includes a specially designated start state and a
specially designated halt state.

The TM starts with its head in the start state, the pointer
set to position 1, and its tape containing some finite string of
nonblank symbols, followed by blank symbols. The joint state
of the tape, pointer, and head evolves over time according to
a discrete-time update function. If during that evolution the
head ever enters its halt state, then that is interpreted as the
computation being completed. If and when the computation
completes, we say that the TM has then computed its out-
put, which is specified by the state of its tape at that time.
Importantly, for some inputs, a TM might never complete its
computation, i.e., it may go into an infinite loop and never
enter the halt state. The operation of a TM is illustrated in a
schematic way in Fig. 1. A more formal definition of a TM
and the update function is provided in Appendix A.

There many other variants of TMs that have been consid-
ered in the literature, including ones with multiple tapes and
multiple heads. However, all of these variants are computa-
tionally equivalent: Any computation that can be carried out
with a particular TM variant can also be carried out with some
TM that possesses a single tape and a single head [34,40,87].

For simplicity of analysis, we make two assumptions about
the TMs analyzed in this paper, none of which affect the
computational capabilities of the TMs. First, we assume that
the tape alphabet A contains the binary symbols 0 and 1 and
that these are the only nonblank symbols present on the tape
at the beginning of the computation. Second, we assume that
any TM we consider is designed so that if and when it reaches
a halt state, its tape will contain a string from {0, 1}∗ followed
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FIG. 1. A TM performing a computation. The update function
is applied over a sequence of steps, causing the finite-state head
(rounded box, states are colored circles) to move along an infinite
tape of symbols (b indicates a special “blank” symbol). During each
step, the head can read or write the tape symbol in the current
position, move left or right along the tape, and change its current
state (green triangle). The computation completes if and when the
head reaches its halt state (red circle).

by all blank symbols, and the pointer will be set to 1 (i.e.,
returned to the start of the tape). This assumption of a “stan-
dardized” halt state properly accounts for the thermodynamic
costs of running a complete cycle of the TM. For instance,
after this standardized halt state is reached, the output of the
TM can be moved from the tape onto an off-board storage
device and a new input can be moved from another off-board
storage device onto the tape, thus preparing the TM to run
another program. Importantly, both of these operations can
in principle be performed without incurring thermodynamic
costs [34].

Given the above assumptions, one can represent the com-
putation performed by any TM M as a partial function over
the set of finite-length bit strings {0, 1}∗ (see Appendix A),
which we write as φM : {0, 1}∗ → {0, 1}∗. In this notation,
φM (x) = y indicates that when TM M is started with input
program x, it eventually halts and produces the output string
y. Note that φM is a partial function because it is undefined for
any input x for which M does not eventually halt [40,42,43].
Thus, dom φM (the domain of definition of φM) is the set of all
input strings on which M eventually halts, which is sometimes
called the “halting set of M” in the literature.

As mentioned in the Introduction, a UTM is a TM that can
simulate any other TM. More precisely, given some UTM U
and any other TM M, there exists an “interpreter program”
σU,M such that for any input x of M, φU (σU,M, x) = φM (x). In-
tuitively, this means that there exists programming languages
which are “universal,” meaning they can run programs written
in any programming language, after appropriate translation
from that other language. Note that, since M can itself be a
UTM, any UTM can simulate any other UTM.

Given some partial function f : {0, 1}∗ → {0, 1}∗ and a
TM M, we sometimes say that M computes f if φM = f
[i.e., dom φM = dom f and φM (x) = f (x) for all x ∈ dom f ].
We say that “ f is computable” if there exists some TM M
that computes f . Importantly, there exist functions {0, 1}∗ →
{0, 1}∗ which are uncomputable, meaning they cannot be
computed by any TM. The existence of noncomputable func-
tions follows immediately from the fact that there are an
uncountable number of functions {0, 1}∗ → {0, 1}∗ but only a
countable number of TMs. As an example of an uncomputable
function, there is no TM which can take any input string x and
output a 0 or 1, corresponding to whether or not x is in the
halting set of some given UTM U [40,42,43].

We say that the halting set dom φM is a prefix-free set if
for any input x ∈ dom φM there is no other input x′ ∈ dom φM

that is a proper prefix of x. In this paper we only consider
TMs M such that dom φM is prefix-free, which are sometimes
called “prefix TMs” in the literature. Importantly, the set of
all prefix TMs is computationally equivalent to the set of all
TMs: Any prefix TM can be simulated by some nonprefix
TM and vice versa. However, prefix TMs have many useful
mathematical properties and so have become conventional in
the AIT literature [42]. See Appendix A for a discussion of
how prefix TMs can be constructed.

Above we discussed computable functions from binary
strings to binary strings, {0, 1}∗ → {0, 1}∗. It is also possible
treat a finite binary string as an encoding of a pair of binary
finite strings. More precisely, assume that along with any
TM M, there is a one-to-one pairing function〈a, b〉, which
maps pairs of binary strings to single binary strings and
whose image is a prefix-free set. By inverting the pairing
function, one can uniquely interpret a single binary string as
a pair of strings. This allows to interpret the domain and/or
image of a partial function computed by a TM as a subset of
{0, 1}∗ × {0, 1}∗ rather than a subset of {0, 1}∗. We will write
φM (a, b) as shorthand for φM (〈a, b〉).

It is also possible to interpret a binary string as encoding an
integer [42] or (by inverting the pairing function) as encoding
two integers that specify a rational number. This allows us
to formalize the computability of a function from binary
strings to integers, f : {0, 1}∗ → Z, or from binary strings
to rationals, f : {0, 1}∗ → Q. For a real-valued function f :
{0, 1}∗ → R, we say that f is computable if there is a TM
that can produce an approximation of f (x) accurate to within
any desired precision. Formally, f is computable if there
exists some TM M such that |φM (x, n) − f (x)| � 2−n for all
x ∈ dom f and n ∈ N.

B. Algorithmic information theory

As mentioned in the Introduction, the Kolmogorov com-
plexity of any bit string x ∈ {0, 1}∗ is the length of the shortest
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program which leads a given UTM U to produce x as output.
We write this formally as

KU (x) := min
z:φU (z)=x

�(z). (4)

The Kolmogorov complexity is unbounded: For any UTM U
and any finite κ , there exists a string x such that KU (x) > κ

(this follows from the fact that {0, 1}∗ is an infinite set, while
only a finite number of different outputs can be produced by
programs of length κ or less). Moreover, KU is an uncom-
putable function. This implies that if the physical Church-
Turing thesis is true, then no real-world physical system can
take any desired string x as input and produce the value of
KU (x) as output. On the other hand, Kolmogorov complexity
can be bounded from above,3 and it is possible to derive many
formal results about its properties [42].

One can define the Kolmogorov complexity not just for
strings but also for computable partial functions. Recall from
the previous section that given any UTM U and TM M, there
is a corresponding “interpreter program” σU,M , which can be
used by U to simulate M on any input x. The Kolmogorov
complexity of a computable function f is defined as the
minimal Kolmogorov complexity of any interpreter program
for U that simulates a TM that computes f :

KU ( f ) := min
M:φM= f

�(σU,M ). (5)

Similarly, the Kolmogorov complexity of some computable
function f : {0, 1}∗ → R is given by the length of the shortest
interpreter program that approximates f to arbitrary precision.
KU ( f ) is undefined if f is not computable.

Above we defined Kolmogorov complexity relative to
some particular choice of UTM U . In fact, the choice of U
is only relevant up to an additive constant. To be precise, for
any two UTMs U and U ′, the “invariance theorem” [42] states
that

KU ′ (x) = KU (x) + O(1). (6)

Given this result along with the unboundedness of KU , for any
two UTMs U and U ′ and any desired ε > 0,

1 − ε < KU (x)/KU ′ (x) < 1 + ε (7)

for all but a finite number of strings x (of the infinite set of all
possible such strings). For many purposes, this allows us to
dispense with specifying the precise UTM U when referring
to the Kolmogorov complexity of a string x and simply write
K (x) instead of KU (x).

Finally, the conditional Kolmogorov complexity of x ∈
{0, 1}∗ given y ∈ {0, 1}∗ is the length of the shortest program
that, when paired with y and then fed into a UTM U , produces
x as output:

KU (x|y) := min
z:φU (z,y)=x

�(z). (8)

3For any given x, one can compute an improving upper bound on
KU (x) by running multiple copies of U in parallel with different input
programs, while keeping track of the length of the shortest program
found so far that has halted and produced output x [42]. In the limit,
this procedure will converge on KU (x).

Like regular Kolmogorov complexity, the conditional Kol-
mogorov complexity is unbounded and uncomputable, though
one can derive increasingly tight upper bounds on it. In
addition, like regular Kolmogorov complexity, the conditional
Kolmogorov complexity defined relative to two UTMs U and
U ′ differs only up to an additive constant which does not
depend on x or y [42],

KU ′ (x|y) = KU (x|y) + O(1). (9)

Accordingly, for many purposes we can simply write K (x|y),
without specifying the precise UTM U .

III. BACKGROUND ON STATISTICAL PHYSICS

A. Physical setup

We consider a physical system with a countable state
space X . In practice, X will often be a “mesoscopic” coarse-
graining of some underlying phase space, in which case
X would represent the states of the system’s “information
bearing degrees of freedom” [88]. For simplicity, in this paper
we ignore issues raised by coarse-graining and treat X as the
microstates of our system.

We assume that the system is connected to a work reservoir
and a heat bath at temperature T . The system evolves dynam-
ically under the influence of a driving protocol, and we are
interested in its dynamics over some fixed interval t ∈ [0, t f ].

