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Mixture distributions arise in many parametric and non-parametric settings—for example, in
Gaussian mixture models and in non-parametric estimation. It is often necessary to compute the
entropy of a mixture, but, in most cases, this quantity has no closed-form expression, making some
form of approximation necessary. We propose a family of estimators based on a pairwise distance
function between mixture components, and show that this estimator class has many attractive
properties. For many distributions of interest, the proposed estimators are efficient to compute,
differentiable in the mixture parameters, and become exact when the mixture components are clus-
tered. We prove this family includes lower and upper bounds on the mixture entropy. The Chernoff
α-divergence gives a lower bound when chosen as the distance function, with the Bhattacharyya
distance providing the tightest lower bound for components that are symmetric and members of a
location family. The Kullback–Leibler divergence gives an upper bound when used as the distance
function. We provide closed-form expressions of these bounds for mixtures of Gaussians, and discuss
their applications to the estimation of mutual information. We then demonstrate that our bounds
are significantly tighter than well-known existing bounds using numeric simulations. This estimator
class is very useful in optimization problems involving maximization/minimization of entropy and
mutual information, such as MaxEnt and rate distortion problems.

Author’s note: The published version of this
manuscript (Kolchinsky and Tracey, Entropy 2017,
19(7), 361; doi:10.3390/e19070361) contains a mistake
in Section V. The mistake is corrected in this version of
the manuscript.

I. INTRODUCTION

A mixture distribution is a probability distribution
whose density function is a weighted sum of individual
densities. Mixture distributions are a common choice for
modeling probability distributions, in both parametric
settings, for example, learning a mixture of Gaussians
statistical model [1], and non-parametric settings, such
as kernel density estimation.

It is often necessary to compute the differential en-
tropy [2] of a random variable with a mixture distribu-
tion, which is a measure of the inherent uncertainty in
the outcome of the random variable. Entropy estima-
tion arises in image retrieval tasks [3], image alignment
and error correction [4], speech recognition [5, 6], anal-
ysis of debris spread in rocket launch failures [7], and
many other settings. Entropy also arises in optimization
contexts [4, 8–10], where it is minimized or maximized
under some constraints (e.g., MaxEnt problems). Fi-
nally, entropy also plays a central role in minimization
or maximization of mutual information, such as in prob-
lems related to rate distortion [11].

Unfortunately, in most cases, the entropy of a mixture
distribution has no known closed-form expression [12].
This is true even when the entropy of each component
distribution does have a known closed-form expression.
For instance, the entropy of a Gaussian has a well-known

form, while the entropy of a mixture of Gaussians does
not [13]. As a result, the problem of finding a tractable
and accurate estimate for mixture entropy has been de-
scribed as “a problem of considerable current interest and
practical significance” [14].

One way to approximate mixture entropy is with
Monte Carlo (MC) sampling. MC sampling provides an
unbiased estimate of the entropy, and this estimate can
become arbitrarily accurate by increasing the number of
MC samples. Unfortunately, MC sampling is very com-
putationally intensive, as, for each sample, the (log) prob-
ability of the sample location must be computed under
every component in the mixture. MC sampling typically
requires a large number of samples to estimate entropy,
especially in high-dimensions. Sampling is thus typically
impractical, especially for optimization problems where,
for every parameter change, a new entropy estimate is
required. Alternatively, it is possible to approximate en-
tropy using numerical integration, but this is also compu-
tationally expensive and limited to low-dimensional ap-
plications [15, 16].

Instead of Monte Carlo sampling or numerical inte-
gration, one may use an analytic estimator of mixture
entropy. Analytic estimators have estimation bias but
are much more computationally efficient. There are sev-
eral existing analytic estimators of entropy, discussed in-
depth below. To summarize, however, commonly-used
estimators have significant drawbacks: they have large
bias relative to the true entropy, and/or they are invari-
ant to the amount of “overlap” between mixture compo-
nents. For example, many estimators do not depend on
the locations of the means in a Gaussian mixture model.

In this paper, we introduce a novel family of estimators
for the mixture entropy. Each member of this family is
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defined via a pairwise-distance function between compo-
nent densities. The estimators in this family have several
attractive properties. They are computationally efficient,
as long as the pairwise-distance function and the entropy
of each component distribution are easy to compute. The
estimation bias of any member of this family is bounded
by a constant. The estimator is continuous and smooth
and is therefore useful for optimization problems. In ad-
dition, we show that when the Chernoff α-divergence
(i.e., a scaled Rényi divergence) is used as a pairwise-
distance function, the corresponding estimator is a lower-
bound on the mixture entropy. Furthermore, among all
the Chernoff α-divergences, the Bhattacharyya distance
(α = 0.5) provides the tightest lower bound when the
mixture components are symmetric and belong to a loca-
tion family (such as a mixture of Gaussians with equal co-
variances). We also show that when the Kullback–Leibler
[KL] divergence is used as a pairwise-distance function,
the corresponding estimator is an upper-bound on the
mixture entropy. Finally, our family of estimators can
compute the exact mixture entropy when the component
distributions are grouped into well-separated clusters, a
property not shared by other analytic estimators of en-
tropy. In particular, the bounds mentioned above con-
verge to the same value for well-separated clusters.

The paper is laid out as follows. We first review mix-
ture distributions and entropy estimation in Section II.
We then present the class of pairwise distance estima-
tors in Section III, prove bounds on the error of any es-
timator in this class, and show distance functions that
bound the entropy as discussed above. In Section IV,
we consider the special case of mixtures of Gaussians,
and give explicit expressions for lower and upper bounds
on the mixture entropy. When all the Gaussian com-
ponents have the same covariance matrix, we show that
these bounds have particularly simple expressions. In
Section V, we consider the closely related problem of es-
timating the mutual information between two random
variables, and show that our estimators can be directly
used to estimate and bound the mutual information. For
the Gaussian case, these can be used to bound the mu-
tual information across a type of Additive White Noise
Gaussian channel. Finally, in Section VI, we run nu-
merical experiments and compare the performance of our
lower and upper bounds relative to existing estimators.
We consider both mixtures of Gaussians and mixtures of
uniform distributions.

