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Abstract.  We analyze how the amount of work dissipated by a fixed 
nonequilibrium process depends on the initial distribution over states. 
Specifically, we compare the amount of dissipation when the process is used 
with some specified initial distribution to the minimal amount of dissipation 
possible for any initial distribution. We show that the dierence between those 
two amounts of dissipation is given by a simple information-theoretic function 
that depends only on the initial and final state distributions. Crucially, this 
dierence is independent of the details of the process relating those distributions. 
We then consider how dissipation depends on the initial distribution for a 
‘computer’, i.e. a nonequilibrium process whose dynamics over coarse-grained 
macrostates implement some desired input-output map. We show that our 
results still apply when stated in terms of distributions over the computer’s 
coarse-grained macrostates. This can be viewed as a novel thermodynamic cost 
of computation, reflecting changes in the distribution over inputs rather than 
the logical dynamics of the computation.
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1. Introduction

The past few decades have seen great advances in nonequilibrium statistical phys-
ics [1–16], resulting in many novel predictions and experiments [17–19]. Some of the 
most important results of this research have been powerful new tools for analyzing the 
dissipated work (or ‘dissipation’ for short) in nonequilibrium processes. Dissipation is 
the amount of work done on an evolving system that exceeds the theoretical minimal 
amount needed to drive such a system from its initial to its final distribution [9, 11, 
20–22]. Equivalently, it is proportional to the (irreversible) entropy production dur-
ing the course of the process, i.e. the total change in entropy of the system minus the 
amount of entropy that flows from the heat bath to the system in the form of heat.

Several expressions for the amount of dissipation in any given process have been 
derived by exploiting the detailed fluctuation theorems (DFTs) [5, 6, 23–25], typically 
under the assumption of dynamics that obeys local detailed balance. These results 
express the dissipation in terms of the Kullback–Leibler (KL) divergence [26, 27] 
between the probability density over state trajectories occurring in the original pro-
cess and the probability density under a special ‘time-reversed’ version of the process. 
However these results are impractical for quantifying dissipation in many cases of 
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interest, since computing the KL divergence requires integration of a probability den-
sity over all possible trajectories.

Related research has investigated lower bounds on dissipation by studying opti-
mal processes. These are processes that achieve minimal dissipation subject to some 
specified set of constraints [11, 20, 21]. For example, optimal processes have been 
identified for transforming some desired initial Hamiltonian and state distribution into 
a dierent Hamiltonian and state distribution under a finite-time constraint [28–30], 
or while obeying a constraint on allowable work fluctuations [31]. Some authors have 
also considered how changes to the initial distribution aect the work and dissipation 
if the process is changed to be optimal for the new distribution [2, 3, 20]. Such research 
is concerned with processes that minimize dissipation, and more generally with how 
dissipation varies with changes to the process.

Here we consider a complementary problem, which to our knowledge has never been 
previously analyzed. We suppose that there is a fixed process P , coupled to a heat 
bath that is at a constant temperature. We then consider a very common real-world 
scenario, in which this same process can be run with dierent initial distributions over 
states. We ask, how does the the amount of work dissipated by P  vary with changes 
to the initial distribution? What is the maximal cost in extra dissipation that can arise 
by using one initial distribution rather than another? How do these answers depend on 
the details of the process P? 

Surprisingly, we find that the dependence of dissipation on the initial distribuiton 
has a simple information-theoretic form. Let q0 be an initial distribution over the states 
for which P  dissipates the minimal amount of work. We prove that the dissipation 
arising from using some arbitrary initial distribution r0 is the dissipation arising from 
using q0, plus the reduction of the Kullback–Leibler (KL) divergence between r0 and 
q0 from the beginning to the end of P . The additional dissipation incurred when P  is 
initialized with r0 �= q0 is independent of all intermediate details of how P  changes the 
initial distribution into the final one.

Our analysis provides a useful and novel tool for calculating dissipated work for a 
given thermodynamic process run on a given initial distribution. For example, suppose 
we design a process to be dissipationless (i.e. thermodynamically reversible) when run 
with some initial state distribution. Our analysis can be used to calculate exactly how 
much work would be dissipated if that process were run with some other state distri-
bution. As a demonstration appendix C, we consider a published model of Maxwell’s 
demon [32], a device that extracts work from an incoming stream of bits, and compute 
dissipation as a function of the distribution of bits.

More generally, consider a fixed process connected to a heat bath that is at a con-
stant temperature, which dissipates least work when prepared with some particular 
initial distribution. For example, this might be a process in which a volume of gas 
expands while pushing against a piston and lifting a weight. There will be some ‘opti-
mal’ initial distribution of the states of the gas which minimizes dissipated work. Our 
results state how much more work will be dissipated when the gas is prepared with 
some other initial distribution.

After deriving this result, we extend it to analyze dissipation in a physical computer. 
More precisely, we suppose that there is a coarse-graining of the states of our system 
into a set of macrostates. These macrostates are identified with logical values and the 
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dynamics over the macrostates identified with the (possibly noisy) computation. The 
initial distribution over the macrostates may reflect how a user of the computer initial-
izes its logical values. As before, we consider how the additional dissipation incurred 
by a computer, above and beyond the minimum, depends on the initial macrostate 
distribution. We show that the additional dissipation is still given by the drop in KL 
divergence, only now stated in terms of distributions over the macrostates.

To illustrate the implications of this result for thermodynamics of computation, 
suppose we construct a process that performs a given computation, and that achieves 
zero dissipation for some initial distribution over its states (e.g. when employed by one 
particular user of that computer). Our results quantify how much computer will dissi-
pate if it is instead initialized according to a dierent distribution (e.g. if the computer 
is employed by some other user).

We emphasize that these results are equalities, not just bounds. Furthermore, our 
results give dissipation in terms of a dierence in two KL divergences, concerning initial 
and final state distributions. Thus they dier fundamentally from previously derived 
DFTs, which give dissipation in terms of a single KL divergence, concerning forward 
and time-reversed trajectory distributions. Moreover, in contrast to such DFTs, our 
results do not assume local detailed balance.

Our analysis of dissipated work should also be distinguished from earlier analyses 
of reversible work, in particular analyses expressing reversible work as a reduction of 
KL divergence between nonequilibrium and equilibrium distributions at initial and 
final times plus the dierence of equilibrium free energies [21]. Reversible work is the 
work required to perform a given transformation using an optimal process, and can be 
thermodynamically recovered by reversing the process. Dissipated work, on the other 
hand, is work that is irreversibly lost as entropy production. Furthermore, in general 
the KL divergences that arise in our analysis do not necessarily involve equilibrium 
distributions.

There is one previously-known result that is a special case of our analysis: if a sys-
tem is prepared with some nonequilibrium distribution r0 and then undergoes a non-
driven process in which it fully relaxes to equilibrium, the dissipated work is equal to 
the KL divergence between r0 and the equilibrium distribution [33]. Our analysis gen-
eralizes this earlier result significantly, allowing for processes that do not relax fully to 
equilibrium. It also applies to processes that are driven by an external work reservoir, 
in which the equilibrium changes over time, during which the system can remain arbi-
trarily far from equilibrium at all times.