As mentioned in the Introduction, research in nonequilib-
rium statistical physics has defined thermodynamic quantities
such as heat, work, and entropy production at the level of
individual trajectories of a stochastically evolving process, so
that ensemble averages of those measures over all trajectories
obey the usual properties required by conventional statistical
physics [18,19]. Adopting this approach, we define the heat
function Q(x) as the expected amount of heat transferred from
our system to the heat bath during the interval t ∈ [0, t f ],
assuming that the system begins in initial state x. Following
a standard setup in the literature [89–92], we assume that the
joint Hamiltonian of the system and bath can be written as

Ht
X (x) + HB(b) + Hint (x, b), (10)

where Ht
X is the time-dependent Hamiltonian of the system,

HB is the bare Hamiltonian of the bath, and Hint is the inter-
action Hamiltonian (which is typically very small, reflecting
weak-coupling). Regardless of the initial state of the system
x, the bath is initially taken to be in a Boltzmann distribution
pB(b) ∝ e−HB (b)/kT . Let p′

B|x indicate the final distribution of
the bath at t = t f , given that the system began in initial state x.
The heat function is then given by the increase of the expected
energy of the bath [89,90],

Q(x) = 〈HB〉p′
B|x − 〈HB〉pB . (11)

The expectation of Q(x) under any initial distribution pX

then gives the overall expected amount of generated heat
averaged across all trajectories, assuming that initial system-
bath states are sampled from pX (x)pB(b). This setup can be
used to model infinite-sized idealized heat baths (infinite heat
capacity, fast equilibration, etc.) by taking appropriate limits
[89–92].

A central quantity of interest in statistical physics is the
(irreversible) entropy production (EP), which reflects the
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overall increase of entropy in the system and the coupled
environment. For a given physical process, let pX be an initial-
state distribution at time t = 0 and let pY be the corresponding
final-state distribution at t = t f . Then, the expected EP is

	(pX ) = S(pY ) − S(pX ) + 〈Q〉pX /kT , (12)

where S(·) indicates the Shannon entropy.4 By the second law
of thermodynamics, 	(pX ) is nonnegative for any physically
allowed heat function Q and every initial distribution pX [90].
A physical process is said to be thermodynamically reversible
if it achieves zero EP.

We say that a physical process is a realization of some
partial function f : X → X if the conditional probability of
the system’s ending state given the starting state obeys

pY |X (y|x) = δ( f (x), y) ∀x ∈ dom f . (13)

The behavior of a realization of f on initial states x 	∈ dom f
can be arbitrary, as it is not constrained by Eq. (13).

The following technical result links the logical properties
of a partial function f with the heat function of any realization
of that f . This result will be central to our analysis, as it will
allows us to establish thermodynamic constraints on processes
that realize TMs.

Proposition 1. Given a countable set X , let f : X → X
and G : X → R be two partial functions with the same do-
main of definition. The following are equivalent:

(1) For all pX with supp pX ⊆ dom f ,

〈G〉pX + S[p f (X )] − S(pX ) � 0. (14)

(2) For all y ∈ img f ,∑
x: f (x)=y

e−G(x) � 1. (15)

(3) There exists a realization of f coupled to a heat bath at
temperature T , whose heat function Q obeys

Q(x)/kT = G(x) ∀ x ∈ dom f . (16)

This proposition is proved in Appendix C. The proof
exploits a useful decomposition of EP into a sum of a con-
ditional Kullback-Leibler divergence term and a nonnegative
expectation term, which is derived in Appendix B.

We note two things about Proposition 1.
First, the remainder of the inequality in Eq. (15) determines

the EP incurred by a realization of f . In particular, as we show
in Appendix C, if that inequality is tight for all y ∈ img f ,
then the inequality in Eq. (14) is also tight for some initial
distributions pX . In this case, the realization of f referenced
in Eq. (16) is thermodynamically reversible for those initial
pX .

Second, it is straightforward to generalize the setup de-
scribed in this section to consider a system connected to

4For countably infinite state spaces (e.g., the state spaces of UTMs),
the Shannon entropy of both the initial and final distribution can be
infinite, making the expression in Eq. (12) ill defined. In such cases, a
finite EP can often be defined by writing Eq. (12) as a limit 	(pX ) =
limi→∞ 	(pi ), where each pi has finite support and limi→∞ pi = pX .

multiple thermodynamic reservoirs instead of a single heat
bath [17]. In the general case, Proposition 1 still holds if
the left-hand side of Eq. (16) is interpreted as the amount
of entropy increase in all coupled thermodynamic reservoirs,
given that the process begins in initial state x. Equation (16)
is a special case of this general formulation, since releasing
Q(x) of heat to a bath at temperature T increases the bath’s
entropy by Q(x)/kT .

B. Realizations of a TM

We briefly describe how a physical process can realize a
TM M. Without loss of generality, we assume that the count-
able state space of the physical system X can be represented
by a set of binary strings, so X ⊆ {0, 1}∗.

As described in Sec. II A and Appendix A, the
computation performed by a TM can be formalized as
a partial function φM : {0, 1}∗ → {0, 1}∗. We say that
a physical process is a realization of a TM M if
it realizes the partial function φM in the sense of
Eq. (13) and Proposition 1. Note that this is only possible
when dom φM ∪ img φM ⊆ X . Note also that there may be
physical states x ∈ X that do not belong to dom φM . When
the system is initialized with such states at t = 0, it will
undergo some well-defined dynamical evolution. However, its
behavior for such initial states is not constrained by the fact
that the system is a realization of the TM and can be arbitrary
(in general, the dynamic and thermodynamic properties for
such initial x are not our focus). The mapping between a TM
and a physical system is illustrated in Fig. 2.

Many TMs, including all UTMs, can have arbitrarily long
programs (i.e., unbounded input length) and can take an arbi-
trary number of steps before halting on any particular input
(i.e., unbounded runtime). For such TMs, our formulation
appears to assume a physical system that can store a tape
of unbounded size, and which can complete an unbounded
number of computational steps in a finite time interval [0, t f ],
which is not realistic from a physical point of view. In such
cases, one can imagine a sequence of realizations, each of
which involves manipulating a finite (but growing) tape over
a finite (but growing) number of computational steps. Our
analysis and results then apply to limit of this sequence, in
which the tape size and runtime can be arbitrarily large.

In the following sections, we apply Proposition 1 with
f = φM to establish constraints on the heat function Q of
any realization of M. We emphasize that in general these
constraints do not fully determine the heat function of any
realization of M: There can be many different realizations
of any given TM M, each with different heat functions and
therefore with different thermodynamic properties (see also
Ref. [34]). In the next sections, we analyze the thermodynam-
ics of two particular realizations of a given TM, which we call
the coin-flipping realization and the dominating realization.
We work “backwards” for each one, first specifying its heat
function and then using Proposition 1 to establish that there is
in fact a realization with that heat function, and then analyzing
the properties of that heat function.

Before proceeding, we discuss an important issue con-
cerning the computability properties of realizations of TMs.
We say that a realization of a TM M with heat function
Q is a computable realization if the function Q(x)/kT is
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t = 0

t = tf

FIG. 2. A realization of a TM is a physical process over a countable state space X ⊆ {0, 1}∗, which maps initial states to final states
according to the input-output function of the TM. As a hypothetical example, consider a process that evolves to the final state 0110011 at
t = t f when started on initial state 10101100 at t = 0, as might correspond to a computation performed by the TM (see also Fig. 1).

computable [i.e., if there exists a TM that can take as input
any x ∈ dom φM and output the value of Q(x)/kT to arbitrary
precision]. Some of our results below will rely on particular
properties of computable realizations. At the same time, some
of the realizations we construct and analyze below will not
be computable. Whether such noncomputable realizations can
actually be constructed in the real world depends on the status
of the physical Church-Turing thesis. To see why, imagine
that one could construct a noncomputable realization of a
TM; for example, it might have Q(x)/kT = K (x), where K (x)
is the (noncomputable) Kolmogorov complexity function. In
that case, one could run the realization on various inputs
x, use a calorimeter to measure the generated heat in units
of kT [i.e., measure Q(x)/kT ], and then arrive at the value
of K (x). The above procedure would use a physical process
to evaluate a noncomputable function, thereby violating the
physical Church-Turing thesis.

In this paper, we do not take a position on the validity
of the physical Church-Turing thesis. Rather, we will ex-
plicitly discuss relevant (non)computability properties of our
realizations, as well as how our noncomputable realization
can be interpreted in light of the physical Church-Turing
thesis. It is important to emphasize, however, that even our
noncomputable realizations are consistent with the laws of
thermodynamics, and are well-defined in terms of a sequence
of time-varying Hamiltonians and stochastic dynamics (see
the construction in the proof of Proposition 1, Appendix C).
Their noncomputability arises from the fact that our construc-
tion uses various idealizations, such as the ability to apply
arbitrary Hamiltonians to the system, which are standard in
theoretical statistical physics but which disregard possible
computational constraints on the set of achievable processes.
For example, our construction disregards the fact that, if the
physical Church-Turing thesis holds, then it should be im-
possible to apply noncomputable Hamiltonians to the system,
such as H (x) = K (x).

IV. COIN-FLIPPING REALIZATION

We first consider a realization of a TM M that achieves
zero EP (i.e., is thermodynamically reversible) when run on

input programs randomly sampled from a particular input
distribution.

To begin, consider the following coin-flipping distribution
over programs, which plays an important role in AIT:

mX (x) :=
{

2−�(x) if x ∈ dom φM

0 otherwise
. (17)

Note that mX sums to a value less than 1 [42], and therefore
mX is a nonnormalized probability distribution. Nonetheless,
we refer to it as a “distribution,” following the convention in
the AIT literature.