II. BACKGROUND AND DEFINITIONS

We consider the differential entropy of a continuous
random variable X, defined as

H(X) := −
∫
pX(x) ln pX(x) dx ,

where pX is a mixture distribution,

pX(x) =

N∑
i=1

cipi(x) ,

and where ci indicates the weight of component i (ci ≥ 0,∑
i ci = 1) and pi the probability density of component

i.
We can treat the set of component weights as the prob-

abilities of outcomes 1 . . . N of a discrete random variable
C, where Pr(C = i) = ci. Consider the mixed joint
distribution of the discrete random variable C and the
continuous random variable X,

pX,C(x, i) = pi(x)ci ,

and note the following identities for conditional and joint
entropy [17],

H (X,C) = H (X|C) +H (C) = H (C|X) +H (X) ,

where we useH for discrete and differential entropy inter-
changeably. Here, the conditional entropies are defined
as

H(X|C) =
∑
i

ciH(pi) ,

H(C|X) =

∫
pX,C(x, i) log

pX,C(x, i)

pX(x)
dx .

Using elementary results from information theory [2],
H(X) can be bounded from below by

H(X) ≥ H(X|C) , (1)

since conditioning can only decrease entropy. Similarly,
H(X) can be bounded from above by

H(X) ≤ H(X,C) = H(X|C) +H(C) , (2)

following from H(X) = H(X,C)−H(C|X) and the non-
negativity of the conditional discrete entropy H(C|X).
This upper bound on the mixture entropy was previously
proposed by Huber et al. [18].

It is easy to see that the bound in Equation (1) is
tight when all the components have the same distribu-
tion, since then H(pX) = H(pi) for all i. The bound in
Equation (2) becomes tight whenH(C|X) = 0, i.e., when
any sample from pX uniquely determines the component
identity C. This occurs when the different mixture com-
ponents have non-overlapping supports, pi(x) > 0 =⇒
pj(x) = 0 for all x and i 6= j. More generally, the bound
of Equation (2) becomes increasingly tight as the mixture
distributions move farther apart from one another.

In the case where the entropy of each component den-
sity, H(pi) for i = 1 . . . N , has a simple closed form ex-
pression, the bounds in Equations (1) and (2) can be
easily computed. However, neither bound depends on
the “overlap” between components. For instance, in a
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Gaussian mixture model, these bounds are invariant to
changes in the component means. The bounds are thus
unsuitable for many problems; for instance, in optimiza-
tion, one typically tunes parameters to adjust component
means, but the above entropy bounds remain the same
regardless of mean location.

There are two other estimators of the mixture entropy
that should be mentioned. The first estimator is based
on kernel density estimation [16, 19]. It estimates the
entropy using the mixture probability of the component
means, µi,

ĤKDE(X) := −
∑
i

ci ln
∑
j

cjpj(µi) . (3)

The second estimator is a lower bound that is de-
rived using Jensen’s inequality [2], −E [ln f (X)] ≥
− ln [E(f(X))], giving

H(X) := −
∫ ∑

i

cipi(x) ln
∑
j

cjpj(x) dx

≥ −
∑
i

ci ln
∑
j

cj

(∫
pi(x)pj(x) dx

)
=: ĤELK . (4)

In the literature, the term
∫
pi(x)pj(x) dx has been re-

ferred to as the “Cross Information Potential” [20, 21] and
the “Expected Likelihood Kernel” [22, 23] (ELK, we use
this second acronym to label this estimator). When the
component distributions are Gaussian, pi = N (µi,Σi),
the ELK has a simple closed-form expression,

ĤELK(X) = −
∑
i

ci ln
∑
j

cjqj,i(µi) , (5)

where each qj,i is a Gaussian defined as qj,i := N (µj ,Σi+
Σj). This lower bound was previously proposed for Gaus-
sian mixtures in [18] and in a more general context in [12].

Both ĤKDE, Equation (3), and ĤELK, Equation (5),
are computationally efficient, continuous and differen-
tiable, and depend on component overlap, making them
suitable for optimization. However, as will be shown via
numerical experiments (Section VI), they exhibit signif-
icant underestimation bias. At the same time, we will
show that for Gaussian mixtures with equal covariance,
ĤKDE is only an additive constant away from an estima-
tor in our proposed class.

III. ESTIMATORS BASED ON
PAIRWISE-DISTANCES

A. Overview

Let D(pi‖pj) be some (generalized) distance function
between probability densities pi and pj . Formally, we
assume that D is a premetric, meaning that it is non-
negative and D(pi‖pj) = 0 if pi = pj . We do not as-
sume that D is symmetric, nor that it obeys the trian-

gle inequality, nor that it is strictly greater than 0 when
pi 6= pj .

For any allowable distance function D, we propose the
following entropy estimator:

ĤD(X) := H(X|C)−
∑
i

ci ln
∑
j

cje
−D(pi‖pj) . (6)

This estimator can be efficiently computed if the
entropy of each component and D(pi‖pj) for all i, j
have simple closed-form expressions. There are many
distribution-distance function pairs that satisfy these
conditions (e.g., Kullback–Leibler divergence, Renyi di-
vergences, Bregman divergences, f-divergences, etc., for
Gaussian, uniform, exponential, etc.) [24–28].

It is straightforward to show that for any D, ĤD falls
between the bounds of Equations (1) and (2),

H(X|C) ≤ ĤD(X) ≤ H(X,C) . (7)

To do so, consider the “smallest” and “largest” allow-
able distance functions,

Dmin(pi‖pj) = 0

Dmax(pi‖pj) =

{
0, if pi = pj ,

∞, otherwise.
(8)

For any D and pi, pj , Dmin(pi‖pj) ≤ D(pi‖pj) ≤
Dmax(pi‖pj), thus

ĤDmin(X) ≤ ĤD(X) ≤ ĤDmax(X).