2. Formal background

We consider a physical system with a countable set of microstates X that evolves 
across a countable set of times t ∈ {0,∆τ, 2∆τ, . . . , 1}, while in contact with a heat 
bath at temperature T. We use x0..1 := (x0, x∆τ , . . . , x1) to indicate a particular tra-
jectory through the system’s state space. The system may also be connected to a 
work reservoir throughout its evolution, which causes the system’s Hamiltonian to 
change with time. We indicate the trajectory through the space of Hamiltonians as 
H0..1 := (H0, H∆τ , . . . , H1).

https://doi.org/10.1088/1742-5468/aa7ee1
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Note that the units of time are arbitrary and ∆τ  can be arbitrarily small (though 
non-zero). Accordingly our results hold exactly no matter how long the process takes, 
and in particular even in the quasi-static limit. The choice of countable state space and 
discretized time is used to simplify analysis, in line with much of the literature [5, 14, 
34, 35]. However, our approach should extend to continuous state space and continu-
ous time.

Write the distribution of the system’s state at t as pt(x), or equivalently p(xt). Due 
to thermal fluctuations and driving by the work reservoir, the system undergoes a sto-
chastic dynamics, represented by a conditional distribution of trajectories given initial 
states, p(x0..1|x0) (we make no assumptions about whether this dynamics is first-order 
Markovian or not). The conditional distribution over trajectories in turn induces a con-

ditional distribution of final states given initial states, p(x1|x0) =
∑

x′
0..1

δx′
1,x1

p(x′
0..1|x0), 

which we sometimes refer to as a map that takes initial states x0 to final states x1.
We refer to a given pair of H0..1 and p(x0..1|x0) as a (thermodynamic) process 

operating on the system, indicated generically as P . Note that any process P  can be 
prepared with dierent initial distributions p0, giving dierent trajectory probabilities 
p(x0..1) := p(x0..1|x0) p0(x0).

Given a sequence of Hamiltonians H0..1, the total work done on the system if it fol-
lows state trajectory x0..1 is

W (x0..1) =
∑

t∈{0,∆τ,..,1}

Ht+∆τ (xt)−Ht(xt). (1)

For an initial distribution p0, the expected work across all trajectories is

〈W 〉p0 =
∑
x0..1

p0(x0) p(x0..1|x0)W (x0..1).

Suppose we seek to drive the system from some particular (possibly non-equilibrium) 
initial distribution p0 to some final distribution p1, while changing the Hamiltonian from 
H0 to H1. Define the non-equilibrium free energy [11] of a system with Hamiltonian Ht 
and distribution pt(x) as

F (Ht, pt) := 〈Ht〉pt − kT · S( pt),

where S( p) := −
∑

x p(x) ln p(x) indicates Shannon entropy (in nats). (Note that F  
is equal to the equilibrium free energy when pt is the Boltzmann distribution for 
Hamiltonian Ht.) For any process P  that transforms ( p0, H0) → ( p1, H1), expected work 
is lower bounded by

〈W 〉p0 � F (H1, p1)−F (H0, p0) . (2)
This inequality reflects the modern understanding of the second law [9, 11, 21, 22].

The dierence of non-equilibrium free energies is called the reversible work. 
Reversible work is the portion of expected work that could be recovered from the heat 
bath and system after the process finishes, by transforming the system from H1, p1 
back to H0, p0 in a thermodynamically reversible manner (in this way completing a 
thermodynamic cycle). Reversible work can be either positive or negative, depending 
on H0, p0, H1 and p1.

https://doi.org/10.1088/1742-5468/aa7ee1
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Dissipated work or simply dissipation is the portion of expected work that cannot 
be thermodynamically recovered [11, 21, 33]. It is written as

Wd( p0) := 〈W 〉p0 − [F(H1, p1)−F(H0, p0)] . (3)
The dissipation associated with a process is always non-negative, and it is zero i the 
process is thermodynamically reversible. (Dissipation should not to be confused with 
the dissipated heat, which is the total energy transferred to the heat bath, nor with 
expected total work minus the change in equilibrium free energies, which is also some-
times called dissipated work [33, 36, 37].)

Define Q(x0) as the expected total heat transferred from the bath to the system 
during the process if the system starts in x0 [6]. By conservation of energy we can write 
this as

Q(x0) :=
∑
x′
0..1

p(x′
0..1|x0)(H1(x

′
1)−H0(x0)−W (x′

0..1)),

so that the total expected heat transferred is 〈Q(X0)〉p0 =
∑

x0
p(x0)Q(x0). This allows 

us to rewrite dissipation as

Wd( p0) = kT [S( p1)− S( p0)]− 〈Q(X0)〉p0 , (4)
where p1(x

′) =
∑

x p(x1|x0) p0(x0) is the final state distribution when the process is 
initialized with p0. Thus, dissipation is proportional to the entropy change that does 
not correspond to heat exchanged with the heat bath, which is called the (irreversible) 
entropy production [9, 11, 38].

In the remainder of this paper we choose units so that kT = 1.

3. Dissipation due to incorrect priors

Let q0 be an initial distribution that achieves minimum dissipation for a given P ,

q0 := argmin
p0

Wd( p0). (5)

We call q0 the prior distribution for P  (for reasons made clear below). We do not 
assume that the prior distribution is unique.

While q0 is an initial distribution that results in minimal dissipation, in general P  
may be prepared with some initial distribution r0, which we call the environment dis-
tribution that need not equal q0. By definition,

Wd(r0)−Wd(q0) � 0.

We call this extra dissipation when using r0 rather than q0 the incorrect prior dis-
sipation. Notice that if P  achieves zero dissipation for some initial distribution, then 
Wd(q0) = 0 and dissipation and incorrect prior dissipation are equivalent.

Several papers have shown that it is possible to design a process that implements 
any given stochastic map p(x1|x0) with zero dissipation for any given initial distribu-
tion p0 [39–41]. Incorrect prior dissipation first appeared in these analyses: it was shown 
that a particular type of process that implements a given stochastic map and achieves 

https://doi.org/10.1088/1742-5468/aa7ee1
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zero dissipation for a particular q0 will dissipate work when prepared with a dierent 
initial distribution r0 �= q0. Here we generalize these previous analyses; the main result 
of our paper is a simple expression for incorrect prior dissipation that applies to any 
thermodynamic process.

To derive our main result, note that by definition, the prior q0 minimizes the 
dierentiable function Wd over the set of all valid probability distributions. We assume 
that q0 has full support, i.e. it is in the interior of the unit simplex. (This assumption 
will often hold; appendix D presents one particular sucient condition concerning 
p(x1|x0).) Then, for any initial state distribution r0, the directional derivative at q0 
must obey

(r0 − q0) · ∇Wd(q0) = 0, (6)
where · indicates the dot product.

Next we use equation (4) to write the |X| components of ∇Wd( p0),

∂Wd

∂p(x0)
( p0) =

[
−

∑
x1

p(x1|x0) ln
(∑

x′
0

p0(x
′
0) p(x1|x′

0)
)
− 1

]
+
[
ln p(x0) + 1

]
−Q(x0)

= −
∑
x1

p(x1|x0) ln p1(x1) + ln p0(x0)−Q(x0).

 

(7)

Combining equations (7) and (4) lets us express the inner products as

q0 · ∇Wd(q0) = S(q1)− S(q0)− 〈Q〉q0 = Wd(q0) (8)

r0 · ∇Wd(q0) = C(r1‖q1)− C(r0‖q0)− 〈Q〉r0
= D(r1‖q1)−D(r0‖q0) +Wd(r0).