To understand mX more concretely, imagine that the initial
state of the TM’s tape is set to a sample of an infinitely long
sequence of independent and uniformly distributed bits. Then
mX (x) is proportional to the probability that M eventually
halts after reading the bit string x from the tape.5 Under
this hypothetical initialization procedure, the TM will halt on
output y with probability

mY (y) =
∑

x:φM (x)=y

2−�(x). (18)

This output distribution is biased toward strings that can be
generated by short input programs. Note that, like mX , this
output distribution is not normalized.

We now consider the thermodynamic cost of running a TM
on the coin-flipping distribution. We first define a normalized
version of the coin-flipping distribution,

pcoin
X (x) := mX (x)/
M, (19)

where 
M := ∑
x∈dom φM

2−�(x) � 1 is a normalization con-
stant (which in AIT is called the “halting probability”).

5For clarity, we omit various technicalities regarding the random
process that motivates the coin-flipping distribution. To be precise,
this process should be defined in terms of a multitape machine,
in which one of the tapes is a one-way read-only “input tape”
(see Appendix A). Then mX (x) is the probability that the multitape
machine halts after reading the string x from the input tape, assuming
the input tape is initialized with an infinitely long random bit string.
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pcoin
X (x) is the probability that a TM halts after running input

program x, conditioned on the TM halting on some input
program, given the random initial tape described above. We
also define a normalized version of the output distribution,

pcoin
Y [φM (x)] := mY [φM (x)]/
M . (20)

Now consider the associated function

G(x) = − ln pcoin
X (x) + ln pcoin

Y [φM (x)]. (21)

It can be verified that this function satisfies condition 2
of Proposition 1. Thus, there is at least one realization of
M, which we call the coin-flipping realization, whose heat
function obeys

Qcoin(x) = kT
{− ln pcoin

X (x) + ln pcoin
Y [φM (x)]

}
. (22)

By plugging Qcoin into Eq. (12), we can verify that this
realization achieves 	(pcoin

X ) = 0, meaning that it is thermo-
dynamically reversible when run on input distribution pcoin

X .
Equation (22) can be further simplified by using the defini-

tions of pcoin
X and pcoin

Y :

Qcoin(x) = kT ln 2 {�(x) + log2 mY [φM (x)]}. (23)

This establishes the claim in the Introduction that the heat
generated under the coin-flipping realization on input x is
proportional to the length of x, minus a “correction term”
− log2 mY [φM (x)]. This correction term is always positive,
since mY (y) � 1 for all y. Moreover, it reflects the logical
irreversibility of the partial function φM on input x: It achieves
its minimal value of − log2 
 when φM maps all inputs to
a single output, and its maximal value of �(x) when φM is
logically reversible on input x [i.e., when x is the only input
that produces output φM (x)]. In the latter (logically reversible)
case, Qcoin(x) = 0 for all x.

Equation (23) implies that if one wishes to produce some
desired output y ∈ img φM while minimizing heat genera-
tion, then one should choose the shortest input x such that
φM (x) = y. Loosely speaking, the “less efficient” one is in
choosing what program to use to compute y, the greater the
heat that is expended in that computation. Note that this re-
lationship between shorter programs and less heat generation
is not a universal feature of all realizations of TMs. It holds
for the coin-flipping realization because this realization is
explicitly designed to be thermodynamically reversible for the
coin-flipping input distribution, which has a “built-in bias” for
shorter input strings.

An important special case is when the TM of interest
is a universal TM. For any UTM U , the output distribu-
tion in Eq. (18) is called the universal distribution in AIT.
The universal distribution possesses many important math-
ematical properties and is one of the cornerstones of AIT
[42,71,97,104,105], and has attracted attention in artificial
intelligence [93–98], foundations of physics [99,100], and
statistical physics [77,101–103]. In particular, Levin’s coding
theorem [42] relates the universal distribution to Kolmogorov
complexity,

− log2 mY (y) = K (y) + O(1). (24)

This implies that for a UTM, the “correction term” mentioned
above is equal to the Kolmogorov complexity of the output,
up to an additive constant.

Plugging Eq. (24) into Eq. (23) lets us write the heat
function of the coin-flipping realization of a UTM as

Qcoin(x) = kT ln 2 {�(x) − K[φU (x)]} + O(1). (25)

So for a coin-flipping realization of a UTM, the heat generated
on input x reflects how much the length of x exceeds the
shortest program which produces the same output as x.

These results allow us to calculate the thermodynamic
complexity of any output string y using the coin-flipping
realization of a UTM U , i.e., the minimal heat necessary to
generate some desired output y:

min
x:φU (x)=y

Qcoin(x) = O(1), (26)

where we have used Eq. (25) and the fact that
minx:φU (x)=y �(x) = K (y) by definition. Thus, for the
coin-flipping realization, the minimal heat required by
the UTM to compute y is bounded by a constant. As
emphasized above, this is a fundamental difference between
thermodynamic complexity of the coin-flipping realization
and Kolmogorov complexity, which is unbounded as one
varies over y.

However, in order to actually produce a desired output y
on a UTM U while generating the minimal possible amount
of heat, one needs to know the shortest program for that
y. Unfortunately, the shortest program for a given output is
not computable in general. In fact, we prove in Appendix D
that there cannot exist a computable function that maps any
desired output y to some corresponding input x such that both
φU (x) = y and the heat is bounded by a constant, Qcoin(x) =
O(1).

We finish by considering the expected heat that would be
generated by a realization of a UTM U if inputs were drawn
from the distribution pcoin

X . To begin, rewrite Eq. (12) as

〈Q〉pcoin
X

= kT
[
S
(
pcoin

X

) − S
(
pcoin

Y

) + 	
(
pcoin

X

)]
. (27)

In Appendix F, we show that the difference of entropies on the
right-hand side of Eq. (27) is infinite. Since 	(pcoin

X ) is always
nonnegative, any realization of U must, on average, expend
an infinite amount of heat to run input programs sampled
from pcoin

X . This applies to the coin-flipping distribution, for
which 	(pcoin

X ) = 0, as well as any other realization. Note
that �(x) � Qcoin(x)/(kT ln 2) [by Eq. (23) and the fact that
mY (y) � 1 for all y] and that �(x) is a lower bound on the
number of steps that a prefix UTM needs to run program x
(since it must take at least one step per read-in bit). Thus, the
fact that programs sampled from the coin-flipping distribution
have infinite expected heat generation also implies that they
have an infinite expected length and take an infinite expected
number of steps before halting.

We finish by emphasizing that EP and expected heat vary
in different ways as one changes the initial distribution. For
example, if we run the coin-flipping realization on input dis-
tribution pcoin

X , then EP is zero while expected heat is infinite.
On the other hand, since expected heat is a linear function of
the input distribution, minimal expected heat corresponds to a
δ-function input distribution centered on the x that minimizes
Qcoin(x). However, some simple algebra shows that any such
δ-function distribution incurs a strictly positive EP for any
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UTM.6 Thus, the distribution that minimizes expected heat
cannot be the one that minimizes EP.

V. DOMINATING REALIZATION

A. Minimal possible heat function

We now consider a realization of a TM whose heat function
is smaller, up to an additive constant, than the function of any
computable realization.

To begin, given any (universal or nonuniversal) TM
M, consider the associated function G(x) = ln 2 K[x|φM (x)].
Note that this conditional Kolmogorov complexity can be
defined in terms of any desired UTM, with no a priori relation
to M. In Appendix E, we show that this function G satisfies
condition 2 in Proposition 1. Therefore, there must be at
least one realization of M, which we call the dominating
realization, whose heat function obeys

Qdom(x) = kT ln 2 K[x|φM (x)]. (28)

Intuitively speaking, the inputs x that generate a large
amount of heat under the dominating realization of a TM
M are long and incompressible, even when given knowledge
of their associated outputs φM (x). An example of such an
input is a program x that instructs M to read through a long
and incompressible bit string and then output nothing, so that
φM (x) is an empty string (this example is analyzed in more
depth below, in Sec. VI). In contrast, the inputs x that generate
little heat under the dominating realization are those in which
the output provides a large amount of information about the
associated input program. For instance, if M is universal, then
a program x that consists of the instruction “print ‘y‘”
(represented in some appropriate binary encoding) generates
little heat, since K (“print ‘y‘” |y) = O(1) for any y. More
generally, if φM is logically reversible over its domain, then
K[x|φM (x)] = O(1) for all x in that domain, because one
can always reconstruct the input x from the output φM (x)
by applying φ−1

M . Thus, in the logically reversible case, the
heat generated by the dominating realization on any input x is
bounded by a constant that does not depend on x.

Now consider any alternative computable realization of M
that is coupled to a heat bath at temperature T , whose heat
function we indicate by Q. The assumption of computability
means that the function Q(x)/kT is computable [i.e., there is
some TM that, for any desired x, can approximate the value of
Q(x) in units of kT to arbitrary precision].

As we prove in Appendix E, the heat function of this
alternative realization must obey the following inequality:

Q(x) � Qdom(x) − kT ln 2 K (Q/kT ) + K (φM ) + O(1),
(29)

where K (Q/kT ) is the Kolmogorov complexity of the heat
function Q in units of kT , K (φM ) is the Kolmogorov complex-
ity of the partial function computed by M, and O(1) represents

6Given a UTM and any string y, there are many inputs x that result
in φU (x) = y. This means that pcoin

Y [φU (x)] > pcoin
X (x) for any x, so

Qcoin(x) > 0 by Eq. (22). Thus, for any δ-function distribution δx ,
	(δx ) = S[δφU (x)] − S(δx ) + Q(x) = Q(x) > 0, where we have used
S[δφU (x)] = S(δx ) = 0.

equality up to an additive constant (that does not depend on x,
Q, or M).