Plugging Dmin into Equation (6) (noting that
∑
j cj =

1) gives ĤDmin(X) = H(X|C), while plugging Dmax into
Equation (6) gives

ĤDmax = H (X|C)−
∑
i

ci ln
(
ci+

∑
j 6=i

cje
−Dmax(pi‖pj)

)
≤ H (X|C)−

∑
i

ci ln ci = H(X,C). (9)

These two inequalities yield Equation (7). The true
entropy, as shown in Section II, also obeys H (X|C) ≤
H (X) ≤ H (X,C). The magnitude of the bias of ĤD is
thus bounded by∣∣∣ĤD(X)−H(X)

∣∣∣ ≤ H (X,C)−H (X|C) = H(C) .

In the next two subsections, we improve upon the
bounds suggested in Equations (1) and (2), by examining
bounds induced by particular distance functions.
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B. Lower Bound

The “Chernoff α-divergence” [28, 29] for some real-
valued α is defined as

Cα(p‖q) := − ln

∫
pα(x)q1−α(x) dx . (10)

Note that Cα(p‖q) = (1 − α)Rα(p‖q), where Rα is
Rényi divergence of order α [30].

We show that for any α ∈ [0, 1], ĤCα(X) is a lower
bound on the entropy (for α /∈ [0, 1], Cα is not a valid
distance function (see Appendix A)). To do so, we make
use of a derivation from [31] and write,

H(X)

= H(X|C)−
∫ ∑

i

cipi(x) ln
pX(x)

pi(x)
dx

= H(X|C)−
∫ ∑

i

cipi(x) ln
pX(x)

pi (x)
α∑

j cjpj(x)
1−α dx

−
∫ ∑

i

cipi(x) ln

(∑
j cjpj(x)

1−α

pi(x)
1−α

)
dx

(a)

≥ H(X|C)−
∫ ∑

i

cipi(x) ln

(∑
j cjpj(x)

1−α

pi(x)
1−α

)
dx

(b)

≥ H(X|C)−
∑
i

ci ln

∫
pi(x)

α
∑
j

cjpj(x)
1−α

dx

= H(X|C)−
∑
i

ci ln
∑
j

cje
−Cα(pi‖pj) := ĤCα(X) .

(11)

The inequalities (a) and (b) follow from Jensen’s in-
equality. This inequality is used directly in (b), while in
(a) it follows from

−
∫ ∑

i

cipi(x) ln
pX(x)

pi (x)
α∑

j cjpj(x)
1−α dx

≥ − ln

∫ ∑
i

cipi(x)
pX(x)

pi (x)
α∑

j cjpj(x)
1−α dx

= − ln

∫ ∑
i

cipi(x)
1−α pX(x)∑

j cjpj(x)
1−α dx

= − ln

∫
pX(x) dx = 0.

Note that Jensen’s inequality is used in the derivations
of both this lower bound as well as the lower bound ĤELK
in Equation (4). However, the inequality is applied dif-
ferently in the two cases, and, as will be demonstrated in
Section VI, the estimators have different performance.

We have shown that using Cα as a distance func-
tion gives a lower bound on the mixture entropy for any
α ∈ [0, 1]. For a general mixture distribution, one could
optimize over the value of α to find the tightest lower

bound. However, we can show that the tightest bound is
achieved for α = 0.5 in the special case when all of the
mixture components pi are symmetric and come from a
location family,

pi(x) = b(x− µi) = b(µi − x) .

Examples of this situation include mixtures of Gaus-
sians with the same covariance (“homoscedastic” mix-
tures), multivariate t-distributions with the same co-
variance, location-shifted bounded uniform distributions,
most kernels used in kernel density estimation, etc. It
does not apply to skewed distributions, such as as the
skew-normal distribution [12].

To show that α = 0.5 is optimal, first define the Cher-
noff α-coefficient as

cα(pi‖pj) :=

∫
pi(x)

α
pj(x)

1−α
dx .

We show that for any pair pi, pj of symmetric distri-
butions from a location family, cα(pi‖pj) is minimized
by α = 0.5. This means that all pairwise distances
Cα(pi‖pj) ≡ − ln cα(pi‖pj) are maximized by α = 0.5,
and, therefore, the entropy estimatorHCα (Equation (6))
is maximized by α = 0.5.

First, define a change of variables

y := µi + µj − x ,

which gives x − µi = µj − y and x − µj = µi − y. This
allows us to write the Chernoff α-coefficient as

cα(pi‖pj) =

∫
pi(x)

α
pj(x)

1−α
dx

=

∫
b(x− µi)αb(x− µj)1−αdx

(a)
=

∫
b(µj − y)

α
b(µi − y)

1−α
dy

(b)
=

∫
b(y − µj)αb(y − µi)1−αdy

=c1−α(pi‖pj),

where, in (a), we have substituted variables, and in (b) we
used the assumption that b(x) = b(−x). Since we have
shown that cα(pi‖pj) = c1−α(pi‖pj), cα is symmetric in
α about α = 0.5. In Appendix A, we show that cα(p‖q)
is everywhere convex in α. Together, this means that
cα(pi‖pj) must achieve a minimum value at α = 0.5.

The Chernoff α-coefficient for α = 0.5 is known as the
Bhattacharyya coefficient, with the corresponding Bhat-
tacharyya distance [32] defined as

BD(p‖q) := − ln

∫ √
p(x)q(x)dx = C0.5(p‖q).

Since any Chernoff α-divergence is a lower bound
for the entropy, we write the particular case of
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Bhattacharyya-distance lower bound as

H(X) ≥ ĤBD(X) := H(X|C)−
∑
i

ci ln
∑
j

cje
−BD(pi‖pj) .

(12)

C. Upper Bound

The Kullback–Leibler [KL] divergence [2] is defined as

KL(p‖q) :=

∫
p(x) ln

p(x)

q(x)
dx .

Using KL divergence as the pairwise distance provides an
upper bound on the mixture entropy. We show this as
follows:

H(X) = −
∑
i

ciEpi

ln
∑
j

cjpj(X)


(a)

≤ −
∑
i

ci ln
∑
j

cje
Epi [ln pj(X)]

= −
∑
i

ci ln
∑
j

cje
−H(pi‖pj)

=
∑
i

ciH(pi)−
∑
i

ci ln
∑
j

cje
−KL(pi‖pj),

where Epi indicates expectation when X is distributed
according to pi, H(·‖·) indicates the cross-entropy func-
tion, and we employ the identity H(pi‖pj) = H(pi) +
KL(pi‖pj). The inequality in step (a) uses a variational
lower bound on the expectation of a log-sum [5, 33],

E

ln
∑
j

Zj

 ≥ ln
∑
j

eE[lnZj ] .

