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ABSTRACT
In a well-known paper, Jeremy England derived a bound on the free energy dissipated by a self-replicating system [J. L. England, “Statistical
physics of self-replication,” J. Chem. Phys. 139, 121923 (2013)]. This bound is usually interpreted as a universal relationship that connects
thermodynamic dissipation to replicator per-capita decay and growth rates. We argue from basic thermodynamic principles against this
interpretation. In fact, we suggest that such a relationship cannot exist in principle, because it is impossible for a thermodynamically consistent
replicator to undergo both per-capita growth and per-capita decay back into reactants. Instead, replicator may decay into separate waste
products, but in that case, replication and decay are two independent physical processes, and there is no universal relationship that connects
their thermodynamic and dynamical properties.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0213466

I. INTRODUCTION

Research in thermodynamics has shown that there are universal
relationships between the thermodynamic and dynamic properties
of nonequilibrium processes. The most famous relationship, termed
local detailed balance (LDB), says that the statistical irreversibility
of a microscopic process is directly related to the thermodynamic
dissipation, i.e., the entropy production in the system and the envi-
ronment during that process.2 The generality of LDB hints at the
possibility of universal bounds on the thermodynamic properties of
living systems.

This idea inspired a 2013 paper by England on the thermo-
dynamics of self-replicating systems.1 Consider a population of
replicators with per-capita replication rate g and per-capita decay
rate ω, where decay is defined as the “reversion of the replicator back
into the exact set of reactants in its environment out of which it
was made.”1 A system with fixed per-capita rates of replication g
and decay ω may be said to exhibit first-order growth and first-order
decay . The stochastic dynamics of first-order growth and decay may
be described by a Markovian birth–death master equation,

ṗn(t) = (n ⌐ 1)gpn⌐1(t) + (n + 1)ωpn+1(t) ⌐ n(g + ω)pn(t),

where pn(t) is the probability that the population contains n replica-
tors at time t. For large population sizes n, this master equation may
be approximated as3

ṗn(t) ≈ ng(pn⌐1(t) ⌐ pn(t)) ⌐ ωn(pn(t) ⌐ pn+1(t)), (1)

which appears as Eq. (9) in Ref. 1. Finally, neglecting fluctuations for
large n, the expected population size at time t will grow exponentially
as

⌜n⌜p(t) ≈ ⌜n⌜p(0)e(g⌐ω)t. (2)

Equation (2) relates per-capita replication and decay rates in the
master equation to long-term population dynamics.

The main result of England’s paper1 [Eq. (10)] is a thermody-
namic bound on the ratio of growth to decay rates,

ωstot ≥ ln
g
ω

, (3)

where ωstot is the entropy production incurred when a single repli-
cator makes a copy of itself. The quantity ωstot is proportional to the
nonequilibrium free energy dissipated during replication.4 England
illustrates the bound using two real-world systems of interest: an
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RNA-based molecular replicator constructed by Lincoln and Joyce5

and an E. coli bacterium.
Bound (3) appears to bridge two different worlds: the physi-

cal world of thermodynamic dissipation and the biological world
of replicator dynamics. From an intellectual perspective, we find
England’s proposal stimulating and elegant. However, by studying
the thermodynamics of simple molecular replicators,6 we have come
to find that bound (3) must be interpreted with great care.

In this paper, we argue that—contrary to standard interpreta-
tions of England’s result—inequality (3) does not provide a thermo-
dynamic bound on the growth and decay rates of replicators. First, in
Sec. III, we derive a kind of “impossibility theorem.” It shows that no
bound like (3) can apply to self-replicating systems, because a repli-
cator cannot undergo both first-order growth and first-order decay
back into reactants without violating the laws of thermodynamics.
Rather, as we discuss in Sec. IV, two options present themselves.
First, a replicator may decay via the reverse process of autocatalysis,
in which case decay will not be first-order. Alternatively, a replicator
may undergo first-order decay into a different set of waste products,
in which case there is no universal relationship between the phys-
ical properties of the two independent processes of replication and
decay.

We emphasize that our analysis employs the same setup
and theoretical framework (stochastic thermodynamics) as does
England’s paper. Thus, our work is not meant as a critique of the
general approach of stochastic thermodynamics, but rather of a
particular application to replicating systems.

Before proceeding to our analysis, we first review the derivation
of England’s result, in the process filling in a few subtle details.

II. BACKGROUND
We begin by reviewing the setup and derivation of England’s

bound (3) in Ref. 1. We proceed in several steps. In Sec. II A, we
derive a “weak” version of LDB that applies at the level of coarse-
grained macrostates. This is a general result that relates dissipation
and statistical irreversibility for arbitrary choices of macrostates
and systems, whether replicating or not. In Sec. II B, we derive
England’s bound by applying the weak version of LDB to the special
case of self-replicating systems. In Sec. II C, we derive a gener-
alized version of England’s bound, which will be useful for our
analysis below.

A. Local detailed balance and coarse-graining
Consider a system coupled to a heat bath at temperature T,

which undergoes an undriven (time-independent) process over time
interval [t, t + ϵ]. The system’s microscopic dynamics are described
by the conditional probability Pϵ(x → y) that the system ends in
microstate y at time t + ϵ, given that it started in microstate x at time
t. We generally focus on chemical or biological systems in solution
that are overdamped, meaning that their momentum degrees-of-
freedom equilibrate quickly and can be ignored at the microscopic
level of description. Each microstate x might specify the position
of each particle in the system. In other cases, the microstates may
represent coarse-grained “mesostates,” e.g., they may specify only
the positions of the solute particles and the counts of different par-
ticle types in a well-mixed system. In all cases, we require that

each microstate x is internally in equilibrium. Another requirement
is that the microscopic dynamics are Markovian over timescale ϵ,
meaning that the probability of microstate at time t + ϵ depends only
on the microstate at time t.