 (9)

where C( p‖q) := −
∑

x p(x) ln q(x) is the cross-entropy function and D( p‖q) =∑
x p(x) ln

p(x)
q(x)

= C( p‖q)− S( p) is the Kullback–Leibler (KL) divergence [26].
Combining equations (6), (8) and (9) leads to our main result: incorrect prior dis-

sipation for any distribution r0 is

Wd(r0)−Wd(q0) = D(r0‖q0)−D(r1‖q1). (10)
(See appendix A for an extension of this result for the case where all distributions 

are restricted to a convex subset of the unit simplex.)
Recall that the KL divergence D(r‖q) is an information-theoretic measure of the 

distinguishability of distributions r and q [26]. Thus, our main result states that incor-
rect prior dissipation measures the decrease in our ability to distinguish whether the 
initial distribution was q0 or r0 as the system evolves from t = 0 to t = 1. Formally, this 
drop reflects the ‘contraction of KL divergence’ under the action of the map p(x1|x0) 
[42, 43]. It is non-negative due to the KL data processing inequality [44, lemma 3.11]. 
(This is consistent with our main result, since incorrect prior dissipation measures extra 
dissipation relative to the minimum possible.)

Interestingly, the contraction of KL divergence reflects the logical reversibility of 
the map p(x1|x0). If p(x1|x0) specifies a logically-reversible map from x0 to x1 (i.e. a per-
mutation over X), then incorrect prior dissipation is 0 for all r0. At the other extreme, if 

https://doi.org/10.1088/1742-5468/aa7ee1
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p(x1|x0) is an input-independent map, where changing x0 has no eect on the resultant 
distribution over x1, then D(r1‖q1) = 0 and incorrect prior dissipation reaches its maxi-
mum value of D(r0‖q0). In addition, in this case the prior distribution that minimizes 
Wd(.) is unique, since Wd(r0) = D(r0‖q0) = 0 i r0 = q0. More generally, in appendix E 
we prove that if and only if p (x1|x0) is not a logically reversible map, then there must 
exist an r0 such that Wd(r0)−Wd(q0) > 0.

For another perspective on equation (10), note that by the chain rule for KL diver-
gence [26, equation (2.67)],

D(r(X0, X1)‖q(X0, X1)) = D(r0‖q0) +D(r(X1|X0)‖q(X1|X0))

= D(r1‖q1) +D(r(X0|X1)‖q(X0|X1)).
 (11)

However, since r(x1|x0) = q(x1|x0) = p(x1|x0), D(r(X1|X0)‖q(X1|X0)) = 0. Thus, equa-
tion (10) is equivalent to

Wd(r0)−Wd(q0) = D(r(X0|X1)‖q(X0|X1)).

(See also [41].) In this expression r(x0|x1) and q(x0|x1) are Bayesian posterior prob-
abilities of the initial state conditioned on the final state, for the assumed priors r0 and 
q0 respectively, and the shared likelihood function p(x1|x0). (This Bayesian formulation 
of equation (10) is why we refer to the initial distribution q0 as a ‘prior’.)

In appendix A, we show that if q0 is not assumed to have full support, then the 
RHS of (10) becomes a lower bound (rather than an equality) on the incorrect prior 
dissipation.

4. Discussion of incorrect prior dissipation

In this section, we present some important implications and generalizations of our main 
result, as well as some caveats that are important to keep in mind.

Note that a thermodynamic process P  is specified by a large set of real numbers: the 
values of the Hamiltonian H0..1 and the conditional distribution p(x0..1|x0). (In fact, in 
the ∆τ → 0 limit this set is infinite.) However, by equation (4), the dissipation function 
Wd(·) can be specified using only |X|2 real numbers: the |X| values of Q(x0) and the 
|X|(|X| − 1) values of p(x1|x0). Unfortunately, the values Q(x0) may be impractical to 
compute for a given P , since they involve expectations over a very large set of trajec-
tories. Indeed, the distribution over trajectories may not even be fully specified if some 
details of the process are unknown.

Equation (10) shows that Wd(·) can alternatively be parameterized by the |X|2 
numbers: the value of Wd(q0), the |X| − 1 values of q0, and the |X|(|X| − 1) values of 
p(x1|x0). This also means that, perhaps surprisingly, calculating the amount of dis-
sipation above the minimum possible only requires knowledge of the stochastic map 
p(x1|x0) and a minimizer q0, and does not depend on any specifics of the intermediate 
process. Given some initial distribution r0, all physical details of how P  manages to 
transform q0 → q1 and r0 → r1 are irrelevant for evaluating incorrect prior dissipation.

It is important to emphasize that our analysis above does not specify how to find the 
minimizer q0. In some cases, it may be possible to find q0 via numerical minimization of 

https://doi.org/10.1088/1742-5468/aa7ee1
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the convex function Wd( p0) over a |X|2-dimensional space. (See appendix B for a proof 
that Wd is convex.) In others, such minimization may be achievable via analytical tech-
niques, or it may be possible to analytically find an initial distribution that achieves 
zero dissipation (which must then be a minimizer). Some previous studies have used 
these kinds of techniques to find priors q0 and our results can provide additional insight 
into those studies. For example, one published model of Maxwell’s demon used numer-
ical methods to derive an inequality for dissipated work [32, equation (10)]. As we 
show in appendix C, our results can be used in a straightforward manner to derive this 
inequality analytically—and in fact provide an exact expression for dissipated work.

It is also important to emphasize that our main result concerns only one contributor 
to the total dissipated work (namely the amount in addition to the minimum amount 
possible). Moreover, dissipated work itself is just one contributor to expected total 
work. Thus, for instance, the fact that incorrect prior dissipation is related to the 
logical irreversibility of the map p(x1|x0) does not necessarily have implications for 
the relationship between logical irreversibility and the total dissipation and/or total 
work involved in carrying out the map4. In addition, note that the prior distribu-
tion q0, which minimizes dissipation, will not generally be the initial distribution that 
minimizes expected total work. Indeed, since total expect work is linear in the initial 
distribution over states, the distribution that minimizes expected total work is a delta 

function about x�
0 = argminx0

∑
x0..1

p(x0..1|x0)W (x0..1). In general, that delta function 

distribution will not minimize dissipation.
There are some conditions, however, when incorrect prior dissipation can be related 

to expected total work. Consider the case when the process P  is thermodynamically-
reversible for some initial distribution, meaning that Wd(q0) = 0. Then, the expected 
work when P  is prepared with initial distribution r0 is

〈W 〉r0 = D(r0‖q0)−D(r1‖q1) + F (r1, H1)−F (r0, H0)

= 〈H1〉r1 − 〈H0〉r0 + C(r0‖q0)− C(r1‖q1). (12)

If, furthermore, both the initial and final Hamiltonians H0 and H1 are uniform 
over the space of allowed states, then expected work for initial distribution r0 is 
C(r0||q0)− C(r1||q1). (See [40] for an example of a physical system where this is the 
case.)

Finally, it is possible to generalize our main result in two important ways, as shown 
in appendix A. First, when the minimizer q0 does not have full support, incorrect prior 
dissipation is lower-bounded by (rather than equal to) the contraction of KL diver-
gence. In addition, our main result can be generalized to the case when q0 is not the 
minimizer of Wd over all possible initial distributions, but only within some convex 
subspace of distributions. Then, the result holds for any other initial distribution r0 
within the same subspace. The latter generalization is used in the next section to derive 
a coarse-grained version of equation (10).