Since neither K (Q/kT ) nor K (φM ) depends on the input
x, Eq. (29) implies Q(x) � Qdom(x) + κ for some constant κ

that is independent of x. Note though that κ can depend on
φM (the partial function being computed) and the alternative
realization Q, and note also that in principle this constant may
be arbitrarily large and negative. This means that for any fixed
input x, there may be computable realizations that result in far
less heat when run on x than does the dominating realization.
However, this can only occur if φM has high complexity [large
value of K (φM )], or if the heat function has high complexity,
as reflected by a large value of K (Q/kT ). This shows that
any computable realization must face a fundamental trade-
off between three different factors: the “lost” algorithmic
information about the input in the output, the complexity of
the input-output map being realized, and the complexity of
the heat function. We explore this trade-off using an example
of erasing a long string in Sec. VI.

When the TM under question is universal, then it is guaran-
teed that there exists some program that can generate any de-
sired output y. This permits us to analyze the thermodynamic
complexity of the dominating realization. It turns out that, as
for the coin-flipping realization, this amount is bounded by a
constant:

min
x:φU (x)=y

Qdom(x) = O(1). (30)

This minimum is achieved by programs of the form x =
“print ‘y‘”, since these programs achieve K[x|φU (x)] =
O(1). Equation (30) also holds if the TM is not a UTM, as long
as for each each output y, there is some x that obeys φM (x) = y
and K[x|φM (x)] = O(1) (e.g., if φM is logically reversible).

Finally, we consider the expected heat that would be
generated by running the dominating realization of a UTM
U , assuming that inputs are sampled randomly from some
input distribution. To parallel the analysis of the coin-flipping
realization, we consider the input distribution which results in
minimal EP for the dominating realization, which we call p∗

X .
In Appendix F, we prove that the expected heat generated by
the dominating realization on the input distribution p∗

X is infi-
nite. It is interesting to note that �(x) � Qdom(x)/(kT ln 2) +
O(1) and, as we mentioned above, �(x) is a lower bound on
the number of steps that a UTM needs to run program x.7

Thus, the fact that programs sampled from p∗
X have infinite

expected heat generation also implies that they have an infinite
expected length and an infinite expected runtime. Note that
the dominating realization of a UTM will in general incur a
strictly positive amount of EP, even when run on the optimal
input distribution p∗

X (see Appendix G for details).

B. Practical implications of the dominating realization

Our analysis of the dominating realization uses several ab-
stract computer science concepts, such as the computability of

7We have the inequalities K (x|y) � K (x) + O(1) � �(x) + O(1).
The first comes from subadditivity of Kolmogorov complexity [42],
while the second comes from Lemma 5 in Appendix H.
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the heat function and its Kolmogorov complexity. It is worth
making some comments about the real-world significance of
such concepts for the thermodynamics of physical systems.

First, the computability properties of the heat function
are entirely separate from the computability properties of the
logical map φM realized by a physical process. In particular,
the heat function can be uncomputable even though φM is
computable by definition (since φM is the partial function
implemented by a TM). On the other hand, common inter-
pretations of the physical Church-Turing thesis imply that
the heat function of any actually constructable real-world
physical process must be computable. This implies that if the
physical Church-Turing holds, then the dominating realization
generates less heat, up to an additive constant, than any
realization that can actually be constructed in the real world.

At the same time, while the dominating realization is better
than any computable realization, it is important to note that
it itself is not computable. This is because the conditional
Kolmogorov complexity is not a computable function, i.e.,
there is no TM that can take as input two strings x and
y and output the value of K (x|y). However, this does not
necessarily imply that the dominating realization is irrelevant
from a practical point of view. This is because K (x|y) is an
upper-semicomputable function, meaning that it is possible to
compute an improving sequence of upper bounds that con-
verges on K (x|y). Formally, there is a computable function f
such that f (x, y, n) � f (x, y, n + 1) and limn→∞ f (x, y, n) =
K (x|y).8

The upper-semicomputability of Qdom allows one to ap-
proach the performance of Qdom by constructing a sequence
i = 1, 2, . . . , of realizations of φM , each with a computable
heat function Qi, such that Qi converge from above on Qdom.
Each subsequent realization in this sequence is guaranteed to
be better (generate less heat) on every input than the previous.
Moreover, because the heat functions converge on Qdom, by
advancing far enough in this sequence one can run any input x
with only Qdom + ε heat for any ε > 0. An important subtlety,
however, is that one cannot compute how far into the sequence
to advance so as to be within ε of Qdom (if one could compute
this, then Qdom would be computable, and not just upper-
semicomputable).

Finally, while we showed that Qdom is better than any
computable realization in terms of heat generation, we also
mentioned that it itself is only upper-semicomputable, not
computable. One might ask whether there is some other
upper-semicomputable realization (i.e., one whose heat func-
tion can be approached by above) which is even better than
Qdom. It is known that this is not the case: The optimality
result of Eq. (29) holds not only for any computable Q but
more generally for any upper-semicomputable Q.

C. Comparison of coin-flipping and dominating realizations

We finish our discussion of the dominating realization by
briefly comparing it to the coin-flipping realization.

8This function can be computed by a TM that runs multiple
programs in parallel, while keeping track of the shortest program
which has halted on input y with output x.

First, for both dominating and coin-flipping realizations,
the minimal heat necessary to generate a given output y on
a UTM U , which we call the thermodynamic complexity of
the realization, is bounded by a constant that does not depend
on y. There is no a priori relationship between those two
constants, and in principle it is possible that, for all y, the
thermodynamic complexity is larger under the dominating
realization than the coin-flipping realization or vice versa. In
general, the constants will depend on the realized UTM U , as
well as the UTM used to define the conditional Kolmogorov
complexity in Eq. (28) (which does not have to be the same
as U ).

Second, to achieve bounded heat production for output y
under the coin-flipping realization, one must know the shortest
program for producing y, which is uncomputable. In contrast,
to achieve bounded heat production for output y under the
dominating realization, it is sufficient to choose an input of
the form “print ‘y‘”.

Third, for both realizations, there is an infinite amount of
expected heat generated, assuming that inputs are sampled
from the EP-minimizing distribution.

Fourth, the coin-flipping realization is (by design) thermo-
dynamically reversible for input distribution pcoin

X . The dom-
inating realization, on the other hand, is not thermodynami-
cally reversible for any input distribution (see Appendix G).

Finally, neither the coin-flipping nor the dominating real-
ization of a UTM has a computable heat function. In fact, the
heat function of the coin-flipping realization is not even upper-
semicomputable.9 This means that our results concerning the
superiority of the dominating realization do not apply when
comparing to the coin-flipping realization, and in particular
it is not necessarily the case that Qcoin(x) � Qdom(x) + O(1).
Nonetheless, it turns out that for any UTM U , the additional
heat incurred by the dominating realization on input x, beyond
that incurred by the coin-flipping realization, is bound by a
logarithmic term in the complexity of the output,

Qcoin(x) � Qdom(x) − O{log K[φU (x)]}. (31)

(See Appendix H for proof.) Such logarithmic correction
terms are considered inconsequential in some previous analy-
ses of the thermodynamics of TMs [5,82].

VI. HEAT VS. COMPLEXITY TRADE-OFF

Our analysis of the dominating realization uncovered a
trade-off between heat and complexity faced by any com-
putable physical process. In this section, we illustrate this
trade-off by analyzing the thermodynamics of erasing a long
bit string.

As before, consider a physical system with a countable
state space, which undergoes driving while coupled to a heat
bath at temperature T . For notational simplicity, in this section
we choose units so that kT = 1. Assume that the process
realizes some deterministic and computable map from initial

9Recall that Qcoin(x) = �(x) + log mY [U (x)]. �(·) is computable
while − log mY (·) is upper-semicomputable [[42], Thm. 4.3.3]. This
implies that Qcoin is “lower-semicomputable,” meaning it can be ap-
proximated by an improving sequence of computable lower bounds.
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FIG. 3. Any computable process that realizes a deterministic
input-output map f faces a fundamental cost of K (x|y) for mapping
input x to output y = f (x). This cost can be paid through some
combination of three different strategies: generating a large amount
of heat, having a high complexity heat function, or having a high
complexity input-output map f . This trade-off is illustrated on three
axes, with blue indicating the feasible region.

to final states, which we indicate generically as f : {0, 1}∗ →
{0, 1}∗. Now imagine that one observes a single realization of
this physical process, in which initial state x is mapped to final
state y = f (x).

Since this is a computable realization of f , it must obey the
dominating realization bound of Eq. (29). Plugging Eq. (28)
into that inequality and rearranging gives

Q(x)/ ln 2 + K (Q) + K ( f ) � K (x|y) + O(1), (32)

where we have used the assumption that kT = 1. This shows
that there is a fundamental cost of K (x|y) that is incurred by
any computable realization that maps input x to output y. This
fundamental cost can be paid either by generating a lot of heat
[large Q(x)/ ln 2], by having a high complexity heat function
[large K (Q)] or by realizing a high-complexity input-output
function [large K ( f )]. This trade-off is illustrated in Fig. 3.