The system possesses an equilibrium Boltzmann distribution,

Peq(x) = 1
Z

e⌐E(x)⌜kBT , (4)

where E(x) is the energy of microstate x. According to the principle
of “detailed balance,” the forward and backward probability fluxes
across each microscopic transition x → y balance in equilibrium,

Peq(x)Pϵ(x → y) = Peq(y)Pϵ(y → x). (5)

The ratio of the forward to backward transition probabilities can be
written as

Pϵ(x → y)
Pϵ(y → x) = Peq(y)

Peq(x) = e[E(x)⌐E(y)]⌜kBT. (6)

By the first law of thermodynamics, the energy lost by the system
during the transition x → y is equal to the heat transferred to the
bath, Q(x → y) = E(x) ⌐ E(y), and therefore,

Pϵ(x → y)
Pϵ(y → x) = eQ(x→y)⌜kBT. (7)

Observe that Q(x → y)⌝kBT is the increase in the thermo-
dynamic entropy of the heat bath during the transition x → y.
Equation (7) is a special case of the general principle of “local
detailed balance” (LDB), which says that the statistical irreversibil-
ity of microscopic transitions is related to the increase in the
thermodynamic entropy of the environment.

Suppose that the system is associated with two macrostates I
and II, i.e., two subsets of microstates, which, in principle, may
be chosen arbitrarily. Macrostate I is described by a probabil-
ity distribution PI(x) over microstates with support restricted to
I. Macrostate II is also described by a probability distribution
over microstates PII(y). This distribution is defined by propagat-
ing the distribution PI under the microscopic dynamics and then
conditioning on membership in macrostate II,

PII(y) = !II(y)⩀I PI(x)Pϵ(x → y) dx
⩀II ⩀I PI(x)Pϵ(x → y′) dx dy′ ,

where ! is the indicator function. In principle, the distributions I
and II may be arbitrarily far from internal equilibrium.

Entropy production refers to the increase in the entropy of the
system and its environment during a process. In stochastic ther-
modynamics, the entropy production incurred when going from
macrostate I to macrostate II is defined as4,7

ωstot(I→ II) = [S(PII) ⌐ S(PI)] + ⌜Q⌜I→II⌝kBT, (8)

where S(PII) ⌐ S(PI) is the increase in the system’s Shannon entropy
and ⌜Q⌜I→II is the average heat generated. Here, we use the notation

⌜⋅ ⋅ ⋅ ⌜I→II = ⩀II ⩀I PI(x)Pϵ(x → y) ⋅ ⋅ ⋅ dx dy
⩀II ⩀I PI(x)Pϵ(x → y) dx dy

(9)
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to indicate the expectation of a trajectory-level quantity conditioned
on initial macrostate I and final macrostate II.

To derive a bound on the entropy production, consider the con-
ditional probability ϑ(I→ II) that the final microstate belongs to
macrostate II, given that the initial microstate is drawn from PI.
Consider also the conditional probability ϑ(II→ I) that the final
microstate belongs to macrostate I, given that the initial microstate
is drawn from PII. As shown in Ref. 1, ωstot(I→ II) is bounded by
the logarithmic ratio of these two transition probabilities,

ωstot(I→ II) ≥ ln
ϑ(I→ II)
ϑ(II→ I) . (10)

Bound (10) can be derived from the microscopic princi-
ple of LDB (7). To do so, let us write the macrostate transition
probabilities as

ϑ(I→ II) = ⊍
I
⊍

II
PI(x)Pϵ(x → y) dx dy, (11)

ϑ(II→ I) = ⊍
II
⊍

I
PII(y)Pϵ(y → x) dy dx. (12)

The ratio of these transition probabilities can be written as

ϑ(II→ I)
ϑ(I→ II) = ⩀II ⩀I PI(x)Pϵ(x → y)eln PII( y)

PI(x) ⌐ln Pϵ(x→y)
Pϵ(y→x) dy dx

⩀I ⩀II PI(x)Pϵ(x → y) dx dy
.

Using the expression of LDB (7) and notation (9) gives

ϑ(II→ I)
ϑ(I→ II) = ⌜e⌐⌜ln

PI(x)
PII( y)+Q(x→y)⌜kBT⌝⌜I→II

≥ e⌐⌝ln PI(x)
PII( y)+Q(x→y)⌜kBT⌝I→II = e⌐ωstot(I→II),

where the second line uses Jensen’s inequality and then Eq. (8) [note
that ⌜ln PI(x)

PII(y) ⌜I→II = S(PII) ⌐ S(PI)]. Bound (10) follows by taking
logarithms and rearranging.

Bound (10) is a general inequality that applies to various
choices of macrostates and systems, whether replicating or not. It
may be interpreted as a “weak” version of LDB that applies to tran-
sitions between coarse-grained macrostates. It is weak in the sense
that it relates statistical irreversibility and thermodynamic dissipa-
tion via an inequality, in contrast to the stronger version of LDB (7)
that holds as an equality at the microscopic level.