4 Indeed, though logical reversibility and thermodynamic reversibility were associated in early work on the  
thermodynamics of computation, it is now understood that they are independent. For instance, one can design a 
process to erase a bit in a thermodynamically reversible manner even though bit-erasure is logically-irreversible 
[45], assuming that the distribution over the states of the bit is exactly known to the designer.

https://doi.org/10.1088/1742-5468/aa7ee1
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5. Thermodynamics of computation

We now extend our main result, to apply to the thermodynamics of computation. 
Formally, this means that we analyze the implications of our main result for physi-
cal systems that perform information-processing operations over some coarse-grained 
degrees of freedom.

Recent advances in nonequilibrium statistical physics [11, 45] have extended and 
clarified the pioneering analysis of of Landauer, Bennett and others [46–49] regarding 
the fundamental thermodynamics cost of information processing. In this section, we con-
sider the implications of incorrect prior dissipation for thermodynamics of computation.

In keeping with previous analyses, we define a computer as a physical system with 
microstates x ∈ X undergoing a thermodynamic process P , together with a coarse-
graining of X into a set of computational macrostates (CMs) with labels v ∈ V  (the set 
of CMs are equivalent to what are called the ‘information bearing degrees of freedom’ in 
[50], and the ‘information states’ in [51]). P  induces a stochastic dynamics over X, and 
the (possibly non-deterministic) computation is identified with the associated dynamics 
over CMs. We use π(v1|v0) to indicate this dynamical process over CMs, i.e. to indicate 
a single iteration of the computation that maps inputs v0 to outputs v1. The canonical 
example of this kind of computation is a single iteration of a laptop, modifying the bit 
pattern in its memory (i.e. its CM) [50]. In practice, computers are usually designed to 
perform the same operation over their CMs from one iteration to the next. Formally, 
this means that their dynamics are first-order Markovian and time-homogeneous.

In previous work [41], we showed that for any given π and input distribution, a 
computer can be designed that implements π with zero dissipation for that input dis-
tribution. Here, we instead consider how the amount of dissipation for a fixed, given 
computer depends on the choice of input distribution. We recover a coarse-grained 
version of equation (10), expressing incorrect prior dissipation for a distribution over 
input CMs. Thus, the exact same equations that determine how dissipation varies with 
the initial distribution over microstates also determine how dissipation in a computer 
varies with the initial distribution over computational macrostates.

Formally, let g : X → V  be the coarse-graining function that maps the microstates 
of a computer to its CMs. Let s(x|v) be a fixed distribution over the microstates corre-
sponding to the specified macrostate v, and so obeys s(x|v) = 0 if v �= g(x). We use the 
random variables V0 and V1 to indicate the CM at the beginning and end of the pro-
cess, respectively. To avoid confusion between distributions over CMs and those over 
microstates, distributions over CM are superscripted with a V. Thus, we write pV0 (.) 
and pV1 (.) to indicate the distribution over CMs at t = 0 and at t = 1, respectively, and 
similarly for qV0 , q

V
1 , r

V
0  and rV1 .

When combined with the conditional update distribution π(v1|v0), any initial distri-
bution pV0  over CMs induces a final distribution over states of V at t = 1 in the obvi-
ous way. Such a pV0  also induces a t = 0 mixture distribution over microstates, given 
by averaging the distributions s(x|v) over all possible v. It will be useful to write this 
mixture with the shorthand

[Φ( pV )](x) =
∑
v

s(x|v) pV (v) = s(x|g(x)) pV (g(x)).
 (13)

https://doi.org/10.1088/1742-5468/aa7ee1
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Thus, Φ(.) is a map that takes distributions over V to distributions over X. The image 
of Φ, T , is a convex subset of the set of distributions over X, containing all possible 
mixtures of s(x|v) induced by distributions over V.

We make two assumptions in our analysis of computers, which capture some physi-
cal properties of what is commonly meant by ‘computers’, both in the real world and 
in the literature on thermodynamics of computation.

First, we assume the initial distribution over microstates is determined by specify-
ing the initial distribution over CMs. This assumption reflects the fact that in current 
real-world computers, the input is set by selecting some computational macrostate (e.g. 
setting the pattern of logical bits in memory). It is not selected by the user selecting 
a particular microstate of the system (which would occur, for example, if the user set 
the positions and momenta of all atoms and electrons in the computer). Formally, this 
assumption means that any allowed initial distribution p0 must be an element of T , 
and will satisfy p0(x0) = [Φ( pV0 )](x0) for some initial distribution over CMs pV0 . We call 
such an initial distribution over CMs an input distribution.

Second, we assume that the distribution of microstates, conditioned on the respec-
tive macrostate, is the same at the beginning and end of the thermodynamic process. 
This assumption guarantees that the dynamics of a computer’s logical state is first-
order Markovian and time-homogeneous; in other words, the computer can be run for 
multiple iterations, and it is guaranteed to obey the same logical rules in each iteration. 
We formalize this assumption by requiring that the dynamics obey

p(x1|v0, v1) =
p(x1, v1|v0)
p(v1|v0)

=

∑
x0
δv1,g(x1)p(x1|x0)s(x0|v0)

p(v1|v0)
= s(x1|v1)

for all x1, v0, v1. In words, this states that v0 is conditionally independent of x1 given v1 
(i.e. there is no information about v0 ‘hidden’ in the microstate x1 beyond that provided 
by the fact that x1 belongs to CM v1). This assumption also means that as long as the 
initial microstate distribution p0 is induced by some distribution over CMs, then the 
output microstate distribution p1 is also induced by some distribution over CMs (i.e. 
that p1 ∈ T  so long as p0 ∈ T ). We refer to any process that obeys this condition as 
computationally cyclic.

When the computer is run with the microstate distribution Φ( pV0 ), the amount of 
dissipated work is Wd(Φ( p

V
0 )). Accordingly we refer to Wd(Φ( p

V
0 )) as the dissipation of 

the (macrostate) input distribution pV0 , and when clear from context, write it simply as 
Wd( p

V
0 ).

In analogy with the case of dynamics over X, we say that an input distribution qV0  
is a prior for the computer if it achieves minimum dissipation among all input distribu-
tions. As we did in our analysis of priors over microstates, we assume that the prior qV0  
has full support. (More formally, see appendix D for a sucient condition on π under 
which this assumption will hold.)

Let q0 := Φ(qV0 ) ∈ T  indicate the microstate distribution induced by qV0 . By 
definition of qV0 , q0 has minimum dissipation within the convex set T . Furthermore, 
by our assumption that qV0  has full support, Φ(qV0 ) will be in the relative interior of T .