We demonstrate this trade-off using an example of a pro-
cess that erases a long binary string. In this example, x is a
long string consisting of n binary digits, while the final state
y is a string of n 0s, which we write ‘00...00’. Assuming
x is incompressible (which is true for the vast majority of all
strings), the fundamental cost of mapping x → y is given by
K (x|y) = K (x) ≈ �(x) up to logarithmic factors [42]. Differ-
ent processes can pay this fundamental cost in different ways,
thereby satisfying Eq. (32):

(1) A process can generate a lot of heat. For example, in
order to erase string x, the process can run an erasure map:

f (x′) := ‘00...00’ ∀x′, (33)

while using the dominating implementation. In this case,
Q(x)/ ln 2 = K (x|y) by Eq. (28).

(2) A process can have a high-complexity heat function, so
that K (Q) � �(x). For example, one can tweak the dominating
realization of the erasure map, so that the heat values for input

x and the input consisting of all 0s are swapped:

Q(x′) :=

⎧⎪⎨
⎪⎩

Qdom(x′) if x′ 	∈ {x, ‘00...00’}
Qdom(‘00...00’) if x′ = x

Qdom(x) if x′ = ‘00...00’

.

One can verify that since Qdom satisfies condition 2 in Propo-
sition 1, so does this Q. Moreover, this realization generates a
small amount of heat when erasing x,

Q(x) = Qdom(‘00...00’)

= K (‘00...00’|‘00...00’) ≈ 0.

Note, however, that the long input string x is now “hard-
coded” into the definition of the heat function Q, leading to
a large value of K (Q).

(3) A process can realize a high-complexity input-output
map f , so that K ( f ) � K (x|y). This strategy could be used,
for example, by a process which implements the following
logically reversible map:

f (x′) :=

⎧⎪⎨
⎪⎩

x′ if x′ 	∈ {x, ‘00...00’}
‘00...00’ if x′ = x

x if x′ = ‘00...00’

.

Since logically reversible function can be carried out without
generating heat, it is possible to implement this f while
achieving Q(x′) = 0 for all x′. In this case, not only does
erasing x not generate any heat, Q(x) = 0, but also the heat
function has low complexity, K (Q) ≈ 0. However, the long
input string x is now “hard-coded” into the definition of the
input-output map f , leading to a large value of K ( f ).

We finish by noting that in a series of papers by Zurek
and others [5,6,80–86], it was argued that the conditional Kol-
mogorov complexity K (x|y) is “the minimal thermodynamic
cost” of computing some output y from input x. However,
most of these early papers were written before the develop-
ment of modern nonequilibrium statistical physics. As a re-
sult, the arguments in those papers are rather informal, which
in turn makes it difficult to translate them in a fully rigorous
manner into modern nonequilibrium statistical physics. (See
Sec. 14.4 in Ref. [34] for one possible translation.) To give one
example of these difficulties, those earlier analyses quantified
the “thermodynamic cost” in terms of the number of physical
bits (binary degrees of freedom) that are erased during that
computation, independent of the initial probability distribu-
tions over those binary degrees of freedom. However, we now
know that minimal heat generation is given by changes in
Shannon entropy, i.e., in terms of statistical bits rather than
physical bits. Relatedly, these papers led to some proposals
that the foundations of statistical physics be changed, so that
thermodynamic entropy is identified not only with Shannon
entropy but also a Kolmogorov complexity term [6,42].

In contrast, our analysis is grounded in modern nonequilib-
rium physics and does not involve any foundational modifica-
tions to the definition of thermodynamic entropy. Moreover,
it covers some issues not considered in earlier analyses. In
particular, we show that the lower bound of K (x|y) is a cost
that in general applies only to computable realizations (i.e.,
ones with a computable heat function), not for all possible
realizations, as implied in the earlier papers. The significance
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of this restriction depends on the legitimacy of the physical
Church-Turing thesis. Finally, we also demonstrate different
ways in which one can pay the fundamental cost K (x|y): by
generating heat, by having a large Kolmogorov complexity
of the heat function K (Q), or by having a large Kolmogorov
complexity of the input-output map, K ( f ).

VII. DISCUSSION

In this paper we combine AIT and nonequilibrium sta-
tistical physics to analyze the thermodynamics of TMs. We
consider a physical process that realizes a deterministic input-
output function, representing the computation performed by
some TM. We derive numerous results concerning two differ-
ent realizations of TM: a coin-flipping realization, which is
designed to be thermodynamically reversible when fed with
random input bits, and a dominating realization, which is de-
signed to generate less heat than any computable realization.

Using our analysis of the dominating realization, we un-
cover a fundamental trade-off, faced by any computable re-
alization of a deterministic input-output map, between heat
generation, the Kolmogorov complexity of the heat function,
and the Kolmogorov complexity of the input-output map. An
interesting topic for future research is how the Kolmogorov
complexity of the heat function and the input-output map
relates to the “physical complexity” of the driving process,
as commonly understood in physics (e.g., whether the Hamil-
tonians must have many-body interactions, etc.).

For simplicity, in this paper we represented a TM M as a
physical system whose dynamics carries out the partial func-
tion φM : {0, 1}∗ → {0, 1}∗ during some finite time interval
[0, t f ]. This representation allowed us to abstract away many
implementation details of the realization, such as the fact that
a TM consists of a separate tape, head, and pointer variables
and that a TM operates in a sequence of discrete steps.
Essentially, this representation does not distinguish whether
the physical process operates via the same sequence of steps
as a TM or simply implements a “lookup table” that maps
outputs to inputs.

While this representation simplifies our analysis, it pro-
vides no guidance on how to actually construct a physical
process that realizes a TM in the laboratory, and it leaves
implicit some important issues. Alternatively, one could rep-
resent a realization of a TM in a more conventional and
“mechanistic” way, as a dynamical system over the state of
the TM’s tape, pointer, and head, which evolves iteratively
according to the update function of the TM until the head
reaches the halt state. In contrast to the representation we
adopted, this kind of mechanistic representation could easily
be physically constructed and would correspond more closely
to the step-by-step operation of real-world physical comput-
ers. Moreover, this kind of mechanistic representation could
be used to analyze the thermodynamic costs of TMs in a more
realistic manner. For example, it could be used to analyze how
the heat and EP incurred by the TM depends on the number of
steps taken. As another example, it could be used to impose
constraints on how the degrees of freedom of the head, tape,
and pointer can be coupled together (e.g., via interaction terms
of applied Hamiltonians). One might postulate, for instance,
that the head of the TM can only interact with tape locations

that are located near the pointer. These kinds of constraint
will generally increase the heat and EP incurred by each
step of the TM [34,106]. These complications concerning the
thermodynamics of more mechanistic representations of TMs
are absent from the analysis in this paper and are topics of
future research.
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APPENDIX A: MODELS OF SINGLE-TAPE TMs

In this Appendix we present a formal definition of a single-
tape TM.

In Sec. II A, we define the state of a TM as being composed
of a tape state s ∈ A∞, a pointer state v ∈ N, and head state
h ∈ H . Here A is a finite alphabet of tape symbols which
includes a special “blank” symbol, while H is a finite set of
head states which includes a special “start” head state and a
special “halt” head state. Any particular value of the triple
(s, v, h) is called an instantaneous description (ID) of the
TM. The dynamics of a particular TM is given by iteratively
applying an update function f to the ID,

f : (s, v, h) �→ (s′, v′, h′). (A1)

Following standard definitions, we assume that f (s, v, h) only
depends on (s(v), h), i.e., the next ID of the TM can only
depend on the current state of the head and the current
contents of the tape s at position v. We also assume that the
new value of the pointer v′ does not differ by more than 1 from
v and that the tape state s′ be identical to the tape state s at all
positions, except possibly position v. By iteratively applying
f , the head moves back and forth along the tape, while both
changing its state as well as reading and writing symbols onto
the tape at its current position.

At the beginning of a computation, the state of the TM must
be a valid initial ID, meaning that the head h is in the start
state, the pointer is set to v = 1, and the tape s consists of finite
string of nonblank symbols, followed by an infinite sequence
of blank symbols. The TM then visits a sequence of IDs by
iteratively applying the update function f . The TM stops if
the head ever reaches the halt state (i.e., any ID where the
head in the halt state is a fixed point of f ). In general, there
can be valid initial IDs for which the TM never halts.
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For simplicity, we assume that 0 and 1 are elements of the
alphabet A and that the nonblank finite string at the beginning
of the initial tape state is some x ∈ {0, 1}∗. In addition, we
assume that if the head of the TM reaches a halt state after
starting from some valid initial ID, then at that time the pointer
is set to 1 and the final tape state begins with some y ∈ {0, 1}∗,
followed by blank symbols. In that case, we refer to the
string x ∈ {0, 1}∗ as the input or program for the TM and the
corresponding string y ∈ {0, 1}∗ as the output of the TM for
program x.

Given these assumption, we can represent the overall
computation performed by a TM M as a partial function
φM : {0, 1}∗ → {0, 1}∗. Here φM (x) = y indicates that when
the TM is initialized with its tape containing x followed by
an infinite sequence of blank symbols, then it will halt with
its tape containing y followed by an infinite sequence of
blank symbols. If the TM does not halt for some particular
initial tape state x, then the value of φM (x) is undefined
(for this reason, in general φM is a partial function). When
we talk about a realization of a TM M in the main text,
we refer to a physical process over a countable state space,
whose dynamics from initial states to final states can be
mapped onto the partial function φM implemented by some
TM M.