Combining yields the upper bound

H(X) ≤ ĤKL := H(X|C)−
∑
i

ci ln
∑
j

cje
−KL(pi‖pj) .

(13)

D. Exact Estimation in the “Clustered” Case

In the previous sections, we derived lower and upper
bounds on the mixture entropy, using estimators based
on Chernoff α-divergence and KL divergence, respec-
tively.

There are situations in which the lower and upper
bounds become similar. Consider a pair of compo-
nent distributions, pi and pj . By applying Jensen’s in-
equality to Equation (10), we can derive the inequality
Cα(pi‖pj) ≤ αKL(pi‖pj). There are two cases in which a
pair of components contributes similarly to the lower and

upper bounds. The first case is when Cα(pi‖pj) is very
large, meaning that the KL is also very large. By Equa-
tion (6), distances enter into our estimators as e−D(pi‖pj),
and, in this case, e−KL(pi‖pj) ≈ e−Cα(pi‖pj) ≈ 0. In
the second case, KL(pi‖pj) ≈ 0, meaning that Cα(pi‖pj)
must also be near zero, and, in this case, e−KL(pi‖pj) ≈
e−Cα(pi‖pj) ≈ 1. Thus, the lower and upper bounds be-
come similar when all pairs of components are either very
close together or very far apart.

In this section, we analyze this special case. Specif-
ically, we consider the situation when mixture compo-
nents are “clustered”, meaning that there is a grouping
of component distributions such that distributions in the
same group are approximately the same and distributions
assigned to different groups are very different from one
another. We show that in this case our lower and up-
per bounds become equal and our pairwise-distance esti-
mate of the entropy is tight. Though this situation may
seem like an edge case, clustered distributions do arise in
mixture estimation, e.g., when there are repeated data
points, or as solutions to information-theoretic optimiza-
tion problems [11]. Note that the number of groups is ar-
bitrary, and therefore this situation includes the extreme
cases of a single group (all component distributions are
nearly the same) as well as N different groups (all com-
ponent distributions are very different).

Formally, let the function g(i) indicate the group of
component i. We define that the components are “clus-
tered” with respect to grouping g iff KL(pi‖pj) ≤ κ when-
ever g(i) = g(j) for some small κ, and BD(pi‖pj) ≥ β
whenever g(i) 6= g(j) some large β. We use the notation
pG(k) =

∑
i δg(i),kci to indicate the sum of the weights

of the components in group k, where δij indicates the
Kronecker delta function. For technical reasons, below
we only consider Cα where α is strictly greater than 0.

We show that when κ is small and β is large, both ĤCα

for α ∈ (0, 1] and ĤKL approach

H(X|C)−
∑
k

pG(k) ln pG(k) .

Since one is a lower bound and one is an upper bound
on the true entropy, the estimators become exact as they
converge in value.

Recall that BD(p‖q) = C0.5(p‖q). For α ∈ (0, 1],
α−1Cα(p‖q) is a monotonically decreasing function for
α ∈ (0, 1] [34], meaning that Cα ≥ 2αBD(p‖q) for
α ∈ (0, 0.5]. In addition, (1 − α)−1Cα(p‖q) is a mono-
tonically increasing function for α > 0 [34], thus Cα ≥
2(1 − α)BD(p‖q) for α ∈ [0.5, 1]. Using the assumption
that BD(pi‖pj) ≥ β and combining gives the bound

Cα(p‖q) ≥ (1− |1− 2α|)β

for α ∈ (0, 1], leading to

ĤCα(X) := H(X|C)−
∑
i

ci ln
∑
j

cje
−Cα(pi‖pj)
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≥ H(X|C)−
∑
i

ci ln
[∑

j

δg(i),g(j)cj+∑
j

(
1− δg(i),g(j)

)
cje
−Cα(pi‖pj)

]
≥ H(X|C)−

∑
k

pG(k) ln
[
pG(k)+

(1− pG(k))e−(1−|1−2α|)β
]
.

In the second line, for the summation over i, j
in the same group, we’ve used the non-negativity of
Cα(pi‖pj) ≥ 0.

For the upper bound ĤKL, we use that KL(pi‖pj) ≤
κ for i and j in the same group, and otherwise
e−KL(pi‖pj) ≥ 0. This gives the bound

ĤKL(X) := H(X|C)−
∑
i

ci ln
∑
j

cje
−KL(pi‖pj)

≤ H(X|C)−
∑
i

ci ln
[∑

j

δg(i),g(j)cje
−κ+

∑
j

(
1− δg(i),g(j)

)
cje
−KL(pi‖pj)

]
≤ H(X|C)−

∑
k

pG(k) ln pG(k)e−κ .

The difference between the bounds is bounded by

ĤKL(X)− ĤCα(X)

≤ κ+
∑
k

pG(k) ln

[
1 +

(1− pG(k))e−(1−|1−2α|)β

pG(k)

]

≤ κ+
∑
k

pG(k)
(1− pG(k))e−(1−|1−2α|)β

pG(k)

= κ+ (|G| − 1) e−(1−|1−2α|)β ,

where |G| is the number of groups. Thus, the difference
decreases at least linearly in κ and exponentially in β.
This shows that, in the clustered case, when κ ≈ 0 and β
is very large, our lower and upper bounds become exact.

It also shows that any distance measure bounded be-
tween BD and KL also gives an exact estimate of entropy
in the clustered case. Furthermore, the idea behind this
proof can be extended to estimators induced by other
bounding distances, beyond BD and KL, so as to show
that a particular estimator converges to an exact en-
tropy estimate in the clustered case. Note, however, that,
for some distribution-distance pairs, the components will
never be considered as “clustered”; e.g., the α-Chernoff
distance for α = 0 between any two Gaussians is 0, and
so a Gaussian mixture distribution will never be consid-
ered clustered according to this distance.