Now consider any other input distribution rV0 , as well as its associated microstate 
distribution r0 := Φ(r0) ∈ T . Using the general statement of dissipation due to incor-
rect priors derived in appendix A,

https://doi.org/10.1088/1742-5468/aa7ee1
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Wd(Φ(r
V
0 ))−Wd(Φ(q

V
0 )) = D(r0‖q0)−D(r1‖q1)

= D(r(V0, X0)‖q(V0, X0))−D(r(V1, X1)‖q(V1, X1))

= D(rV0 ‖qV0 )−D(rV1 ‖qV1 )
+D(r(X0|V0)‖q(X0‖V0))−D(r(X1|V1)‖q(X1|V1)),

where the second line follows because v0 and v1 are deterministic functions of x0 and 
x1, and the third line follows from the chain rule for KL divergence. Next, note that 
by definition r(x0|v0) = s(x0|v0) = q(x0|v0). So D(r(X0|V0)‖q(X0|V0)) = 0. In addition, 

by the cyclic condition, r(x1|v1) =
∑

v0
r(v0|v1) p(x1|v0, v1) = s(x1|v1) and similarly for 

q(x1|v1). So D(r(X1|V1)‖q(X1|V1)) = 0.
Combining leads to a coarse-grained version of our main result: for dynamics over 

CMs, incorrect prior dissipation for any input distribution rV0  is

Wd(r
V
0 )−Wd(q

V
0 ) = D(rV0 ‖qV0 )−D(rV1 ‖qV1 ).

The obvious analog of equation (12) (and the associated discussion) holds for comp-
uters, if we replace distributions over microstates by distributions over CMs. These 
results agree with the analysis for a specific model of a computer in [41]. However the 
analysis here holds for any computer, no matter how it operates.

As before, if qV0  does not have full support, we recover an inequality rather than an 
equality appendix A.

6. Conclusion

For a fixed nonequilibrium process, we have quantified the additional dissipation aris-
ing from using some arbitrary initial distribution, relative to the dissipation incurred 
when using the initial distribution that achieves minimal dissipation. This additional 
dissipation has a simple, information-theoretic form, being equal to the the contraction 
of KL divergence between the actual and optimal initial distributions over the course 
of the process.

We also considered computers, i.e. processes that implement some stochastic 
map over a set of coarse-grained variables. We showed that our main result applies 
to distributions over coarse-grained states of a system, so long as the fine-grained 
dynamics obey several conditions. Landauer and co-workers pioneered analysis of 
the thermodynamic cost of computation; in its modern formulation, Landauer’s 
bound considers the minimal (dissipation-free) total work needed to perform a given 
computation [9, 11]. Our result extends these analyses to include the dissipation cost 
of computation, and in particular its dependence on the initial distribution of the 
computer’s states.

Our results are derived with few assumptions. They do not require that the dynam-
ics obey local detailed balance, nor that they are Markovian. In addition, they hold 
for both quasi-static and finite time processes, and regardless of how far the process is 
from equilibrium.

https://doi.org/10.1088/1742-5468/aa7ee1
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Appendix A. Dissipation due to incorrect priors over convex spaces

Let ∆ be a convex subset of the set of all distributions over state space X. For a given 
process P , define the prior distribution in ∆ as

q0 := argmin
p0∈∆

Wd(P , p0).

Proposition 1. For all initial distributions r0 ∈ ∆,

Wd(r0)−Wd(q0) � D(r0‖q0)−D(r1‖q1), (A.1)

where D(·‖·) is the KL divergence. If the prior distribution q0 is in the relative interior 
of ∆, the inequality is tight:

Wd(r0)−Wd(q0) = D(r0‖q0)−D(r1‖q1). (A.2)

Proof. First use equation (4) in the main text to write the |X| components of ∇Wd( p0) 
as

∂Wd

∂p(x0)
( p0) =

[
−

∑
x1

p(x1|x0) ln
∑
x′
0

p0(x
′
0) p(x1|x′

0)− 1
]
+
[
ln p(x0) + 1

]
−Q(x0)

= −
∑
x1

p(x1|x0) ln p1(x1) + ln p0(x0)−Q(x0).

 

(A.3)

Note that by equations (7) and (4) in the main text, even though Wd( p0) is not a linear 
function of p0, it is still true that for any p0,

Wd( p0) =
∑
x0

p(x0)
∂Wd

∂p(x0)
( p0) = p0 · ∇Wd( p0). (A.4)

The prior q0 minimizes Wd in the convex space ∆. Then, the directional derivative at 
q0 toward r0 ∈ ∆, written as (r0 − q0) · ∇Wd(q0), must be non-negative, since otherwise 
Wd could be decreased by slightly perturbing q0 toward r0. Thus,

(r0 − q0) · ∇Wd(q0) � 0.

By equation (A.4),
r0 · ∇Wd(q0) � Wd(q0).

https://doi.org/10.1088/1742-5468/aa7ee1
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Plugging in equation (A.3), we rewrite,

r0 · ∇Wd(q0) = −〈Q〉r0 − C(r0‖q0) + C(r1‖q1)
= Wd(r0)− [D(r0‖q0)−D(r1‖q1)] , (A.5)

where C(·‖·) is the cross-entropy. Combining establishes the inequality proposition A.1.

If q0 is in the relative interior of ∆, the directional derivatives at q0 must be positive 
toward and away-from r0. Thus,

(r0 − q0) · ∇Wd(q0) � 0 and (q0 − r0) · ∇Wd(q0) � 0,

leading to

(r0 − q0) · ∇Wd(q0) = 0. (A.6)

Combining equations (A.6), (A.4) and (A.5) establishes the equality proposition A.2. □ 

Appendix B. Dissipated work is convex

First, consider two initial distributions, specified by the conditional probabil-
ity distribution w(X0 = x0|C = 0) and w(X0 = x|C = 1), as well as the mix-
ture w(X0 = x) =

∑
c p(C = c)w(X = x|C = c). At the end of the process, 

these distributions are mapped to w(X1 = x|C = 0), w(X1 = x|C = 1), and 
w(X1 = x) =

∑
c pC(C = c)w(X1 = x|C = c).

To demonstrate that Wd is convex, we will show that

p(C = 0)Wd(w(X0|C = 0)) + p(C = 1)Wd(w(X0|C = 1)) � Wd(w(X0)).

First, we subtract the RHS from the LHS, while using the expression for dissipated 
work equation (4). The linear terms drop out, leaving the entropy terms:

p(C = 0)Wd(w(X0|C = 0)) + p(C = 1)Wd(w(X0|C = 1))−Wd(w(X0))

= p(C = 0) [S(w(X1|C = 0))− S(w(X0|C = 1))]

+ p(C = 1) [S(w(X1|C = 1))− S(w(X0|C = 1))]

− [S(w(X1))− S(w(X0))]

=MI(X0;C)−MI(X1;C)

� 0.

The last line follows from the data processing inequality for mutual information [26].

Appendix C. Analysis of ‘Maxwell’s demon’ model of Mandal and Jarzynski

We consider the work dissipated in the thermodynamic process corresponding to one 
‘interaction interval’ of the information-processing ‘demon’ described in [32]. Let 
X = {A0, B0, C0, A1, B1, C1} represent the state space of the model. Also let V be a 
coarse-graining of X into a binary state (corresponding to the state of the bit on the 
tape), where V = 0 corresponds to {A0, B0, C0} and V = 1 corresponds to {A1, B1, C1}. 

https://doi.org/10.1088/1742-5468/aa7ee1
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As in our main text, it will useful to distinguish distributions over V from those over 
X with a superscript, e.g. writing rV0  rather than r0.

The model is parameterized by:

 (i) τ: the amount of time the demon interacts with each incoming bit, i.e. the length 
of a single interaction interval. In our framework, this means that t ∈ [0, 1] maps 
to a duration of physical time τ.