As we mention in the main text, we assume that any TM
under consideration is a prefix TM, meaning that it has a
prefix-free halting set. Prefix TMs are typically TMs with
multiple tapes, where one of the tapes is a read-only input tape
that is read left to right [42]. If this kind of multitape machine
halts after reading some string x from the input tape, then it
means that the machine did not halt after reading some string
x′ on the input tape which is a strict prefix of x (otherwise,
it would never get to read-in all of x), thereby guaranteeing
the prefix property. For simplicity, however, in this paper we
assume that the prefix TM is single-tape. This can be done
without loss of generality, as it is always possible to transform
a prefix TM with multiple tapes into an equivalent single-
tape prefix TM, using any of the conventional techniques
for transforming between multitape and single-tape TMs (see
Ref. [[87], Thm. 2.1] and Ref. [40] for details). Note that
these techniques may involve adding additional symbols to the
tape alphabet A, which may be used at intermediate steps of
the computation.

APPENDIX B: DECOMPOSITION OF
ENTROPY PRODUCTION

In this Appendix, we derive a useful decomposition of the
EP incurred by a realization of a deterministic input-output
function. We also relate this decomposition to our previous
work, which analyzed the dependence of EP on the initial
distribution of a process [34,106,107].

Consider some physical process that realizes the function
f : X → X in the sense of Eq. (13). Then, the conditional
distribution of an initial state x ∈ dom f given final state f (x)
can be written as

pX | f (X )[x| f (x)] := pX (x)∑
x′: f (x′ )= f (x) pX (x′)

. (B1)

We use this expression to rewrite the EP from Eq. (12) as

	(pX ) =
∑

x

pX (x)

{
ln

pX | f (X )[x| f (x)]

e−Q(x)/kT −ln Z[ f (X )]
− ln Z[ f (x)]

}
,

(B2)

where we have defined

Z (y) :=
∑

x: f (x)=y

e−Q(x)/kT . (B3)

Now define the following conditional distribution:

wX | f (X )[x| f (x)] := e−Q(x)/kT − ln Z[ f (x)]. (B4)

Using this definition, we can further rewrite Eq. (B2) as

	(pX ) = D[pX | f (X )‖wX | f (X )] − 〈ln Z[ f (x)]〉pX , (B5)

where D[pX | f (X )‖wX | f (X )] indicates the conditional KL diver-
gence between the conditional distribution pX | f (X ) and wX | f (X )

[108].
As we show below in Eq. (B6), − ln Z[ f (x)] � 0 for all

x. Thus, Eq. (B5) implies 	(pX ) � D[pX | f (X )‖wX | f (X )]. Note
that this lower bound is nonnegative and vanishes whenever
pX | f (X ) = wX | f (X ). This means that wX | f (X ), as defined in Eq.
(B4), encodes that conditional probability of inputs x given
outputs f (x) that achieves minimal EP for a realization of f
with heat function Q.

In our previous work, we have sometimes referred to the
conditional KL divergence in Eq. (B5) as mismatch cost.
Using the chain rule for KL divergence, we write mismatch
cost as

D[pX | f (X )‖wX | f (X )] = D(pX ‖wX ) − D[p f (X )‖w f (X )],

where w f (X )(y) = ∑
x: f (x)=y wX (x), while wX (x) is any distri-

bution that obeys

wX (x)/wX (x′) = e[Q(x′ )−Q(x)]/kT ∀x, x′ : f (x) = f (x′).

In our previous work, we referred to the distribution wX (x)
as a prior. (This term was originally motivated by a Bayesian
interpretation of EP [107].) As long as |img f | > 1, there are
an infinite number of priors for any given wX | f (X ), since the
relative probabilities of any pair x, x′ with f (x) 	= f (x′) are
unconstrained.

In our previous work [34,106], we referred to the term
−〈ln Z[ f (X )]〉pX in Eq. (B5) as the residual EP. Observe that
for any y ∈ img f ,

	[wX | f (X )=y] = D[wX | f (X )=y‖wX | f (X )] − ln Z (y)

= − ln Z (y). (B6)

Since 	[wX | f (X )=y] � 0 by the second law, − ln Z (y) is non-
negative for all y ∈ img f and therefore residual EP is always
nonnegative. Note also that the residual EP is an expectation
under pX , and thus it is linear in pX . In fact, it only depends
on the probabilities assigned to each output p f (X )(y), not
the conditional distribution of inputs corresponding to each
output. In our other work [106], we have sometimes called the
indexed set {− ln Z (y)}y the residual EP parameter.

Finally, define an island of f as a preimage f −1(y) for
some y, with L( f ) the set of all islands of U . We can rewrite
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Eq. (B5) as

	(pX ) =
∑

c∈L( f )

p(c){D(pX |X∈c‖wX |X∈c) − ln Z[ f (c)]},

where p(c) = ∑
x∈c pX (x). Intuitively, this expression shows

that any realization of the function f can be thought of a
set of (island-indexed) “parallel” processes, operating inde-
pendently of one another on nonoverlapping subsets of X ,
each generating EP given by the associated mismatch cost and
residual EP.

This form of mismatch cost, residual EP, and island de-
composition was introduced in [34,106,107]. It holds even
in the general case of nondeterministic dynamics, with an
appropriate (more general) definition of the prior wX and
the island decomposition. However, that previous work on
mismatch cost and residual EP assumed finite state spaces.
The derivation presented above does not have that restriction.

APPENDIX C: PROOF OF PROPOSITION 1

The following proof will make use of the decomposition of
EP derived in Appendix B.

Proposition 1. Given a countable set X , let f : X → X
and G : X → R be two partial functions with the same do-
main of definition. The following are equivalent:

(1) For all pX with supp pX ⊆ dom f ,

〈G〉pX + S[p f (X )] − S(pX ) � 0. (14)

(2) For all y ∈ img f ,∑
x: f (x)=y

e−G(x) � 1. (15)

(3) There exists a realization of f coupled to a heat bath at
temperature T , whose heat function Q obeys

Q(x)/kT = G(x) ∀ x ∈ dom f . (16)

Proof. Note that condition 1 follows from condition 3 by
the second law of thermodynamics. To show equivalence of
all three conditions, we proceed in the following way:

(1) We show that condition 2 is implied by condition 1.
(2) We show that condition 1 is implied by condition 2.
(3) We show by construction that condition 2 implies

condition 3.
Given that X is countable, we assume that X ⊆ N. This

is done without loss of generality: if elements of X are not
natural numbers, one can put a total order on X using the
natural numbers.

We now prove that condition 1 implies condition 2. First,
define the function F to refer the expression in Eq. (14),

F (pX ) =
∑

x

pX (x){G(x) − ln p f (X )[ f (x)] + ln pX (x)}.
(C1)

Let An(y) indicate the first n elements of f −1(y), and define
the initial distribution

p(n)
X (x) =

{
e−G(x)/Zn(y) if x ∈ An(y)

0 otherwise
,

where Zn(y) = ∑
x∈An(y) e−G(x). Note that supp p(n)

X ⊆ dom f .
Plugging into Eq. (C1) and simplifying gives

F
(
p(n)

X

) = − ln Zn(y) � 0,

or equivalently Zn(y) � 1. Since this holds for all n,

Z (y) =
∑

x: f (x)=y

e−G(x) = lim
n→∞ Zn(y) � 1. (C2)

We now prove that condition 1 is implied by condition 2.
Define wX | f (X )(x| f (x)) as in Eq. (B4), while taking Q/kT =
G. Then, use the results in Appendix B to rewrite F as

F (pX ) = D[pX | f (X )‖wX | f (X )] − 〈ln Z[ f (X )]〉pX

� D[pX | f (X )‖wX | f (X )] � 0.

The first inequality follows from the assumption that Z (y) =∑
x: f (x)=y e−G(x) � 1 for all y ∈ img f , and the second in-

equality follows from the nonnegativity of conditional KL
divergence [108].

The rest of this proof shows by construction that condition
3 follows from condition 2. For simplicity, assume that the
physical process has access to a set of “auxiliary” states, one
for each y ∈ img f . We use xy to indicate the auxiliary state
corresponding to each y, and assume that xy 	∈ dom f . For
notational convenience, let W := dom f ∪ {xy : y ∈ img f }.
Then, define the following function f̂ : W → X ,

For any x ∈ dom f , f̂ (x) := f (x),

For any y ∈ img f , f̂ (xy) := y.

In words, any x in the domain of f is mapped by f̂ to f (x),
while any auxiliary state xy is mapped by f̂ to y.

Now define the following Hamiltonian H : W → R ∪
{∞},
∀x ∈ dom f : H (x) := f (x) + kT G(x) (C3)

∀y ∈ img f : H (xy) := y − kT ln

⎡
⎣1 −

∑
x: f (x)=y

e−G(x)

⎤
⎦. (C4)

We use π (w) = e−H (w)/kT /Z to indicate the Boltzmann distri-
bution for Hamiltonian H , where Z = ∑

x∈W e−H (x)/kT is the
partition function. Note that the partition function converges
when β > 0,

Z =
∑

y∈img f

[
e−H (xy )/kT +

∑
x: f (x)=y

e−H (x)/kT

]

=
∑

y∈img f

e−y/kT �
∑
i∈N

e−i/kT = 1/(e1/kT − 1). (C5)

To derive the second line, we plugged Eqs. (C3) and (C4) into
Eq. (C5) and simplified.

We now consider the following physical process over t ∈
[0, t f ], applied to a system coupled to a work reservoir and a
heat bath at temperature T :

(1) At t = 0, the Hamiltonian H is applied to the system.
(2) Over t ∈ (0, τ ], the system is allowed to freely relax

toward equilibrium. However, the only allowed transitions are
those between pairs of states w,w′ that have f̂ (w) = f̂ (w′).
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We assume that by t = τ , the system has reached a stationary
distribution.

(3) Over t ∈ (τ, t f ], the system undergoes a quasistatic
physical process that implements the map f̂ from initial to
final states, and does so in a thermodynamically reversible
way for initial distribution π . There are numerous known
ways of constructing such a process [15,16,109].