Finally, in the perfectly clustered case, we can show
that our lower bound, ĤBD, is at least as good as the
Expected Likelihood Kernel lower bound, ĤELK, as de-
fined in Equation (4). See Appendix B for details.

IV. GAUSSIAN MIXTURES

Gaussians are very frequently used as components
in mixture distributions. Our family of estimators is
well-suited to estimating the entropies of Gaussian mix-
tures, since the entropy of a d-dimensional Gaussian
pi = N (µi,Σi) has a simple closed-form expression,

H (pi) =
1

2
[ln |Σi|+ d ln 2π + d] , (14)

and because there are many distance functions be-
tween Gaussians with closed-form expressions (KL diver-
gence, the Chernoff α-divergences [35], 2-Wasserstein dis-
tance [36, 37], etc.). In this section, we consider Gaussian
mixtures and state explicit expression for the lower and
upper bounds on the mixture entropy derived in the pre-
vious section. We also consider these bounds in the spe-
cial case where all Gaussian components have the same
covariance matrix (homoscedastic mixtures).

We first consider the lower bound, ĤCα , based on the
Chernoff α-divergence distance function. For two multi-
variate Gaussians p1 = N (µ1,Σ1) and p2 = N (µ2,Σ2),
this distance is defined as [35]:

Cα(p1‖p2) =

(1− α)α

2
(µ1 − µ2)T ((1− α)Σ1 + αΣ2)

−1
(µ1 − µ2)+

1

2
ln

(
|(1− α)Σ1 + αΣ2|
|Σ1|1−α |Σ2|α

)
. (15)

(As a warning, note that most sources show erroneous
expressions for the Chernoff and/or Rényi α-divergence
between two multivariate Gaussians, including [27, 29,
38–40], and even a late draft of this manuscript.)

For the upper bound ĤKL, the KL divergence between
two multivariate Gaussians p1 ∼ N (µ1,Σ1) and p2 ∼
N (µ2,Σ2) is

KL(p1‖p2) =
1

2

[
ln |Σ2| − ln |Σ1|+

(µ1 − µ2)
T

Σ−12 (µ1 − µ2) + tr
(
Σ−12 Σ1

)
− d
]
. (16)

The appropriate lower and upper bounds are found by
plugging in Equations (15) and (16) into Equation (6).

These bounds have simple forms when all of the mix-
ture components have equal covariance matrices, i.e.,
Σi = Σ for all i. First, define a transformation in which
each Gaussian component pj is mapped to a different
Gaussian p̃j,α, which has the same mean but where the
covariance matrix is rescaled by 1

α(1−α) ,

pj := N (µj ,Σ) 7→ p̃j,α := N
(
µj ,

1

α(1− α)
Σ

)
.

Then, the lower bound of Equation (11) can be written
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as

ĤCα =
d

2
+
d

2
ln (α(1− α))−

∑
i

ci ln
∑
j

cj p̃j,α(µi) .

This is derived by combining the expressions for Cα,
Equation (15), the entropy of a Gaussian, Equation (14),
and the Gaussian density function. For a homoscedastic
mixture, the tightest lower bound among the Chernoff
α-divergences is given by α = 0.5, corresponding to the
Bhattacharyya distance,

ĤBD =
d

2
+
d

2
ln

1

4
−
∑
i

ci ln
∑
j

cj p̃j,0.5(µi) .

(This is derived above in Section III B.)

For the upper bound, when all Gaussians have the
same covariance matrix, we again combine the expres-
sions for KL, Equation (16), the entropy of a Gaussian,
Equation (14), and the Gaussian density function to give

ĤKL(X) =
d

2
−
∑
i

ci ln
∑
j

cjpj(µi) .

Note that this is exactly the expression for the kernel
density estimator ĤKDE (Equation (3)), plus a dimen-
sional correction. Thus, surprisingly ĤKDE is a reason-
able entropy estimator for homoscedastic Gaussian mix-
tures, since it is only an additive constant away from KL-
distance based estimator ĤKL (which has various bene-
ficial properties, as described above). This may explain
why ĤKDE has been used effectively in optimization con-
texts [4, 8–10], where the additive constant is often irrel-
evant, despite lacking a principled justification in terms
of being a a bound on entropy.

V. ESTIMATING MUTUAL INFORMATION

It is often of interest, for example in rate distortion
problems and related problems [11], to calculate the mu-
tual information across a communication channel,

MI(X;U) = H(X)−H(X|U),

where U is the distribution of signals sent across the chan-
nel, and X is the distribution of signals received on the
other end of the channel. As with mixture distributions,
it is often easy to compute H(X|U), the entropy of the
received signal given the sent signal (i.e., the distribution
of noise on the channel). The marginal entropy of the re-
ceived signals, H(X), on the other hand, is often difficult
to compute.

In some cases, the distribution over sent signals U may

be well approximated by mixture of N components,

pU (u) =

N∑
i=1

cipi(u) .

In that case, the distribution over received signals X can
also be written as a mixture of N components,

pX(x) =

∫
pX|U (x|u)

(
N∑
i=1

cipi(u)

)
du

=

N∑
i=1

ci

(∫
pX|U (x|u)pi(u) du

)
=

N∑
i=1

ciqi(x) ,

where pX|U is the conditional probability distribution
of the channel, and where we have defined qi(x) :=∫
pX|U (x|u)pi(u) du as the ith component of the mixture

distribution over X.
In situations where the components qi have closed-

form expressions for entropy and divergence (e.g., when
pi are Gaussians and the channel noise is Gaussian and
homoscedastic, the qi will themselves be Gaussians, as
discussed below), we can provide lower and upper bounds
on the mutual informationMI(X;U) by boundingH(X)
using our pairwise distance estimators. In particular, we
have the lower bound

MI(X;U) = H(X)−H(X|U)

≥ −
∑
i

ci ln
∑
j

cje
−Cα(qi‖qj)+H(X|C)−H(X|U) ,

(17)

and the upper bound,

MI(X;U) = H(X)−H(X|U)

≤ −
∑
i

ci ln
∑
j

cje
−KL(qi‖qj)+H(X|C)−H(X|U) .