The weak version of LDB (10) is derived using Jensen’s inequal-
ity, and it turns into equality when Jensen’s inequality is tight. In
turn, Jensen’s inequality is tight when the quantity ln PI(x)

PII(y) +Q
(x → y)⌝kBT (the fluctuating dissipation incurred by microscopic
trajectory x → y) is the same for every trajectory that connects
macrostate I to macrostate II. There are two ways this can
happen.

The first is that the macrostates are in internal equilibrium,
meaning that the macrostate distribution has a restricted Boltzmann
form,

PI(x) = 1
ZI

!I(x)e⌐E(x)⌜kBT , ZI = ⊍
I

e⌐E(x)⌜kBT dx,

and similarly for PII and ZII. With a bit of rearranging, we find that
the fluctuating dissipation is then given by

ln
PI(x)
PII(y) +Q(x → y)⌝kBT = ln ZII ⌐ ln ZI.

The quantity ln ZII ⌐ ln ZI is proportional to the loss of equilibrium
free energy in going from macrostate I to macrostate II, and it does
not depend on x or y. In this case, there are no fluctuations in the
fluctuating dissipation, and the weak version of LDB becomes an
equality, ωstot(I→ II) = ln ϑ(I→II)

ϑ(II→I) = ln ZII ⌐ ln ZI.
The second way that the weak version of LDB can be tight is

when all the trajectories that connect macrostates I and II incur the
same dissipation, even though the two macrostates may not be in
internal equilibrium. For instance, this may occur because there is a
single chemical reaction, or a single sequence of chemical reactions,
that transforms the system between macrostates I and II.

Conversely, when there are large fluctuations in the dissipation
incurred by different trajectories x → y, Jensen’s inequality may be
very loose, therefore also the weak version of LDB may be very loose.
Such fluctuations can occur when the macrostates are not in inter-
nal equilibrium, and there exist multiple alternative pathways that
go between macrostates I and II. It is a well-known limitation of
stochastic thermodynamics that the exact relationship between sta-
tistical irreversibility and thermodynamic dissipation only holds at
the microscopic level.2 It is also known that statistical irreversibility
at the coarse-grained level often underestimates the true amount of
dissipation by many orders of magnitude (for example, see Ref. 8).
We return to this issue in Sec. IV below, when we discuss thermo-
dynamics bounds for replicating systems with multiple degradation
pathways.

B. Application to replicating systems
Following England,1 we now apply the weak version of LDB

(10) to the special case of replicating systems. To do so, we define
macrostate I as the set of microstates that contain a single repli-
cator, along with any reactants needed for successful replication.
Macrostate II is defined as the set of microstates that contain two
replicators: the parent replicator found in macrostate I and its new
offspring, as well as any side products that result from replication.
Importantly, although the overall system is not driven, macrostate
I may contain highly energetic reactants that drive replication
forward.

The transition probability ϑ(I→ II) over time ϵ is approxi-
mated using the per-capita replication rate as ϑ(I→ II) ≈ gϵ. The
transition probability ϑ(II→ I), corresponding to the reversion of
the new offspring back into “the exact set of reactants in its envi-
ronment out of which it was made,” is approximated using the
per-capita decay rate as ϑ(II→ I) ≈ ωϵ. This is not 2ωϵ because,
in England’s analysis, the parent and offspring replicators are dis-
tinguished under II, and ϑ(II→ I) refers only to the decay of
the new offspring [see also discussion below (14)]. Plugging these
two approximations into (10) and simplifying recovers England
bound (3).

We note that England’s bound involves the same per-capita
growth g and decay rates ω that appear in the birth–death mas-
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ter equation (1) that describes population-level dynamics. This
birth–death equation specifies a continuous-time Markov chain,
in which the statistics of future replication and decay events
depend only on the current number of replicators, not on
prior history. The assumption of Markovian population dynam-
ics is standard in population biology9 and chemistry,10,11 and
it is a reasonable starting point for relating dissipation to pop-
ulation dynamics. In principle, it may be justified under a
separation-of-timescales, where the timescales of division and inter-
nal relaxation are shorter than waiting times between replication
events.

C. Generalization of England’s bound
Observe that the term ωstot ≡ ωstot(I→ II) in England’s bound

(3) refers specifically to the entropy produced when the system goes
from a macrostate with one replicator to a macrostate with two
replicators. Without additional assumptions, this does not necessar-
ily equal the entropy produced when the system goes from two to
three replicators, three to four replicators, etc. However, to study
the thermodynamics of self-replicating systems, we need a general
expression for the entropy production that holds at all population
sizes.

Here, we introduce this general expression for the entropy pro-
duction, and we then use it to derive a generalized form of England’s
bound. In particular, we consider the entropy production when a
system is transformed from a macrostate with n replicators to a
macrostate with n′ replicators. As we show in the Appendix, this
entropy production is given by

ωstot(n→ n′) ≈ (n′ ⌐ n)ϖrep + ln
n!
n′! . (13)

The first term (n′ ⌐ n)ϖrep is the contribution that is extensive in the
number of additional replicators. The term ϖrep is the entropy pro-
duced during the synthesis of a single replicator (and side products)
from reactants, and its value will depend on the specific physi-
cal properties of the replicator [see Eq. (A9) in the Appendix].
The second term, ln(n!⌝n′!), reflects the entropy increase due to
the change of the concentration of replicators in solution. Equa-
tion (13) holds even when n′ < n and even when the right hand side
of Eq. (13) is negative (in which case the transformation n→ n′ is
thermodynamically disfavored).