Note that the above procedure assumes a separation of
timescales (i.e., the relaxation time of the system is infinitely
faster than τ and t f − τ ). Step (3) also assumes an idealized
heat bath (infinite heat capacity, weak coupling, infinitely fast
relaxation time [110]).

The above procedure will map any x ∈ dom f to final state
f (x). Let Q indicate the heat function of this process. We will
show that Q(x)/kT = G(x) for any x ∈ dom f . First, let δx

indicate an initial distribution which is a δ function over some
state x. Note that

	(δx ) = S[δ f (x)] − S(δx ) + 〈Q〉δx /kT = Q(x)/kT , (C6)

where we have used the fact that S(δx ) = S[δ f (x)] = 0. We
then analyze 	(δx ). Step (1) and step (3) in the above con-
struction incur no EP. For step (2), EP incurred during free
relaxation from t = 0 to t = τ is given by

	(δx ) = D(δx‖π ) − D(pτ
x‖π ), (C7)

where pτ
x is the state distribution at time τ , given that the

system started in distribution δx at t = 0. By construction,
pτ

x will be equal to the equilibrium distribution restricted to
a subset of states,

pτ
x (w) = δ( f̂ (w), f̂ (x))π (w)∑

w′ δ( f̂ (w′), f̂ (x))π (w′)
.

It can be verified, using the definition of δx and π , that

D(δx‖π ) = f (x)/kT + G(x) + ln Z.

Similarly, it can be verified using the definition of pτ
x that

D(pτ
x‖π ) = f (x)/kT + ln Z.

Plugging these two KL divergences into Eq. (C7) gives

	(δx ) = G(x). (C8)

Combining with Eq. (C6) gives Q(x)/kT = 	(δx ) =
G(x). �

It can be verified that the physical process constructed in
the proof of Proposition 1 is thermodynamically reversible
if it is started with the initial equilibrium distribution πX , so
that the free relaxation in step (2) incurs no EP. Generally,
this equilibrium distribution will have support on the auxiliary
states, which are outside of dom f . However, consider the
case when Eq. (15) is an equality for all y ∈ img f . Then
the definition in Eq. (C4) gives H (xy) = ∞ and πX (xy) = 0
for all y ∈ img f . In this case, the input distribution pX = πX

obeys supp pX ⊆ dom f and achieves zero EP. Moreover, us-
ing the decomposition in Appendix B, it can be verified that if
Eq. (15) is an equality for all y ∈ img f , then any in-
put distribution that obeys pX | f (X ) = πX | f (X ), as defined in
Eq. (B1), also achieves zero EP.

APPENDIX D: O(1) HEAT FOR COIN-FLIPPING
REALIZATION IS UNCOMPUTABLE

Let φU indicate the partial function computed by some
UTM U . Imagine there is some computable function f such
that for any y, f (y) returns an input for φU that outputs y
and generates bounded heat under the coin-flipping realiza-
tion [i.e., φU [ f (y)] = y and Qcoin[ f (y)] = O(1)]. Then, by
Eq. (25), it must be that �[ f (y)] = K (y) + O(1). Since �(·)
is a computable function, this would in turn imply that there
is a computable function g(y) = K (y) + O(1). However, such
a function cannot exist, as shown in the following proposition.

Proposition 1. There is no computable partial function g :
{0, 1}∗ → N such that for all y,

g(y) = K (y) + O(1). (D1)

Proof. We say that pY (y) is a semimeasure if pY (y) � 0 for
all y and

∑
y pY (y) � 1 (i.e., it is a nonnormalized probability

distribution). We say that a semimeasure pY (y) (multiplica-
tively) dominates another semimeasure qY (y) if there is some
constant c > 0 such that pY (y) � cqY (y) for all y.

Assume that a computable g(y) = K (y) + O(1) exists.
Then qY (y) := 2−g(y) would be a computable semimeasure
that dominates pY (y) := 2−K (y). It is known that pY (y) dom-
inates every computable semimeasure [[42], Thm. 4.3.3 and
Cor. 4.3.1]. Since domination is transitive, if g(y) were com-
putable, then qY (y) would be a computable semimeasure that
dominates every computable semimeasure. However, such a
semimeasure cannot exist by Lemma 4.3.1 in Ref. [42]. �

APPENDIX E: PROOF OF EQ. (29)

Let f indicate any computable partial function. In this
Appendix, we show that the dominating realization of f , with
heat function

Qdom(x) = kT ln 2 K[x| f (x)], (E1)

is better than any other realization of f with an upper-
semicomputable heat function Q, up to an additive constant.

We first prove the following two useful results.
Lemma 2. For any partial function f : {0, 1}∗ → {0, 1}∗,∑

x: f (x)=y

e− ln 2·K (x|y) � 1 ∀y ∈ img f .

Proof. For all y ∈ img f , we have the following:∑
x: f (x)=y

e− ln 2·K (x|y) =
∑

x: f (x)=y

2−K (x|y) �
∑

x∈{0,1}∗
2−K (x|y).

In addition, we have the bound∑
x∈{0,1}∗

2−K (x|y) � 1, (E2)

which comes from Kraft’s inequality and the fact that, for any
given y, the set {K (x|y) : x ∈ {0, 1}∗} specifies the lengths of
a prefix-free code [[42], p. 252 and p. 287]. Combining gives
the desired result. �

Proposition 3. Let f : {0, 1}∗ → {0, 1}∗ be a computable
partial function, Q : {0, 1}∗ → R a upper-semicomputable
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partial function with dom Q ⊇ dom f . If for all y ∈ img f ,∑
x: f (x)=y

e−Q(x) � 1, (E3)

then for all x ∈ dom f ,

Q(x) � ln 2{K[x| f (x)] − K (Q, f )} + O(1), (E4)

where O(1) is a constant independent of x and Q.
Proof. Let M indicate the TM that computes f , and

let a(x, n) be a computable partial function which upper-
semicomputes Q(x)/ ln 2. Then, define the following TM B:
Given inputs x ∈ {0, 1}∗, y ∈ {0, 1}∗, and n ∈ N, the TM B
runs M for n steps on input x. If M halts within that time on
output y, then B outputs 2−a(x,n). Otherwise, B outputs 0 and
halts.

Then, for any x ∈ dom f , define

s(x|y) := lim
n→∞ φB(〈x, y〉, n)

= δ( f (x), y)2−Q(x)/ ln 2

= δ( f (x), y)e−Q(x). (E5)

It is easy to check that φB(〈x, y〉, n) is nondecreasing in
n, so s(x|y) is lower-semicomputable [i.e., φB(〈x, y〉, n) �
φB(〈x, y〉, n + 1) and limn→∞ φB(〈x, y〉, n) = s(x|y)]. More-
over, if one had a program that computed both f and Q, then
one could lower-semicompute s. This means that

K (s) � K (Q, f ) + O(1), (E6)

where K (Q, f ) is the Kolmogorov complexity of jointly com-
puting the functions f and Q.

By assumption in Eq. (E3), for any y ∈ img f ,∑
x∈dom f

s(x|y) =
∑

x: f (x)=y

2−Q(x)/ ln 2 =
∑

x: f (x)=y

e−Q(x) � 1. (E7)

This means that s(x|y) is a so-called conditional semimea-
sure of x given y (i.e., a nonnormalized conditional proba-
bility measure). For any lower-semicomputable conditional
semimeasure s, an existing result in AIT [[111], Cor. 2] states

K (x|y) � − log2 s(x|y) + K (s) + O(1).

Taking y = f (x) and plugging in Eqs. (E5) and (E6) gives

K[x| f (x)] � Q(x)/ ln 2 + K (Q, f ) + O(1). (E8)

Equation (E4) follows by rearranging. �
Given that Eq. (E3) holds, by Proposition 1 there must

be a realization of f with heat function Q(x) = kT G(x). By
Lemma 2, we can take G(x) = ln 2K[x| f (x)]. Thus, there
must exists a realization of f with heat function Qdom, as
defined in Eq. (E1).

Combining G(x) = Q(x)/kT with Eq. (E4), and multiply-
ing both sides by kT , gives the following inequality:

Q(x) � Qdom(x) − kT ln 2 K (Q/kT , f ) + O(1).

We can derive a slightly weaker, but more interpretable,
lower bound by using K (Q/kT , f ) � K (Q/kT ) + K ( f ) +
O(1), which follows from the subadditivity of Kolmogorov
complexity [[42], p. 202]. This allows to rewrite the

above as

Q(x) � Qdom(x) − kT ln 2 [K (Q/kT ) + K ( f )] + O(1),

which appears in the main text as Eq. (29), with f = φM .

APPENDIX F: INFINITE EXPECTED HEAT

Let φU be the partial function computed by some UTM U .
In the following results, we will make use of the following
decomposition of the drop of entropy, which holds for any
initial distribution pX :

S(pX ) − S(pY ) =
∑

y∈img φU

pY (y)S[pX |φU (x)=y]. (F1)

Note that (discrete) Shannon entropy is nonnegative, so
S[pX |φU (x)=y] � 0 for all y. For simplicity, and without loss
of generality, in this section we will write Shannon entropies
in units of bits.

We will make use of the following lemmas.
Lemma 4. For any y ∈ {0, 1}∗,∑

x:φU (x)=y

2−�(x)�(x) = ∞.