(18)

We remind the readers thatH(X|C) =
∑
i ciH(qi) repre-

sents the average entropy of the components of X, while
H(X|U) represents the conditional entropy of pX|U , the
channel from U to X.

As a practical example, consider a scenario in which U
is a random variable representing outside temperature on
any particular day. This temperature is measured with
a thermometer with homoscedastic Gaussian measure-
ment noise (the “Additive White Noise Gaussian chan-
nel”). This gives our measurement distribution

X = U +N (0,Σ′) .

If the actual temperature distribution is distributed as
a mixture of N Gaussians, each one having mixture
weight ci, mean µi, and covariance matrix Σi, then X
will also be distributed as a mixture of N Gaussians,
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each with weight ci, mean µi, and covariance matrix
Σ′i := Σi + Σ′. Combining our estimators of the en-
tropy of the mixture X with closed-form expressions
for H(X|C) (the weighted average of the entropies of
{N (µi,Σi + Σ′)}i=1..N ) and H(X|U) (the entropy of
N (0,Σ′)) gives lower and upper bounds on the mutual
information between actual temperature, U , and ther-
mometer measurements, X.

VI. NUMERICAL RESULTS

In this section, we run numerical experiments and com-
pare estimators of mixture entropy under a variety of
conditions. We consider two different types of mixtures,
mixtures of Gaussians and mixtures of uniform distribu-
tions, for a variety of parameter values. We evaluate the
following estimators:

1. The true entropy, H(X), as estimated by a Monte
Carlo sampling of the mixture model. Two thou-
sand samples were used for each MC estimate for
the mixtures of Gaussians, and 5000 samples were
used for the mixtures of uniform distributions.

2. Our proposed upper-bound, based on the KL di-
vergence, ĤKL (Equation (13))

3. Our proposed lower-bound, based on the Bhat-
tacharyya distance, ĤBD (Equation (12))

4. The kernel density estimate based on the compo-
nent means, ĤKDE (Equation (3))

5. The lower bound based on the “Expected Likeli-
hood Kernel”, ĤELK (Equation (4))

6. The lower bound based on the conditional entropy,
H(X|C) (Equation (1))

7. The upper bound based on the joint entropy,
H(X,C) (Equation (2)).

We show the values of the estimators 1–5 as line plots,
while the region between the conditional (6) and joint
entropy (7) is shown in shaded green. The code for these
figures can be found at [41], and uses the Gonum numeric
library [42].

A. Mixture of Gaussians

In the first experiment, we evaluate the estimators on
a mixture of randomly placed Gaussians, and look at
their behavior as the distance between the means of the
Gaussians increases. The mixture is composed of 100
10-dimensional Gaussians, each Gaussian distributed as
pi = N

(
µi, I(10)

)
, where I(d) indicates the d × d iden-

tity matrix. Means are sampled from µi ∼ N (0, σI(10)).
Figure 1A depicts the change in estimated entropy as
the means grow farther apart, in particular a function

of ln(σ). We see that our proposed bounds are closer
to the true entropy than the other estimators over the
whole range of σ values, and in the extremes, our bounds
approach the exact value of the true entropy. This is as
expected, since as σ → 0 all of the Gaussian mixture
components become identical, and as σ → ∞ all of the
Gaussian components grow very far apart, approaching
the case where each Gaussian is in its own “cluster”. The
ELK lower bound is a strictly worse estimate than ĤBD,
in this experiment. As expected, the KDE estimator dif-
fers by exactly d/2 from the KL estimator.

In the second experiment, we evaluate the entropy es-
timators as the covariance matrices change from less to
more similar. We again generate 100 10-dimensional
Gaussians. Each Gaussian is distributed as pi =
N (µi,Σi), where now µi ∼ N (0, I(10)) and Σi ∼
W( 1

10+nI(10), n), where W(V , n) is a Wishart distribu-
tion with scale-matrix V and n degrees of freedom. Fig-
ure 1B compares the the estimators with the true entropy
as a function of ln(n). When n is small, the Wishart
distribution is broad and the covariance matrices differ
significantly from one another, while as n → ∞, all the
covariance matrices become close to the identity I(10).
Thus, for small n, we essentially recover a “clustered”
case, in which every component is in its own cluster and
our lower and upper bounds give highly accurate esti-
mates. For large n, we converge to the σ = 1 case of the
first experiment.

In the third experiment, we again generate a mixture of
100 10-dimensional Gaussians. Now, however, the Gaus-
sians are grouped into five “clusters”, with each Gaus-
sian component randomly assigned to one of the clus-
ters. We use g(i) ∈ {1 . . . 5} to indicate the group of
each Gaussian’s component i ∈ {1 . . . 100}, and each of
the 100 Gaussians is distributed as pi = N (µ̃g(i), I(10)).
The cluster centers µ̃k for k ∈ {1 . . . 5} are drawn from
N (0, σI(10)). The results are depicted in Figure 1C as a
function of ln(σ). In the first experiment, we saw that the
joint entropyH(X,C) became an increasingly better esti-
mator as the Gaussians grew increasingly far apart. Here,
however, we see that there is a significant difference be-
tween H(X,C) and the true entropy, even as the groups
become increasingly separated. Our proposed bounds,
on the other hand, provide accurate estimates of the en-
tropy across the entire parameter sweep. As expected,
they become exact in the limit when all clusters are at
the same location, as well as when all clusters are very
far apart from each other.