To derive Eq. (13) in the Appendix, we introduce several
standard assumptions: (1) replicators and other chemical species
are found in dilute, well-mixed solution, (2) different replicators
are statistically indistinguishable from each other, as are the other
chemical species, and (3) macrostates corresponding to 1, 2, 3, . . .
replicators differ only in terms of the counts of replicators, reac-
tants, and side products involved in replication. Importantly, we
do not assume that the replicators are in internal equilibrium,
so the result also applies to far-from-equilibrium systems such as
living cells.

We now derive a generalized version of England’s bound
(3). For two macrostates containing n and n + 1 replicators,
Eq. (13) gives ωstot(n→ n + 1) ≈ ϖrep ⌐ ln(n + 1). Assuming first-
order growth and decay, the transition probabilities between these
two macrostates may be approximated as ϑ(n→ n + 1) ≈ ngϵ
and ϑ(n + 1→ n) ≈ (n + 1)ωϵ. The weak form of LDB (10) gives

ωstot(n→ n + 1) ≥ ln ng(n+1)ω . Combining and simplifying leads to
our generalized bound,

ϖrep ≥ ln
g
ω
+ ln n, (14)

which relates the per-capita dissipation ϖrep, per-capita growth g,
per-capita decay ω, and the population size n.

Note that in England’s analysis, macrostate II (with two
replicators) is defined so that the parent and offspring replica-
tors are distinguished, and the transition probability ϑ(II→ I)≈ ωϵ refers only to the decay of the offspring. In our derivation
of Eq. (13), the replicators are treated as statistically indistinguish-
able, and the transition n + 1→ n represents the decay of any of the
n + 1 replicators, occurring with probability ≈ (n + 1)ωϵ. The dif-
ference is mostly one of convention, not physical content. For the
1→ 2 transition (n = 1), two bounds (3) and (14) are essentially
equivalent.

Careful readers may have noticed a thermodynamic incon-
sistency in the generalized version of England’s bound (14). This
inconsistency is considered in depth in Sec. III.

III. IMPOSSIBILITY THEOREM
England’s bound is usually interpreted as a universal relation-

ship that relates thermodynamic dissipation to replicator per-capita
growth and decay rates. However, we now argue against the valid-
ity of this interpretation, even in principle. Our critique is based
on an “impossibility theorem,” which shows that a thermodynam-
ically consistent replicator cannot undergo both first-order growth
and first-order decay back into reactants.

There are several equivalent ways to demonstrate our impossi-
bility result. We do it via two general theoretical arguments, plus a
concrete model of a simple autocatalytic chemical system.

The first (and perhaps simplest) way to demonstrate our impos-
sibility result is to consider England’s bound, in the generalized form
(14) that applies to arbitrary population sizes. A thermodynami-
cally consistent replicator has a finite per-capita dissipation ϖrep.
However, bound (14) holds for all n ≥ 0, which can only be true
if ϖrep =⋊. In fact, considering the derivation of this bound, it is
only possible to have a finite ϖrep and fixed per-capita growth rate
0 < g <⋊ if the decay probability scales in a non-first-order man-
ner, as ϑ(n + 1→ n)∝ n2 or faster. Conversely, it is only possible
to have a finite ϖrep and fixed per-capita decay rate 0 < ω <⋊ if the
replication probability does not scale with population size.

A second way to demonstrate our impossibility result is to
consider two macrostates: macrostate 1 contains a single replicator
(same as I above), while macrostate 0 contains no replicators, only
the reactants needed for replication. Assuming first-order decay, the
transition probability ϑ(1→ 0) ≈ ωϵ reflects the decay of the sin-
gle replicator into reactants. The transition probability ϑ(0→ 1)≈ γϵ captures the spontaneous (uncatalyzed) formation of repli-
cator from reactants, where we introduced the rate constant γ of
uncatalyzed formation. Combining Eq. (13) and the weak form of
LDB (10) gives a bound on the entropy produced during the decay
process 1→ 0,

ωstot(1→ 0) ≈ ⌐ϖrep ≥ ln
ω
γ

. (15)
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Meanwhile, the generalized England’s bound (14) for n = 1 implies
that ln(g⌝ω) ≤ ϖrep. Combining gives the inequality

ln
g
ω
≤ ln

γ
ω

, (16)

which implies g ≤ γ. However, the defining property of self-
replication is autocatalysis, meaning that the formation of a new
replicator in the presence of an existing replicator should be much
faster than spontaneous formation directly from reactants,

γ≪ g. (17)

In fact, perfect first-order growth would require that γ = 0. More
generally, if inequality (17) did not hold, one could not interpret
macrostate transitions like n→ n + 1 as replication events, since the
new replicator could instead form spontaneously from reactants.
It is clear that inequalities (16) and (17) are in contradiction with
each other.

