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In many real-world systems, information can be transmitted in two qualitat-
ively different ways: by copying or by transformation. Copying occurs when
messages are transmitted without modification, e.g. when an offspring
receives an unaltered copy of a gene from its parent. Transformation occurs
when messages are modified systematically during transmission, e.g.
when mutational biases occur during genetic replication. Standard infor-
mation-theoretic measures do not distinguish these two modes of
information transfer, although they may reflect different mechanisms and
have different functional consequences. Starting from a few simple
axioms, we derive a decomposition of mutual information into the infor-
mation transmitted by copying versus the information transmitted by
transformation. We begin with a decomposition that applies when the
source and destination of the channel have the same set of messages and
a notion of message identity exists. We then generalize our decomposition
to other kinds of channels, which can involve different source and destina-
tion sets and broader notions of similarity. In addition, we show that copy
information can be interpreted as the minimal work needed by a physical
copying process, which is relevant for understanding the physics of replica-
tion. We use the proposed decomposition to explore a model of amino acid
substitution rates. Our results apply to any system in which the fidelity of
copying, rather than simple predictability, is of critical relevance.
Significance statement
Analysing and understanding the flow of information is crucial in many fields,
from biology to physics to artificial intelligence. In many situations, it is crucial
to disentangle how much information is transmitted by exact copying and how
much information is transmitted by systematic transformations, a distinction
that is not captured by standard information-theoretic measures. Here, we
derive such a decomposition by starting from a few simple and intuitive assump-
tions. Our decomposition is easy to compute and has fundamental interpretations
in terms of the thermodynamic costs of physical replication. Our measures apply
to any information-processing scenario in which the faithfulness of the copy, not
just the overall amount of mutual information, is of functional importance.
1. Introduction
Shannon’s information theory provides a powerful set of tools for quantifying
and analysing information transmission. A particular measure of interest is
mutual information (MI), which is the most common way of quantifying the
amount of information transmitted from a source to a destination. MI has fun-
damental interpretations and operationalizations in a variety of domains,
ranging from telecommunications [1,2] to gambling and investment [3–5], bio-
logical evolution [6], statistical physics [7,8] and many others. Nonetheless, it
has long been observed [9,10] that MI does not distinguish between a situation
in which the destination receives a copy of the source message versus one in
which the destination receives some systematically transformed version of the
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(a) (b) (c)

Figure 1. An illustration of the problem of copy and transformation. Consider three channels, each of which can transmit two messages, indicated by cat and snake (e.g. alarm
calls in an animal communication system). In all panels, the rows indicate the message selected at the source, the columns indicate the message received at the destination, and
the shade of the respective square indicates the conditional probability of the destination message given source message. For the channel in (a), all information is copied: the
channel maps cat→ cat and snake→ snake with probability 1. For the channel in (b), all information is transformed: the channel maps cat→ snake and snake→ cat with
probability 1. Note that, for any source distribution, the mutual information between source and destination is the same in (a) and (b). The channel in (c) is completely noisy: the
probability of receiving a given message at the destination does not depend on the message selected at the source, and the mutual information between source and destination
is 0. Observe that transformation is different from noise, in that it still involves the transmission of information.
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source message (where ‘systematic’ refers to transformations
that do not arise purely from noise).

As an example of where this distinction matters, consider
the transmission of genetic information during biological
reproduction. When this process is modelled as a communi-
cation channel from parent to offspring, the amount of
transmitted genetic information is often quantified by MI
[11–15]. During replication, however, genetic information is
not only copied but can also undergo systematic transform-
ations in the form of non-random mutational biases. For
instance, in the DNA of most organisms, A $ G and C $ T

mutations occur more frequently than A $ C, A $ T, G $ C

and G $ T mutations [16–18]. That means that some infor-
mation about parent nucleotides is preserved even when
those nucleotides undergo mutations. MI does not distinguish
which part of genetic information is transmitted by exact copy-
ing and which part is transmitted by mutational biases.
However, these two modes of information transmission are
driven by different mechanisms and have dramatically differ-
ent evolutionary and functional implications, given that
mutations are more likely to lead to deleterious consequences.

The goal of this paper is to find a general decomposition of
the information transmitted by a channel into contributions
from copying versus from transformation. In figure 1, we
provide a schematic that illustrates the problem. Essentially,
we seek a decomposition of transmitted information into
copy and transformation that distinguishes the example pro-
vided in figure 1a, where the copy is perfect, from the one
provided in figure 1b, where the message has been systemati-
cally scrambled, from the one provided in figure 1c, where
the channel is completely noisy. Of course, we also want such
a decomposition to apply in less extreme situations, where
part of the information is copied and part is transformed.

The distinction between copying and transformation is
important in many other domains beyond the case of biologi-
cal reproduction outlined above. For example, in many models
of animal communication and language evolution, agents
exchange signals across noisy channels and then use these sig-
nals to try to agree on common referents in the external world
[10,19–25]. In such models, successful communication occurs
when information is transmitted by copying; if signals are sys-
tematically transformed—e.g. by scrambling—the agents will
not be mutually intelligible, even though MI between them
may be high. As another example, the distinction between
copying and transformation may be relevant in the study of
information flow during biological development, where
recent work has investigated the ability of regulatory networks
to decode development signals, such as positional information,
from gene expression patterns [26]. In this scenario, infor-
mation is copied when developmental signals are decoded
correctly, and transformed when they are systematically
decoded in an incorrect manner. Yet other examples are pro-
vided by Markov chain models, which are commonly used
to study computation and other dynamical processes in
physics [27], biology [28] or sociology [29], among other
fields. In fact, a Markov chain can be seen as a communication
channel in which the system state transmits information from
the past into the future. In this context, copying occurs when
the system maintains its state constant over time (remains
in fixed points) and transformation occurs when the state
undergoes systematic changes (e.g. performs some kind of
non-trivial computations).