 (ii) δ: set the ‘excess’ of 0s in the incoming bit distribution (i.e. the distribution of V 
at the beginning of the interaction interval), via δ = rV0 (V = 0)− rV0 (V = 1).

 (iii) ε: set the ‘excess’ of 0 in the equilibrium distribution of outgoing bits (i.e. 
the distribution of V at the end of an interaction interval as τ → ∞), via 
ε = pVeq (V = 0)− pVeq (V = 1) [32, equation (6b)].

The parameter ε is used to define a continuous-time |X| × |X| rate matrix R [32, 
equation (S1)] specifying system dynamics. This rate matrix is then used to define a 
transition matrix Πτ := eτR for interactions of duration τ.

In [32], it is noted that dissipation is 0 when δ = ε. In their Supporting Information, 
the authors provide a complex derivation showing that dissipation is non-negative for 
other cases. This is shown analytically for the quasi-static limit of interval lengths 
(τ → ∞, i.e. when each interaction interval takes an infinite amount of time), but only 
numerically for finite interval lengths [32, equation (S20)]. Here we show how to use 
the results in our paper to prove strict positivity simply, and analytically, for all time 
scales.

Note that R is irreducible, and hence has a unique stationary distribution, which we 

call pXeq(x) (pVeq is a marginalization of this stationary distribution onto the V subspace). 
When the 6-state system is prepared with initial distribution pXeq, no work gets done 

[32] and the nonequilibrium free energy doesn’t change, hence Wd

(
pXeq

)
 is 0. Therefore, 

in the language of our main text, peq is a prior distribution for this thermodynamic 
process, since no other initial distribution can achieve lower dissipation.

Using our main result, we write dissipation when the system is prepared with initial 
distribution rX0  and allowed to interact for duration τ as

Wd

(
rX0

)
−Wd

(
pXeq

)
= Wd

(
rX0

)

= D
(
rX0 ‖ pXeq

)
−D

(
ΠτrX0 ‖ΠτpXeq

)

= D
(
rX0 ‖ pXeq

)
−D

(
ΠτrX0 ‖ pXeq

)

> 0 whenever rX0 �= pXeq

 (C.1)

where the inequality arises from the fact that irreducible rate matrices have strict conv-
ergence to equilibrium [52, section 3.5].

Note that ε = δ means that rV0 (v) = pVeq(v). Thus ε = δ is a necessary condition for 
rX0 (x) = pXeq(x) (though not sucient, since we would also need r0(x|v) = peq(x|v)). We 

have thus shown that ε = δ is a necessary condition for dissipation to be 0, and that 
when ε �= δ , dissipation is guaranteed to be strictly positive.
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Observe also that for any specific values τ, ε, δ, and r0 (x|v), we can use equa-
tion (C.1) above to compute dissipation exactly.

Appendix D. Sucient conditions for prior to have full support

In this section of the SM we assume that all components of p(x1|x0) are nonzero and 
that Q(x0) is finite for all x0, and show that this means that both minimizers q(x0) and 
q(v0) have full support.

To begin, expand equation (7) in the main text to write

∂Wd

∂p(x0)
( p0) = −Q(x0)−

∑
x1

p(x1|x0) ln

[∑
x′
0
p(x1|x′

0) p(x
′
0)

p(x0)

]
 (D.1)

for any distribution p0 over X.

Define q0 := argminp0∈∆Wd( p0), where ∆ is the |X|-dimensional unit simplex. To 
show that q0 has full support, hypothesize that there exists some x�

0 such that q(x�
0) = 0. 

Now consider the one-sided derivative ∂Wd

∂p(x�
0)
(q0). By the assumption that p (x1|x0) > 0 

for all x0, x1, the numerator inside the logarithm in equation (D.1) is nonzero, while 

by hypothesis the denominator is 0. Thus, the argument of the logarithm is posi-

tive infinite and (since Q(x�
0) is finite, by assumption) ∂Wd

∂p(x�
0)
(q0) is negative infinite. 

Moreover, for any x′
0 where q(x′

0) > 0, ∂Wd

∂p0(x
′
0)
(q0) is finite. This means that Wd(q0) can 

be reduced by increasing q(x�
0) and (to maintain normalization) reducing q(x′

0), con-

trary to the definition of q0 as a minimizer. Therefore our hypothesis must be wrong.

Next, consider the prior input distribution qV0 := argminpV0 ∈∆V Wd(Φ( p
V
0 )), where 

∆V  is the |V |-dimensional unit simplex. To show that qV0  has full support under the 
above assumptions, consider the partial derivative of dissipation wrt to each entry of 

the input probability distribution, ∂Wd(Φ(pV ))
∂pV (v0)

. Let p0 := Φ( pV0 ), and then use the chain 

rule, equations (13), (D.1), and then (13) in the main text again to write

∂Wd(Φ(pV ))

∂pV (v0)

(
pV0

)
=

∑
x0

∂Wd

∂p(x0)
( p0)

∂[Φ(pV )](x0)

∂pV (v0)

(
pV0

)

=
∑
x0

∂Wd

∂p(x0)
( p0) s (x0|v0)

=
∑
x0

[
−Q(x0)−

∑
x1

p(x1|x0) ln

∑
x′
0
p(x1|x′

0) p(x
′
0)

p(x0)

]
s (x0|v0)

=
∑
x0

[
−Q(x0)−

∑
x1

p(x1|x0) ln

∑
x′
0
p(x1|x′

0) p(x
′
0)

s (x0|v0) pV (v0)

]
s (x0|v0)

 

(D.2)

for any distribution p0V  over V.
Proceeding as before, hypothesize that there exists some v�0 such that qV (v

�
0) = 0, 

and use equation (D.2) to evaluate ∂Wd(Φ( pV ))
∂p(v�0)

(qV0 ). By our hypothesis, the associated 
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value of the denominator in the logarithm in equation (D.2) is zero. Since p(x1|x0) is 
always nonzero by assumption, this means the sum over x1 is positive infinite. Since 

by assumption Q(x0) is bounded, this means that ∂Wd(Φ( pV ))
∂p(v�0)

(qV0 ) is negative infinite. 

At the same time, ∂Wd(Φ( pV ))
∂p(v′0)

(qV0 ) is finite for any v′0 where qV (v
′
0) > 0. Thus Wd(Φ(q

V
0 )) 

can be reduced by increasing qV (v
�
0) and (to maintain normalization) reducing qV (v

′
0), 

contrary to the definition of qV0  as a minimizer. Therefore our hypothesis must be 
wrong.

Appendix E. Proof of strictly positive dissipation for non-invertible maps

Suppose the driven dynamics p (x1|x0) is a stochastic map from X → X that results in 
minimal dissipation for some prior distribution q0.

Theorem 1. Suppose that q0 has full support. Then, there exists r0 with incorrect prior 
dissipation Wd(r0)−Wd(q0) > 0 i p (x1|x0) is not an invertible map.

Proof. If q0 has full support, then suppr0 ⊆ suppq0 for all r0. Then equation (10) states 
that if initial distribution r0 is used, extra dissipation is equal to

Wd(r0)−Wd(q0) = D(r0‖q0)−D(r1‖q1)
= D(r(X0|X1)‖q(X0|X1))

 (E.1)

KL divergence is invariant under invertible transformations. Therefore, if p (x1|x0) is 
an invertible map, then D(r0‖q0) = D(r1‖q1) =⇒ Wd(r0)−Wd(q0) = 0 ∀ r0.