Finally, we illustrate our impossibility result using a simple but
concrete model. Consider an autocatalytic chemical reaction such as

X + A
ω1↢
ω⌐1

2X, (18)

where X is a replicating molecule and A is a reactant necessary for
replication. For simplicity, we assume that the reaction is elementary
with mass-action kinetics. We also assume that molecular counts are
sufficiently large such that the system can be described in terms of
deterministic number concentrations, n = [X] and a = [A]. Reaction
(18) exhibits forward flux Ϛ1na with forward rate constant Ϛ1 and
reverse flux Ϛ⌐1 n2 with backward rate constant Ϛ⌐1 . We note that the
reverse flux is second-order in n. For convenience, we will some-
times use the term uncopying to refer to the reverse direction of
autocatalysis, i.e., the catalyzed reversion of the replicator back into
reactants (2X → X + A).

Suppose that X can also decay back into reactant in an
uncatalyzed fashion,

X
ω2↢
ω⌐2

A. (19)

This decay reaction has forward flux Ϛ2n and reverse flux Ϛ⌐2 a.
Reactions (18) and (19) have opposite stoichiometry and therefore
opposite free energy of reaction ⌐ωG. In the setting of chemical
thermodynamics, local detailed balance implies that ⌐ωG (in units
of J per reaction) is equal to the logarithmic ratio of the forward to
backward fluxes,12

⌐ ωG = kBT ln
Ϛ1na
Ϛ⌐1 n2 = kBT ln

Ϛ⌐2 a
Ϛ2n

. (20)

In order for the system to exhibit first-order growth rather than
uncatalyzed formation, it must be that Ϛ1na≫ Ϛ⌐2 a so that the cre-
ation of replicators is dominated by autocatalysis, not the reverse
of the decay reaction. In order for the system to undergo first-
order decay, rather than second-order uncopying, it must be that
Ϛ2n≫ Ϛ⌐1 n2. However, these two inequalities are incompatible with

Eq. (20), highlighting the thermodynamic inconsistency. The under-
lying reason is that replication (X + A→ 2X) is thermodynamically
favored over uncopying (2X → X + A) to the same extent that
uncatalyzed formation (A→ X) is favored over first-order decay(X → A). Thus, if first-order decay is the dominant pathway for
destruction, uncatalyzed formation must be the dominant pathway
for formation.

Of course, if the first-order decay reaction (19) occurs at neg-
ligible rates, then the system would exhibit first-order growth via
the forward direction of (18). In addition, decay back into reac-
tants would occur due to uncopying, the reverse direction of the
catalyzed reaction (18). However, in this case, decay will not be
first-order [e.g., the elementary autocatalytic reaction (18) leads to
second-order decay, Ϛ⌐1 n2], so it will be inconsistent with the master
equation (1). It will also be inconsistent with the exponential growth
equation (2), which only holds for first-order growth and first-order
decay.

Above, we showed that a thermodynamically consistent repli-
cator cannot simultaneously exhibit first-order growth and first-
order decay back into reactants. Of course, many replicators do
exhibit both first-order growth and first-order decay. As we discuss
in Sec. IV, they do so by decaying into different waste products,
instead of reverting back into their original reactants.

IV. ALTERNATIVE DEGRADATION PATHWAYS
Until now, we followed England’s analysis in assuming that

the decay transition involves “reversion of the replicator back into
the exact set of reactants in its environment out of which it was
made.” However, in most replicators of interest, the actual decay
process that is observed is not reversion back into reactants, but
rather a separate degradation process into different waste products.
Such replicators can exhibit both first-order growth and first-order
decay. However, as we argue here, if there is no general relationship
between the processes of replication and decay, then there cannot be
a universal thermodynamic bound that constrains their replication
and decay rates. A related point was raised in an insightful paper by
Saakian and Qian.3

As a concrete example, consider again the autocatalytic replica-
tor (18) discussed above. Imagine that the dominant decay process
is neither uncopying, the reverse of reaction (18), nor uncatalyzed
reversion back to reactants, reaction (19). Rather, decay involves a
separate reaction,

X
ω3↢
ω⌐3

W, (21)

where W is a waste product different from the reactant A.
As an example, let us consider the RNA replicator by Lin-

coln and Joyce5 discussed in England’s paper.1 Here, replication
consumes a reactant RNA molecule with a triphosphate group and
releases an inorganic pyrophosphate as a side product. [The reaction
scheme of the RNA replicator is slightly more complex than elemen-
tary scheme (18), but this does not change the general point of our
argument.] Decay can proceed along one of two paths. The first is
the reverse of replication, known as “pyrophosphorolysis,”13–15 in
which a pyrophosphate is consumed and a triphosphate-charged
RNA molecule is produced. The second is spontaneous “hydrolysis”
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of the RNA phosphodiester bond. Hydrolysis is a separate reaction
that does not involve pyrophosphate, and it produces a “waste” RNA
molecule, with the triphosphate group replaced by a monophosphate
group.

We use the term degradation to refer to the decay of the repli-
cator into different waste products, as opposed to reversion into the
initial reactants. Because replication and degradation are indepen-
dent processes, not reverse directions of the same process, in general,
they have independent thermodynamic properties. In such cases, the
derivation of Eq. (13) in the Appendix does not apply, nor does
the impossibility result derived from it in Sec. III. Moreover, both
replication and degradation may be thermodynamically favored in
the forward direction, allowing simultaneous first-order growth and
first-order degradation. For instance, for an autocatalytic replicator
with reactions (18) and (21), the per-capita replication rate may be
taken as g = Ϛ1a (over timescales where the reactant concentration a
is approximately constant) and the per-capita degradation rate may
be taken as ω = Ϛ3.