Proof. To derive this result, we make use of a simple
prefix-free code for natural numbers i ∈ N:

g(i) = 111...111︸ ︷︷ ︸
�log2 i� 1s

0 1110...0110︸ ︷︷ ︸
Encoding of i

with �log2 i� bits

. (F2)

(See also Ref. [[42], Section 1.11].) It is straightforward to
check that this prefix-free code achieves a code length

�[g(i)] = 2�log2 i� + 1. (F3)

In addition, we will also use programs of the form zy +
g(i) + x such that φU [zy + g(i) + x] = y, where zy is some
appropriate prefix string, g(i) is defined in Eq. (F2), x is any
binary string with �(x) = i, and “+” indicates concatenation.
In words, the program zy + g(i) + x causes U to read in a
code for y (corresponding to zy), then a prefix-free code for
any i ∈ N [corresponding to g(i)], then “swallow” i bits of
input (corresponding to x), and halt after outputting y. Using
Eq. (F3), it can be checked that

i = �(x) < �[zy + g(i) + x]

= �(zy) + �[g(i)] + i � �(zy) + 2 log2 i + 3 + i. (F4)

We now bound the sum
∑

x:φU (x)=y 2−�(x)�(x). Since all
terms in this sum are positive, we can lower bound it by
focusing only on the subset of programs of the form zy +
g(i) + x:∑

x:φU (x)=y

2−�(x)�(x) �
∑

i∈N,x:�(x)=i

2−�(zy+g(i)+x)�[zy + g(i) + x]

(a)
�

∑
i∈N,x:�(x)=i

2−�(zy )−2 log2 i−3−ii

= 2−�(zy )−3
∑

i∈N,x:�(x)=i

2−2 log2 i−ii
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(b)= 2−�(zy )−3
∑
i∈N

2i2−i−2 log2 ii

= 2−�(zy )−3
∑
i∈N

i/i2

= 2−�(zy )−3
∑
i∈N

1/i = ∞.

In (a), we use the lower and upper bounds on �[zy + g(i) + x]
from Eq. (F4), and in (b) we use that there are 2i different bit
strings x that obey �(x) = i. The rest of the steps follow from
rearranging and simplifying. �

Lemma 5. For any computable partial function f :
{0, 1}∗ → {0, 1}∗ and x ∈ dom f ,

K (x) � �(x) + O(1).

Proof. Let M be a TM which computes f , and note that
dom φM is a prefix-free set. Consider the Kolmogorov com-
plexity KU (x), which is defined in terms of a UTM U which
operates in the following way: U takes inputs of the form
b + x, where b ∈ {0, 1}, x ∈ {0, 1}∗ and “+” indicates string
concatenation. If b = 0, then U emulates some prefix UTM
on input x and outputs the result. If b = 1, then U emulates M
on input x while swallowing the output; if and when M halts
on input x, U outputs a copy of the input x and halts. It is clear
that U is universal, due to its behavior when b = 0, and that
it is prefix-free. It is also clear that U has a program of length
�(x) + 1 that can be used to output any x ∈ dom φM , due to
its behavior when b = 1. Thus, KU (x) � �(x) + 1. The result
follows by recalling the invariance theorem, K (x) = KU (x) +
O(1), where K (·) is the Kolmogorov complexity defined for
some arbitrary reference UTM. �

1. Coin-flipping distribution

In this section, we consider the coin-flipping input distri-
bution, pcoin

X , as defined in Eq. (17). We show that the drop in
entropy for this input distribution is infinite,

S
(
pcoin

X

) − S
(
pcoin

Y

) = ∞. (F5)

Thus, by the second law of thermodynamics, Eq. (12), any
realization which carries out U on pcoin

X must generate an
infinite amount of heat.

To derive Eq. (F5), first use Eq. (F1), to write

S
(
pcoin

X

) − S
(
pcoin

Y

) =
∑

y∈imgU

pcoin
Y (y)S

[
pcoin

X |φU (x)=y

]
. (F6)

We now show that S[pcoin
X |φU (x)=y] = ∞ for any y ∈ img φU .

First, write

S[pcoin
X |φU (x)=y] = −

∑
x:φU (x)=y

pcoin
X |Y (x|y) log2 pcoin

X |Y (x|y)

= log2 mY (y) − 1

mY (y)

∑
x:φU (x)=y

2−�(x) log2 2−�(x)

= log2 mY (y) + 1

mY (y)

∑
x:φU (x)=y

2−�(x)�(x), (F7)

where we use that pcoin
X |Y (x|y) = 2−�(x)/mY (y) when φU (x) = y

(similarly to the derivation in Sec. IV). Note that the multi-

plicative constant 1/mY (y) is strictly positive and the additive
constant log2 mY (y) is finite. Then Eq. (F7) is infinite by
Lemma 4.

2. EP optimal distribution for the dominating realization

Consider any initial distribution of the form

pX (x) = wY [φU (x)]

C[φU (x)]
2−K[x|φU (x)], (F8)

where C(y) := ∑
x:φU (x)=y 2−K (x|y) is a normalization constant

and wY is any probability distribution over img φU . It can be
verified, using results discussed in Appendix B, that any input
distribution of the form Eq. (F8) achieves 0 mismatch cost
for the dominating realization. Thus, this distribution achieves
minimal EP for the dominating realization.

In this section, we show that any input distribution of the
form Eq. (F8) also incurs an infinite drop in entropy,

S(pX ) − S(pY ) = ∞. (F9)

Thus, by the second law of thermodynamics, Eq. (12), any
realization which carries out U on such an input distribution
pX must generate an infinite amount of heat.

Our derivation proceeds in a similar manner as that used
above to show that the drop in entropy for pcoin

X was infinite.
First, use Eq. (F1) to write

S(pX ) − S(pY ) =
∑

y∈img φU

pY (y)S[pX |φU (x)=y]. (F10)

We derive Eq. (F9) by showing that S[pX |φU (x)=y] = ∞ for
any y ∈ supp wY . First, write

S[pX |φU (x)=y] = −
∑

x:φU (x)=y

pX |Y (x|y) log2 pX |Y (x|y)

= log2 C(y) + 1

C(y)

∑
x:φU (x)=y

2−K (x|y)K (x|y),

(F11)

where we use that pX |Y (x|y) = 2−K (x|y)/C(y) when φU (x) = y
and wY (y) > 0. To show that Eq. (F11) is infinite, we note that
C(y) > 0 and then focus on the inner sum∑

x:φU (x)=y

2−K (x|y)K (x|y). (F12)

Note that any x such that φU (x) = y must obey x ∈ dom φU .
This means that

K (x|y) � K (x) + O(1) � �(x) + O(1),

where the first inequality comes from subadditivity of Kol-
mogorov complexity [42], while the second comes from
Lemma 5. We will use κ � 0 to indicate some finite constant
that makes the rightmost inequality hold.

Now note that 2−aa is nonincreasing in a ∈ N for all a � 1.
Assume for the moment that there is no x such that φU (x) = y
and K (x|y) = 0. Then,

2−K (x|y)K (x|y) � 2−�(x)−κ [�(x) + κ] � 2−κ2−�(x)�(x)
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for all x such that φU (x) = y. This gives the following lower
bound for Eq. (F12):

∑
x:φU (x)=y

2−K (x|y)K (x|y) � 2−κ
∑

x:φU (x)=y

2−�(x)�(x) = ∞,

where the last equality uses Lemma 4. Now imagine that there
is an x such that φU (x) = y and K (x|y) = 0 (for any given y,
there can be at most one such x). In that case, the above lower
bound should be decreased by 2−κ2−�(x)�(x), which is a finite
constant, so Eq. (F12) is still infinite.

APPENDIX G: STRICTLY POSITIVE EP FOR THE
DOMINATING DISTRIBUTION

Consider any computable partial function f , and recall
the decomposition of EP developed in Appendix B, into a
nonnegative “mismatch cost” (conditional KL) term and a
nonnegative “residual EP” term, Eq. (B5). The residual EP
term is an expected over nonnegative values − ln Z (y) for
y ∈ img f .

Using Eq. (B3), we write this residual term for the domi-
nating realization as

− ln Z (y) = − ln
∑

x: f (x)=y

e−Qdom (x)/kT = − ln
∑

x: f (x)=y

2−K (x|y),

where we substituted in the definition of Qdom from Eq. (28).
Assume that the conditional Kolmogorov complexity is de-
fined relative to some reference UTM U , K (x|y) = KU (x|y).

Then, consider the inner sum,∑
x:φU (x)=y

2−KU (x|y) �
∑

x∈{0,1}∗
2−KU (x|y) <

∑
(z,y)∈dom φU

2−�(z) � 1.

The strict inequality comes from the fact that not all programs
(z, y) ∈ dom φU are the shortest program for some output
string x ∈ {0, 1}∗. The last inequality comes from the Kraft
inequality.

This shows that for the dominating realization of a com-
putable function f , − ln Z (y) > 0 for all y ∈ img f . Thus, the
residual EP term in Eq. (B5) is strictly positive for any input
distribution.

APPENDIX H: DERIVATION OF EQ. (31)

For a coin-flipping realization of some UTM U , Eq. (25)
states that the heat generated on input x is given by

Qcoin(x) = kT ln 2 [�(x) − K[φU (x)]] + O(1)

� kT ln 2 [K (x) − K[φU (x)]] + O(1),

where the second line uses Lemma 5. We now use the follow-
ing inequality [[42], Sec. 3.9.2]:

K[φU (x)]

� K[x, φU (x)] − K[x|φU (x)] + O{log K[φU (x)]}
= K (x) − K[x|φU (x)] + O{log K[φU (x)]},

where in the last line we have used that K (x, φU (x)) = K (x) +
O(1) (since the value of φU (x) is by definition computable
from x). Combining the above results with the definition of
Qdom gives the desired result,

Qcoin(x) � Qdom(x) − O{log K[φU (x)]}. (H1)
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