We now prove that if p (x1|x0) is not an invertible map, then there exists r0 such that 
Wd(r0)−Wd(q0) > 0. For simplicity, write the dynamics p (x1|x0) as the right stochas-
tic matrix M. Because M is a right stochastic matrix, it has a right (column) eigenvector 
1T = (1, . . . , 1)T  with eigenvalue 1.

Furthermore, it is known that if M is not an invertible map, i.e. permutation matrix, 
then | detM | < 1 [53]. Since the determinant is the product of the eigenvalues and the 
magnitude of any eigenvalue of a stochastic matrix is upper bounded by 1, M must 
have at least one eigenvalue λ with |λ| < 1. Let s represent the non-zero left eigenvec-
tor corresponding to λ. Note that due to biorthgonality of eigenvectors, s1T = 0. We 
use s(x) to refer to elements of s indexed by x ∈ X. Without loss of generality, assume 
s is scaled such that maxx |s(x)| = minx0 q (x0) (which is greater than 0, by assumption 
that q0 has full support).

We now define r0 as

r (x0) := q (x0) + s (x0)

Due to the scaling of s and because s1T = 0, r0 is a valid probability distribution.

We use the notation s (x1) :=
∑

x0
s (x0) p (x1|x0) and 

r (x1) :=
∑

x0
r (x0) p (x1|x0) = q (x1) + s (x1). We also use the notation C := suppr1. 

The fact that q0 has full support also means that C ⊆ suppq1.

https://doi.org/10.1088/1742-5468/aa7ee1
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The proof proceeds by contradiction. Assume that Wd(r0)−Wd(q0) = 0. Using equa-
tion (E.1) and due to properties of KL divergence, this means that for each x0 ∈ X and 
x1 ∈ C,

q (x0|x1) = r (x0|x1)

q (x0) p (x1|x0)

q (x1)
=

r (x0) p (x1|x0)

r (x1)

r (x1)

q (x1)
p (x1|x0) =

r (x0)

q (x0)
p (x1|x0)

q (x1) + s (x1)

q (x1)
p (x1|x0) =

q (x0) + s (x0)

q (x0)
p (x1|x0)

s (x1)

q (x1)
p (x1|x0) =

s (x0)

q (x0)
p (x1|x0)

s (x1) q (x0|x1) = s (x0) p (x1|x0)

Taking absolute value of both sides gives

|s (x1)| q (x0|x1) = |s (x0)| p (x1|x0)

Summing over x0 ∈ X and x1 ∈ C,∑
x1∈C

∑
x0∈X

|s (x1)| q (x0|x1) =
∑
x1∈C

∑
x0∈X

|s (x0)| p (x1|x0)

∑
x1∈X

|s (x1)| −
∑
x1 /∈C

|s (x1)| =
∑
x1∈X

∑
x0∈X

|s (x0)| p (x1|x0)

−
∑
x1 /∈C

∑
x0∈X

|s (x0)| p (x1|x0)

 (E.2)

Note that for all x1 /∈ C, r (x1) = 0, meaning that s (x1) = −q (x1). Thus,∑
x1 /∈C

|s (x1)| =
∑
x1 /∈C

q (x1)

Furthermore, for all x1 /∈ C, r (x1) =
∑

x0
r (x0) p (x1|x0) = 0. Thus, for all x0 ∈ X 

where p (x1|x0) > 0 for some x1 /∈ C, r (x0) = 0, meaning s (x0) = −q (x0). This allows 
us to rewrite the last term in equation (E.2) as∑

x1 /∈C

∑
x0∈X

|s (x0)| p (x1|x0)

=
∑
x1 /∈C

∑
x0:p(x1|x0)>0

|s (x0)| p (x1|x0)

=
∑
x1 /∈C

∑
x0:p(x1|x0)>0

q (x0) p (x1|x0)

=
∑
x1 /∈C

q (x1)
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Cancelling terms that equal 
∑

x1 /∈C q (x1) from both sides of equation (E.2), we rewrite∑
x1

|s (x1)| =
∑
x1

∑
x0

|s (x0)| p (x1|x0) =
∑
x0

|s (x0)| (E.3)

In matrix notation, equation (E.3) states that

‖sM‖1 = ‖s‖1 (E.4)

where ‖·‖1 indicates the vector �1 norm. However, by definition sM = λs. Hence,

‖sM‖1 = ‖λs‖1 = |λ| ‖s‖1 < ‖s‖1

meaning that equation (E.4) cannot be true and the original assumption 
Wd(r0)−Wd(q0) = 0 is incorrect. We have shown that for non-invertible maps, there 
always exists an r0 for which Wd(r0)−Wd(q0) > 0. □ 

References

  [1]  Touchette H and Lloyd S 2004 Physica A 331 140–72
  [2]  Sagawa T and Ueda M 2009 Phys. Rev. Lett. 102 250602
  [3]  Dillenschneider R and Lutz E 2010 Phys. Rev. Lett. 104 198903
  [4]  Sagawa T and Ueda M 2012 Phys. Rev. Lett. 109 180602
  [5]  Crooks G E 1999 Phys. Rev. E 60 2721
  [6]  Crooks G E 1998 J. Stat. Phys. 90 1481–7
  [7]  Chejne Janna F, Moukalled F and Gómez C A 2013 Int. J. Thermodyn. 16 97–101
  [8]  Jarzynski C 1997 Phys. Rev. Lett. 78 2690
  [9]  Esposito M and Van den Broeck C 2011 Europhys. Lett. 95 40004
 [10]  Esposito M and Van den Broeck C 2010 Phys. Rev. E 82 011143
 [11]  Parrondo J M, Horowitz J M and Sagawa T 2015 Nat. Phys. 11 131–9
 [12]  Pollard B S 2016 Open Syst. Inf. Dyn. 23 1650006
 [13]  Wiesner K, Gu M, Rieper E and Vedral V 2012 Proc. R. Soc. A 468 4058–66
 [14]  Still S, Sivak D A, Bell A J and Crooks G E 2012 Phys. Rev. Lett. 109 120604
 [15]  Prokopenko M, Lizier J T and Price D C 2013 Entropy 15 524–43
 [16]  Prokopenko M and Lizier J T 2014 Sci. Rep. 4 5394
 [17]  Dunkel J 2014 Nat. Phys. 10 409–10
 [18]  Roldán É, Martinez I A, Parrondo J M and Petrov D 2014 Nat. Phys. 10 457–461
 [19]  Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R and Lutz E 2012 Nature 483 187–9
 [20]  Hasegawa H H, Ishikawa J, Takara K and Driebe D 2010 Phys. Lett. A 374 1001–4
 [21]  Takara K, Hasegawa H H and Driebe D 2010 Phys. Lett. A 375 88–92
 [22]  Dener S and Lutz E 2012 arXiv:1201.3888
 [23]  Seifert U 2005 Phys. Rev. Lett. 95 040602
 [24]  Jarzynski C 2006 Phys. Rev. E 73 046105
 [25]  Seifert U 2012 Rep. Prog. Phys. 75 126001
 [26]  Cover T M and Thomas J A 2012 Elements of Information Theory (New York: Wiley)
 [27]  Mackay D 2003 Information Theory, Inference, and Learning Algorithms (Cambridge: Cambridge  

University Press)
 [28]  Schmiedl T and Seifert U 2007 Phys. Rev. Lett. 98 108301
 [29]  Sivak D A and Crooks G E 2012 Phys. Rev. Lett. 108 190602
 [30]  Aurell E, Gawędzki K, Mejía-Monasterio C, Mohayaee R and Muratore-Ginanneschi P 2012 J. Stat. Phys. 