Notably, when considering actual examples,1 England calcu-
lates the decay rate as the rate of degradation into waste products,
rather than the rate of reversion back into reactants. For example,
for the RNA replicator, his estimate is based on the rate of RNA
hydrolysis, not pyrophosphorolysis. For the E. coli, his estimate is
based on the time required for all peptide bonds in a single cell to
undergo hydrolysis. This differs from the rate of reversion back into
reactants, which would involve the reverse reaction of protein bond
formation, de-respiration of released carbon dioxide into glucose
and oxygen, etc.

Nonetheless, in England’s original bound, ω refers to the rate
of reversion back into original reactants, rather than degradation
into other waste products. To make the connection to degradation,
England assumes that reversion is slower than degradation,

ω ≤ ω′, (22)

where ω′ is the degradation rate. Bound (3) then holds in the weaker
form with the reversion rate ω replaced by the degradation rate ω′,
as in ωstot ≥ ln(g⌝ω′). However, there are some problems with this
approach.

For one, the bound may be violated, because there is no a
priori reason that reversion must be slower than degradation. For
example, for the RNA replicator, England assumes that hydroly-
sis (degradation) is faster than pyrophosphorolysis (reversion), but,
in fact, there is no universal relationship between the rates of two
processes. Moreover, the rate of pyrophosphorolysis depends on
the concentration of pyrophosphate,13–15 while that of hydrolysis
does not. At increased pyrophosphate concentrations, reversion by
pyrophosphorolysis has been observed to proceed as fast as a minute
per nucleotide,14 orders of magnitude faster than degradation by
hydrolysis (estimated at ∼4 years per nucleotide1).

Even for an entire E. coli bacterium, it may be debated whether
degradation is always faster than reversion of an offspring cell into
starting reactants. There are various scenarios that can be imag-
ined that accelerate reversion; for instance, the parent cell might run
its Krebs cycle in reverse. Of course, there is no doubt that such a
reversion is hyper-astronomically unlikely, but one may still won-
der whether it is undeniably more unlikely than the hydrolysis of all
peptide bonds, whose probability England estimates at e⌐6.7⋊1010

(!)

given a 20-min generation time.1 In any case, common-sense intu-
itions about such astronomically unlikely events should be treated
with caution.

The best way to demonstrate that degradation is faster than
reversion is to observe how a replicator actually decays. In many
cases, degradation will be the dominant decay process. However,
even in such cases, there is usually no meaningful thermodynamic
constraint on growth and degradation rates, because the two sides of
(22) refer to two independent physical processes and their difference
is completely uncontrolled.

Consider again E. coli bacteria. They are never observed to
undergo hydrolysis of all peptide bonds, instead they simply die
at the rate of ≈5 ⋉ 10⌐4 per generation.16 This death rate can be
related to England’s estimate of the entropy produced during E.
coli replication, ≈3.3 ⋉ 1011.1 Plugging these numbers into bound (3)
gives

ωstot(I→ II) = 3.3 ⋉ 1011 ≥ 7.6 ≈ ⌐ ln (5 ⋉ 10⌐4). (23)

This inequality is not biologically or physically meaningful because
the two sides differ by a factor of about 50 ⋉ 109. To put things in
perspective, the inequality tells us that no less than 7.6 kBT of free
energy must be dissipated in order to replicate a bacterium. This is a
tiny amount, less than the dissipation produced by the hydrolysis of
a single ATP molecule (≈20 kBT).

Above, we argued that the inequality between reversion and
degradation (22) may be violated, or it may hold but be so weak that
it is irrelevant. Nonetheless, one may wonder whether the reverse
transition probability ϑ(II→ I), as appears in inequality (10), may
be defined to account for both reversion and degradation so that
no further weakening of the bound is necessary. In fact, whether
ϑ(II→ I) accounts for degradation or not depends in a subtle way
on the definition of macrostates I and II. As an example, con-
sider a replicator that undergoes degradation into waste species
W. Now imagine two different ways of defining these macrostates.
Under the first definition, the microstates in I and II all contain
the same fixed number of waste molecules W. Since degradation
increases the number of waste molecules, the transition II→ I will
not include degradation and the transition probability ϑ(II→ I)
will only account for reversion back to reactants. Under the sec-
ond (arguably more realistic) definition, the precise number of waste
molecules varies among different microstates in I and/or II. Then,
the transition probability ϑ(II→ I) will account for both pathways,
reversion and degradation.

Nonetheless, under either definition, we end up with the
same very weak thermodynamic bound (23). Imagine that degra-
dation is many orders of magnitude more likely than reversion,
as in the E. coli that undergoes degradation by death at the rate
of ω′ = 5 ⋉ 10⌐4 per generation. Under the first definition of the
macrostates, ϑ(II→ I) will account only for reversion and there-
fore be tiny compared to ω′ϵ, so inequalities (22) and (23) will be
incredibly weak. Under the second definition of the macrostates,
ϑ(II→ I) will account for both reversion and decay, and inequal-
ity (22) may be nearly tight. However, the entropy production
ωstot(I→ II) and transition probability ϑ(I→ II) that characterize
replication do not depend significantly on whether the degradation
waste products are allowed to fluctuate or not, since these waste
molecules are not involved in replication. Therefore, to the extent
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that ϑ(II→ I) becomes much larger and (22) tighter, the weak LDB
bound (10) will become looser. This reflects the fact, discussed above
in Sec. II A, that the weak version of LDB may become very loose
when macrostates are internally out of equilibrium and multiple
alternative pathways are present.