Finally, we evaluate the entropy estimators while
changing the dimension of the Gaussian components.
We again generate 100 Gaussian components, each dis-
tributed as pi = N (µi, I(d)), with µi ∼ N (0, σI(d)). We
vary the dimensionality d from 1 to 60. The results are
shown in Figure 1D. First, we see that when d = 1, the
KDE estimator and the KL-divergence based estimator
give a very similar prediction (differing only by 0.5), but
as the dimension increases, the two estimates diverge at
a rate of d/2. Similarly, ĤELK grows increasingly less



9

Ln(Mean Spread)
-2 -1 0 1

E
nt

ro
py

 (
na

ts
)

9

12

15

18

A

Ln(Covariance Similarity)
0 2 4 6

E
nt

ro
py

 (
na

ts
)

9

12

15

18

B

Ln(Cluster Spread)
-2 -1 0

E
nt

ro
py

 (
na

ts
)

9

12

15

18

C

Dimension
8 16 24

E
nt

ro
py

 (
na

ts
)

0

10

20

30

40 Monte Carlo
Pair Dist: KL
Pair Dist: Bhat.
KDE
Exp. Lik. Ker.
[H(X|C), H(X,C)]

D

FIG. 1: Entropy estimates for a mixture of a 100 Gaussians. In each plot, the vertical axis shows the entropy of the
distribution, and the horizontal axis changes a feature of the components: (A) the distance between means is
increased; (B) the component covariances become more similar (at the right side of the plot, all Gaussians have
covariance matrices approximately equal to the identity matrix; (C) the components are grouped into five “clusters”,
and the distance between the locations of the clusters is increased; (D) the dimension is increased.

accurate as the dimension increases. Our proposed lower
and upper bounds provide good estimates of the mixture
entropy across the whole sweep across dimensions.

As previously mentioned, our lower and upper bounds
tend to perform best at the “extremes” and worse in the
intermediate regimes. In particular, in Figures 1A,C,D,
the distances between component means increase from
left to right. On the left hand side of these figures, all
of the component means are close and the component
distributions overlap, as evidenced by the fact that the
mixture entropy is ≈ H(X|C), i.e., I(X;C) ≈ 0. In
this regime, when there is essentially a single “cluster”,
and our bounds become tight (see Section IIID). On the
right hand side of these figures, the components’ means
are all far apart from each other, and the mixture entropy
≈ H(X,C), i.e., I(X;C) ≈ H(C) (in Figure 1C, it is
the five clusters that become far apart, and the mixture
entropy ≈ H(X|C)+ln 5). In this regime where there are
many well-separated clusters, our bounds again become
tight. In between these two extremes, however, there is
no clear clustering of the mixture components, and the
entropy bounds are not as tight.

As noted in the previous paragraph, the extremes in

three out of the four subfigures approach the perfectly
clustered case. In this situation, we show in Appendix
B that the BD-based estimator is a better bound on the
true entropy than the Expected Likelihood Kernel esti-
mator. We see confirmation of this in the experimental
results, where ĤELK performs worse than the pairwise-
distance based estimators.

B. Mixture of Uniforms

In the second set of experiments, we consider a mix-
ture of uniform distributions. Unlike Gaussians, uniform
distributions are bounded within a hyper-rectangle and
do not have full support over the domain. In particular,
a uniform distribution p = U(a, b) over d dimensions is
defined as

p(x) ∝

{
1, if xi ∈ [ai, bi] ∀i = 1 . . . d,

0, otherwise,
.

where x, a, and b are d-dimensional vectors, and the sub-
script xi refers to value of x on dimension i. Note that
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FIG. 2: Entropy estimates for a mixture of a 100 uniform components. In each plot, the vertical axis shows the
entropy of the distribution, and the horizontal axis changes a feature of the components: (A) the distance between
means is increased; (B) the component sizes become more similar (at the right side of the plot, all components have
approximately the same size); (C) the components are grouped into five “clusters”, and the distance between these
clusters is increased; (D) the dimension is increased.

when pX is a mixture of uniforms, there can be signifi-
cant regions where pX(x) > 0, but pi(x) = 0 for some
i.

Here, we list the formulae for pairwise distance mea-
sure between uniform distributions. In the following,
we use Vi :=

∫
x

1{pi(x) > 0}dx to indicate the “vol-
ume” of distribution pi. Uniform components have a
constant p(x) over their support, and so pi(x) = 1/Vi
for all x where pi(x) > 0. Similarly, we use Vi∩j as
the “volume of overlap” between pi and pj , i.e., the vol-
ume of the intersection of the support of pi and pj ,
Vi∩j :=

∫
x

1{pi(x) > 0}1{pj(x) > 0}dx. The distance
measures between uniforms are then

H(pi) = lnVi,

KL(pi‖pj) =

{
ln(Vj/Vi), supp pi ⊆ supp pj ,
∞, otherwise,

BD(pi||pj) = 0.5 lnVi + 0.5 lnVj − lnVi∩j , (19)

ĤELK = −
∑
i

ci ln
∑
j

cj
Vi∩j
ViVj

. (20)

Like the Gaussian case, we run four different compu-
tational experiments and compare the mixture entropy
estimates to the true entropy, as determined by Monte
Carlo sampling.

In the first experiment, the mixture consists of 100
10-dimensional uniform components, with pi = U(µi −
1(10), µi + 1(10)) , and µi ∼ N (0, σI(10)), where 1(d)

refers to a d-dimensional vector of 1s. Figure 2A de-
picts the change in entropy as a function of ln(σ). For
very small σ, the distributions are almost entirely over-
lapping, while for large σ they tend very far apart. As
expected, the entropy increases with σ. Here, we see
that the prediction of ĤKL is identical to H(X,C), which
arises because KL(pi‖pj) is infinite whenever the support
of pi is not entirely contained in the support of pj . Uni-
form components with equal size and non-equal means
must have some region of non-overlap, and so the KL is
infinite between all pairs of components, thus KL is ef-
fectively Dmax (Equation (8)). In contrast, we see that
ĤBD estimates the true entropy quite well. This example
demonstrates that getting an accurate estimate of mix-
ture entropy may require selecting a distance function
that works will with the component distributions. Fi-
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nally, it turns out that, for uniform components of equal
size, ĤELK = ĤBD. This can be seen by combining Equa-
tions (6) and (19), and comparing to Equation (20) (note
that Vi = Vj when the components have equal size).

In the second experiment, we adjust the variance in
the size of the uniform components. We again use 100
10-dimensional components, pi = U(µi − γi1(10), µi +
γi1(10)), where µi ∼ N (0, I(10)), and γi ∼ Γ(1+σ, 1+σ),
where Γ(α, β) is the Gamma distribution with shape pa-
rameter α and rate parameter β. Figure 2B shows the
change in entropy estimates as a function of ln(σ). When
σ is small, the sizes have significant spread, while as σ
grows the distributions become close to equally sized. We
again see that ĤBD is a good estimator of entropy, out-
performing all of the other estimators. Generally, not all
supports will be non-overlapping, so ĤKL will not neces-
sarily be equal to H(X,C), though we find the two to be
numerically quite close. In this experiment, we find that
the lower and upper bounds specified by ĤBD and ĤKL
provide a tight estimate of the true entropy.