147 487–505
 [31]  Funo K, Shitara T and Ueda M 2016 Phys. Rev. E 94 062112
 [32]  Mandal D and Jarzynski C 2012 Proc. Natl Acad. Sci. 109 11641–5
 [33]  Kawai R, Parrondo J M R and Van den Broeck C 2007 Phys. Rev. Lett. 98 080602
 [34]  Hatano T 1999 Phys. Rev. E 60 R5017

https://doi.org/10.1088/1742-5468/aa7ee1
https://doi.org/10.1016/j.physa.2003.09.007
https://doi.org/10.1016/j.physa.2003.09.007
https://doi.org/10.1016/j.physa.2003.09.007
https://doi.org/10.1103/PhysRevLett.102.250602
https://doi.org/10.1103/PhysRevLett.102.250602
https://doi.org/10.1103/PhysRevLett.104.198903
https://doi.org/10.1103/PhysRevLett.104.198903
https://doi.org/10.1103/PhysRevLett.109.180602
https://doi.org/10.1103/PhysRevLett.109.180602
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.5541/ijot.457
https://doi.org/10.5541/ijot.457
https://doi.org/10.5541/ijot.457
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1142/S1230161216500062
https://doi.org/10.1142/S1230161216500062
https://doi.org/10.1098/rspa.2012.0173
https://doi.org/10.1098/rspa.2012.0173
https://doi.org/10.1098/rspa.2012.0173
https://doi.org/10.1103/PhysRevLett.109.120604
https://doi.org/10.1103/PhysRevLett.109.120604
https://doi.org/10.3390/e15020524
https://doi.org/10.3390/e15020524
https://doi.org/10.3390/e15020524
https://doi.org/10.1038/srep05394
https://doi.org/10.1038/srep05394
https://doi.org/10.1038/nphys2958
https://doi.org/10.1038/nphys2958
https://doi.org/10.1038/nphys2958
https://doi.org/10.1038/nphys2940
https://doi.org/10.1038/nphys2940
https://doi.org/10.1038/nphys2940
https://doi.org/10.1038/nature10872
https://doi.org/10.1038/nature10872
https://doi.org/10.1038/nature10872
https://doi.org/10.1016/j.physleta.2009.12.042
https://doi.org/10.1016/j.physleta.2009.12.042
https://doi.org/10.1016/j.physleta.2009.12.042
https://doi.org/10.1016/j.physleta.2010.11.002
https://doi.org/10.1016/j.physleta.2010.11.002
https://doi.org/10.1016/j.physleta.2010.11.002
http://arxiv.org/abs/1201.3888
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevE.73.046105
https://doi.org/10.1103/PhysRevE.73.046105
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.1103/PhysRevE.94.062112
https://doi.org/10.1103/PhysRevE.94.062112
https://doi.org/10.1073/pnas.1204263109
https://doi.org/10.1073/pnas.1204263109
https://doi.org/10.1073/pnas.1204263109
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1103/PhysRevE.60.R5017
https://doi.org/10.1103/PhysRevE.60.R5017


Dependence of dissipation on the initial distribution over states

20https://doi.org/10.1088/1742-5468/aa7ee1

J. S
tat. M

ech. (2017) 083202

 [35]  Chernyak V Y, Chertkov M and Jarzynski C 2006 J. Stat. Mech. P08001
 [36]  Gomez-Marin A, Parrondo J and Van den Broeck C 2008 Europhys. Lett. 82 50002
 [37]  Parrondo J M, Van den Broeck C and Kawai R 2009 New J. Phys. 11 073008
 [38]  Dener S and Lutz E 2011 Phys. Rev. Lett. 107 1079–7114
 [39]  Maroney O 2009 Phys. Rev. E 79 031105
 [40]  Wolpert D H 2016 Entropy 18 138
 [41]  Wolpert D H 2016 Extending landauer’s bound from bit erasure to arbitrary computation (arXiv:1508.05319)
 [42]  Ahlswede R and Gács P 1976 Ann. Probab. 4 925–39
 [43]  Cohen J E, Iwasa Y, Rautu G, Beth Ruskai M, Seneta E and Zbaganu G 1993 Linear Algebra Appl. 

179 211–35
 [44]  Csiszar I and Körner J 2011 Information Theory: Coding Theorems for Discrete Memoryless Systems 

(Cambridge: Cambridge University Press)
 [45]  Sagawa T 2014 J. Stat. Mech. P03025
 [46]  Landauer R 1961 IBM J. Res. Dev. 5 183–91
 [47]  Bennett C H 1982 Int. J. Theor. Phys. 21 905–40
 [48]  Zurek W H 1989 Nature 341 119–24
 [49]  Zurek W H 1989 Phys. Rev. A 40 4731–51
 [50]  Bennett C H 2003 Stud. Hist. Phil. Sci. B 34 501–10
 [51]  Dener S and Jarzynski C 2013 Phys. Rev. X 3 041003
 [52]  Greven A, Keller G and Warnecke G 2003 Entropy (Princeton, NJ: Princeton University Press)
 [53]  Goldberg K 1966 J. Res. Natl Bur. Stand. B 70B 157–8

https://doi.org/10.1088/1742-5468/aa7ee1
https://doi.org/10.1088/1742-5468/2006/08/P08001
https://doi.org/10.1209/0295-5075/82/50002
https://doi.org/10.1209/0295-5075/82/50002
https://doi.org/10.1088/1367-2630/11/7/073008
https://doi.org/10.1088/1367-2630/11/7/073008
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevE.79.031105
https://doi.org/10.1103/PhysRevE.79.031105
https://doi.org/10.3390/e18040138
https://doi.org/10.3390/e18040138
http://arxiv.org/abs/1508.05319
https://doi.org/10.1214/aop/1176995937
https://doi.org/10.1214/aop/1176995937
https://doi.org/10.1214/aop/1176995937
https://doi.org/10.1016/0024-3795(93)90331-H
https://doi.org/10.1016/0024-3795(93)90331-H
https://doi.org/10.1016/0024-3795(93)90331-H
https://doi.org/10.1088/1742-5468/2014/03/P03025
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/BF02084158
https://doi.org/10.1007/BF02084158
https://doi.org/10.1007/BF02084158
https://doi.org/10.1038/341119a0
https://doi.org/10.1038/341119a0
https://doi.org/10.1038/341119a0
https://doi.org/10.1103/PhysRevA.40.4731
https://doi.org/10.1103/PhysRevA.40.4731
https://doi.org/10.1103/PhysRevA.40.4731
https://doi.org/10.1103/PhysRevX.3.041003
https://doi.org/10.1103/PhysRevX.3.041003
https://doi.org/10.6028/jres.070b.014
https://doi.org/10.6028/jres.070b.014
https://doi.org/10.6028/jres.070b.014