V. CONCLUSION
In this paper, we considered England’s bound (3) that relates

thermodynamic dissipation ωstot(I→ II) to per-capita decay ω and
growth g rates. This bound has physical meaning if decay is the
reverse process of replication, meaning that the offspring replicator
reverts back to its original reactants. However, as we showed in our
impossibility theorem, for a thermodynamically consistent replica-
tor, this reverse process cannot be first-order; hence, ω cannot be
interpreted as a per-capita decay rate.

Alternatively, the decay rate may be defined as the per-capita
rate of degradation into different waste products ω′, rather than orig-
inal reactants. In this case, there is no universal relationship between
the degradation rate ω′ and physical properties of replication, such as
the growth rate g and the entropy production ωstot(I→ II). There-
fore, the resulting bound (3) is not physically meaningful, and it can
even be violated.
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APPENDIX: DERIVATION OF EQ. (13)

Here, we derive expression (13) for the entropy produced when
transforming a system from a macrostate with n replicators to a
macrostate with n′ replicators. We note that similar results can be
found in the literature on chemical thermodynamics.17

We consider a system containing some replicators, which
may be chemical or biological in nature. The system may also
contain K ⌐ 1 other chemical species that serve as additional
reactants or side products of replication. We label the different

species using ϕ ∈ {1, . . . , K}, with ϕ = 1 indicating the replicator and
ϕ ∈ {2, . . . , K} indicating reactants and side products.

Each microstate x is written as x = (⌝c, ⌝y, ⌝s), where⌝c = (c1, . . . , cK) indicates the vector of population counts of
species ϕ ∈ {1, . . . , K}, ⌝y encodes the state of all particles of all
species, and ⌝s encodes the state of all solvent particles, plus any
other subsystems (catalytic surfaces, etc.) that are not directly
involved in replication as a reactant or a side product. The vector⌝y = (⌝y (1), . . . , ⌝y (K)) is further decomposed into vectors ⌝y (ϕ)
representing particles of each species, and each ⌝y (ϕ) is further
decomposed as ⌝y (ϕ) = (⌝y (ϕ,1), . . . , ⌝y (ϕ,cϕ)), where ⌝y (ϕ,i) encodes
the state of particle i of species ϕ. In particular, ⌝y (ϕ,i) encodes the
position of the particle within the reactor volume, plus internal
degrees of freedom (e.g., configurational, rotational, and vibrational
modes, internal structure in the case of complex particles, etc.). The
order of the indices i of the particles of each species is arbitrary, so
any ⌝y (ϕ) and ⌝y (ϕ)′ that differ only in the ordering of particles are
equivalent.

The macrostate containing n replicators is represented by
Pn(x) ≡ Pn(⌝c, ⌝y, ⌝s), a distribution over microstates with support
restricted to microstates with c1 = n.

We introduce several standard assumptions. First, the
macrostates Pn differ only in the number of replicators and reac-
tant/product species, while other statistical properties are the same.
In particular, the statistical properties of the solvent are the same,
Pn(⌝s) ≡ P(⌝s), and so are the conditional probabilities of population
counts, up to differences due to consumption/creation of species by
replicator synthesis,

Pn(⌝c⌝⌝s) = P0(⌝c ⌐ n ⌝ω⌝⌝s). (A1)

The vector ⌝ω specifies the stoichiometry of replicator synthesis,
where ωϕ > 0 is the number of ϕ created as side products and ωϕ < 0
is the number of ϕ consumed as reactants. By definition, ω1 = 1 (the
synthesis of a replicator creates one replicator).

In addition, we assume that the particles of species ϕ ∈{1, . . . , K} are in dilute, well-mixed solution without long-range
interactions. Then, the energy of a typical microstate x = (⌝c, ⌝y, ⌝s) is
approximately additive,

E(⌝c, ⌝y, ⌝s) ≈ Eω(⌝s) + K⊍
ϕ=1

cϕ⊍
i=1

Eϕ(⌝y (ϕ,i), ⌝s). (A2)

Here, Eω(⌝s) is the solvent energy and Eϕ( ⋅, ⌝s) is the single-particle
energy for species ϕ, which may account for particle–solvent inter-
actions. Assumptions of well-mixedness imply that correlations
between particles are negligible, once conditioned on the state of
the solvent ⌝s. Thus, the probability of any microstate x = (⌝c, ⌝y, ⌝s)
factors in the following manner:

Pn(⌝c, ⌝y, ⌝s) ≈ P(⌝s)Pn(⌝c⌝⌝s) K∏
ϕ=1

cϕ∏
i=1

Pn,ϕ,i(⌝y (ϕ,i)⌝⌝s), (A3)

where Pn,ϕ,i is the conditional probability distribution of particle i of
species ϕ in a system with n replicators.

Finally, we assume that particles in each species have indistin-
guishable statistical properties,

Pn,ϕ,i( ⋅ ⌝⌝s, ⌝c) = ↼ϕ( ⋅ ⌝⌝s). (A4)
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The conditional distribution ↼ϕ encodes the statistical properties of
a single particle of species ϕ, and it does not depend on particle label
i, replicator count n, nor the counts of other species. Importantly,
we do not assume that the distribution ↼ϕ has a Boltzmann form.
Thus, the internal state of the replicators and other species may be
arbitrarily far-from-equilibrium. For instance, when studying bio-
logical replicators, ↼1 might represent the highly nonequilibrium
steady-state distribution of a living bacterium.