In the third experiment, we again consider a clustered
mixture, and evaluate the entropy estimators as these
clusters grow apart. Here, there are 100 components with
pi = U(µ̃g(i) − 1(10), µ̃g(i) + 1(10)), where g(i) ∈ {1 . . . 5}
is the randomly assigned cluster identity of component
i. The cluster centers µ̃k for k ∈ {1 . . . 5} are generated
according to N (0, σI(10)). Figure 2C shows the change in
entropy as the clusters locations move apart. Note that,
in this case, the upper bound ĤKL significantly outper-
formsH(X,C), unlike in the first and second experiment,
because in this experiment, components in the same clus-
ter have perfect overlap. We again see that ĤBD provides
a relatively accurate lower bound for the true entropy.

In the final experiment, the dimension of the compo-
nents is varied. There are again 100 components, with
pi = U(µi − 1(d), µi + 1(d)) , and µi ∼ N (0, σI(d)). Fig-
ure 2D shows the change in entropy as the dimension
increases from d = 1 to d = 16. Interestingly, in the
low-dimensional case, H(X|C) is a very close estimate
for the true entropy, while in the high-dimensional case,
the entropy becomes very close to H(X,C). This is be-
cause in higher dimensions, there is more ‘space’ for the
components to be far from each other. As in the first
experiment, ĤKLis equal to H(X,C). We again observe
that ĤBD provides a tight lower bound on the mixture
entropy, regardless of dimension.

VII. DISCUSSION

We have presented a new class of estimators for the
entropy of a mixture distribution. We have shown that
any estimator in this class has a bounded estimation
bias, and that this class includes useful lower and upper
bounds on the entropy of a mixture. Finally, we show
that these bounds become exact when mixture compo-
nents are grouped into well-separated clusters.

Our derivation of the bounds make use of some exist-

ing results [5, 31]. However, to our knowledge, these re-
sults have not been previously used to estimate mixture
entropies. Furthermore, they have not been compared
numerically or analytically to better-known bounds.

We evaluated these estimators using numerical simu-
lations of mixtures of Gaussians as well as mixtures of
bounded (hypercube) uniform distributions. Our results
demonstrate that our estimators perform much better
than existing well-known estimators.

This estimator class can be especially useful for opti-
mization problems that involve minimization of entropy
or mutual information. If the distance function used in
the pairwise estimator class is continuous and smooth
in the parameters of the mixture components, then the
entropy estimate is also continuous and smooth. This
permits our estimators to be used within gradient-based
optimization techniques, for example gradient descent, as
often done in machine learning problems.

In fact, we have used our upper bound to implement
a non-parametric, nonlinear version of the “Information
Bottleneck” [43]. Specifically, we minimized an upper
bound on the mutual information between input and hid-
den layer in a neural networks [11]. We found that the
optimal distributions were often clustered (Section IIID).
That work demonstrated practically the value of having
an accurate, differentiable upper bound on mixture en-
tropy that performs well in the clustered regime.

Note that we have not proved that the bounds derived
here are the best possible. Identifying better bounds, or
proving that our results are optimal within some class of
bounds, remains for future work.
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Appendix A: Chernoff α-Divergence Is Not a
Distance Function for α /∈ [0, 1]

For any pair of densities p and q, consider the Chernoff
α-divergence

Cα(p‖q) := − ln

∫
pα(x)q1−α(x) dx = − ln cα(p‖q),

where the quantity cα is called the Chernoff α-coefficient
[29]. Taking the second derivative of cα with respect to
α gives

d2

dα2
cα(p‖q) =

∫
pα(x)q1−α(x)

(
ln
p(x)

q(x)

)2

dx.

Observe that this quantity is everywhere positive,
meaning that cα(p‖q) is convex everywhere. For simplic-
ity, consider the case p 6= q, in which case this function is
strictly convex. In addition, observe that for any p and
q, cα(p‖q) = 1 when α = 0 and α = 1. If cα(p‖q) is
strictly convex in α, this must mean that cα(p‖q) > 1
for α /∈ [0, 1]. This in turn implies that the Chernoff α-
divergence Cα is strictly negative for α /∈ [0, 1]. Thus, Cα
is not a valid distance function for α /∈ [0, 1], as defined
in Section III.

Appendix B: For Clustered Mixtures, ĤBD ≥ ĤELK

Assume a mixture with perfect clustering (Section
IIID). Specifically, we assume that if g(i) = g(j), then

pi(x) = pj(x), and if g(i) 6= g(j) then both e−Cα(pi||pj) ≈
0 and

∫
pi(x)pj(x)dx ≈ 0.

In this case, our lower bound ĤBD is at least as good
as ĤELK. Specifically, ĤELK becomes

ĤELK = −
∑
i

ci ln
∑
j

cj

∫
pi(x)pj(x)dx

= −
∑
i

ci ln
∑
j

cjδg(i),g(j)

∫
pi(x)2dx

= −
∑
k

pG(k) ln
∑
k

pG(k)

∫
pk(x)2dx ,

where pk(x) is shorthand for the density of any compo-
nent in cluster k (remember that all components in the
same cluster have equal density). ĤCα becomes

ĤCα = H(X|C)−
∑
i

ci ln
∑
j

cje
−Cα(pi||pj)

= −
∑
i

ci

∫
pi(x) ln pi(x)dx−

∑
i

ci ln
∑
j

cjδg(i),g(j)

= −
∑
k

pG(k)

∫
pk(x) ln pk(x)dx−

∑
k

pG(k) ln pG(k)

(a)

≥ −
∑
k

pG(k) ln

∫
pk(x)2dx−

∑
k

pG(k) ln pG(k)

= −
∑
k

pG(k) ln pG(k)

∫
pk(x)2dx = ĤELK ,

where (a) uses Jensen’s inequality.
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