We now evaluate the entropy produced when the system is
transformed from macrostate Pn to macrostate Pn′ . As in Eq. (8),
the entropy production is given by

ωstot(n→ n′) = [S(Pn′) ⌐ S(Pn)] + ⌜Q⌜n→n′⌝kBT, (A5)

where the heat is equal to the change of loss of expected energy,⌜Q⌜n→n′ = ⌜E⌜Pn ⌐ ⌜E⌜Pn′ .
To calculate the expected energy and entropy, it will be useful to

consider the energy and entropy contribution from a single particle
of species ϕ as

Eϕ ∶= ⊍ P(⌝s)↼ϕ(⌝z⌝⌝s)Eϕ(⌝z, ⌝s) d⌝z,

Sϕ ∶= ⌐⊍ P(⌝s)↼ϕ(⌝z⌝⌝s) ln ↼ϕ(⌝z⌝⌝s) d⌝z.

Using the above definitions and assumptions, we may write the
expected energy under Pn as

⌜E⌜Pn ≈ ⌜Eω(⌝s)⌜P +⊍ d⌝s K⊍
ϕ=1
⊍
cϕ=1

Pn(cϕ, ⌝s)cϕ⌜Eϕ⌜↼ϕ(⋅⌝⌝s)

= ⌜Eω(⌝s)⌜P +⊍ d⌝s⊍
ϕ
⊍
cϕ=1

P0(cϕ, ⌝s)(cϕ + nωϕ)⌜Eϕ⌜↼ϕ(⋅⌝⌝s)

= ⌜E⌜P0 + n
K⊍

ϕ=1
ωϕ Eϕ

= ⌜E⌜P0 + n⌝E1 + K⊍
ϕ=2

ωϕ Eϕ⌝. (A6)

In the second line, we performed the change of variables cϕ ↦ cϕ+ nωϕ and then used Eq. (A1).
To compute the Shannon entropy, we write

S(Pn) = S[P(⌝s)] + S[Pn(⌝c⌝⌝s)] + S[Pn(⌝y⌝⌝c, ⌝s)]
≈ S[P(⌝s)] + S[P0(⌝c⌝⌝s)] + K⊍

ϕ=1
S[Pn(⌝y (ϕ)⌝⌝c, ⌝s)], (A7)

where we first used the chain rule for Shannon entropy, S[Pn(⌝c⌝⌝s)]= S[P0(⌝c ⌐ n ⌝ω⌝⌝s)] = S[P0(⌝c⌝⌝s)], and Eq. (A3). For each species ϕ, we
have

S[Pn(⌝y (ϕ)⌝⌝c, ⌝s)] =⊍ d⌝s⊍
cϕ=1

Pn(cϕ, ⌝s)⌞cϕ⌜⌐ ln ↼ϕ(⌝z⌝⌝s)⌜↼ϕ(⋅⌝⌝s) ⌐ ln cϕ!⌞,

where ⌐ln cϕ! accounts for the fact that the indexing order of the
particles does not matter. We further rewrite the right side as

⊍ d⌝s⊍
cϕ=1

P0(cϕ, ⌝s)⌞(cϕ + nωϕ)⌜⌐ ln ↼ϕ(⌝z⌝⌝s)⌜↼ϕ(⋅⌝⌝s) ⌐ ln (cϕ + nωϕ)!⌞
= S[P0(⌝y (ϕ)⌝⌝c, ⌝s)] + nωϕ Sϕ + ⌞ln cϕ!(cϕ + nωϕ)!⌞P0

,

where we again performed the change of variables cϕ ↦ cϕ + nωϕ.
Combining with Eq. (A7) gives

S(Pn) = S(P0) + nωϕ Sϕ + ⌞ln cϕ!(cϕ + nωϕ)!⌞P0

. (A8)

We simplify the factorial terms in Eq. (A8) in the following
manner. For the replicator species ϕ = 1, we write

⌞ln c1!(c1 + nω1)!⌞P0

= ⌐ ln n!,

which follows from ω1 = 1 and c1 = 0 for all microstates with sup-
port under P0. For non-replicator species ϕ > 1, we assume that their
counts are very large, relative to the number consumed or produced
by replicator synthesis. We then apply Stirling’s approximation
ln x! ≈ x ln x ⌐ x and simplify

ln
cϕ!(cϕ + nωϕ)! ≈ nωϕ ⌐ cϕ ln

cϕ + nωϕ

cϕ
⌐ nωϕ ln (cϕ + nωϕ)

≈ ⌐nωϕ ln (cϕ + nωϕ)
≈ ⌐nωϕ ln cϕ.

These approximations are valid when cϕ ≫ ⌝nωϕ⌝.
Finally, combining with Eq. (A8) gives

S(Pn) ≈ S(P0) + n⌝S1 + K⊍
ϕ=2

ωϕ(Sϕ ⌐ ⌜ln cϕ⌜P0)⌝ ⌐ ln n!.

Plugging this and Eq. (A6) into Eq. (A5) gives expression (13) in the
main text, with per-capita entropy production,

ϖrep ≈ S1 ⌐ E1

kBT
+ K⊍

ϕ=2
ωϕ⌞Sϕ ⌐ ⌜ln cϕ⌜P0 ⌐ Eϕ

kBT
⌟. (A9)
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