Interestingly, while the distinction between copy and
transformation information seems natural, it has not been
previously considered in the information-theoretic literature.
This may be partly due to the different roles that information
theory has historically played: on the one hand, a field of
applied mathematics concerned with the engineering pro-
blem of optimizing information transmission (its original
purpose); on the other, a set of quantitative tools for describ-
ing and analysing intrinsic properties of real-world systems.
Because of its origins in engineering, much of information
theory—including Shannon’s channel-coding theorem,
which established MI as a fundamental measure of trans-
mitted information [2,30,31]—is formulated under the
assumption of an external agent who can appropriately
encode and decode information for transmission across a
given communication channel, in this way accounting for
any transformations performed by the channel. However, in
many real-world systems, there is no additional external
agent who codes for the channel [10,32], and one is interested
in quantifying the ability of a channel to copy information
without any additional encoding or decoding. This latter
problem is the main subject of this paper.

A final word is required to motivate our information-
theoretic approach. It is standard to characterize the ability
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of a channel to copy messages via the ‘probability of error’ [2],
which we indicate as ϵ. In particular, ϵ is the probability that
the destination receives a different message from the one
that was sent by the source, while 1− ϵ is the probability that
the destination receives the same message as was sent by the
source. However, for our purposes, this approach is insuffi-
cient. First of all, while 1− ϵ quantifies the propensity of a
channel to copy information, ϵ does not quantify the propen-
sity to transmit information by transformation, since ϵ
increases both in the presence of transformation and in the
presence of noise (in other words, ϵ is high both in a channel
like figure 1b and in a channel like figure 1c). Among other
things, this means that 1− ϵ and ϵ cannot be used to compute
a channel’s ‘copying efficiency’ (i.e. which portion of the total
information transmitted across a channel is copied). Second,
and more fundamentally, ϵ and 1− ϵ are not information-
theoretic quantities, in the sense that they do not measure an
amount of information. For instance, 1− ϵ is bounded between
0 and 1 for all channels, whether considering a simple binary
channel or a high-speed fibre-optic line. In the language of
physics, one might say that ϵ is an intensive property, rather
than an extensive one that scales with the size of the channel.
We instead seek measures which quantify the amount of
copied and transformed information, and which can grow as
the capacity of the channel under consideration increases.

In this paper, we present a decomposition of information
that distinguishes copied from transformed information. We
derive our decomposition by proposing four natural axioms
that copy and transformation information should satisfy,
and then identifying the unique measure that satisfies these
axioms. Our resulting measure is easy to compute and can
be used to decompose either the total MI flowing across a
channel, or the specific MI corresponding to a given source
message, or an even more general measure of acquired
information called Bayesian surprise.

The paper is laid out as follows. We present our approach
in the next section. In §3, we show that, while our basic
decomposition is defined for discrete-state channels where
the source and destination share the same set of possible
messages (so that the notion of ‘exact copy’ is simple to
define), our measures can be generalized to channels with
different source and destination messages, to continuous-
valued channels, and to other definitions of copying. We
also discuss how our approach relates to rate distortion in
information theory [2]. In §4, we show that our measure
can be used to quantify the thermodynamic efficiency of
physical copying processes, a central topic in biological phy-
sics. In §5, we demonstrate our measures on a real-world
dataset of amino acid substitution rates.
2. Copy and transformation information
2.1. Preliminaries
We briefly present some basic concepts from information
theory that will be useful for our further developments.

We use the random variables X and Y to indicate the
source and destination, respectively, of a communication
channel (as defined in detail below). We assume that the
source X and destination Y both take outcomes from the
same countable set A. We use Δ to indicate the set of all prob-
ability distributions whose support is equal to or a subset of
A. We use notation like pY, qY, …∈ Δ to indicate marginal
distributions over Y, and pY|x, qY|x, …∈ Δ to indicate con-
ditional distributions over Y, given the event X = x. Where
clear from context, we will simply write p(y), q(y),… and
p(y|x), q(y|x),… , and drop the subscripts.

For some distribution p over random variable X, we write
the Shannon entropy as H(p(X)) :¼ �P

x p(x) log p(x), or
simply H(X ). For any two distributions s and q over the
same set of outcomes, the Kullback–Leibler (KL) divergence
is defined as

DKL(skq) :¼
X
x

s(x) log
s(x)
q(x)

: (2:1)

KL is non-negative and equal to 0 if and only if s(x) = q(x) for
all x. It is infinite when the support of s is not a subset of the
support of q. In this paper, we will also make use of the KL
between Bernoulli distributions—that is, distributions over
two states of the type (a, 1− a)—which is sometimes called
‘binary KL’. We will use the notation d(a, b) to indicate the
binary KL,

d(a, b) :¼ a log
a
b
þ (1� a) log

1� a
1� b

: (2:2)

We will in general assume that logs are in base 2 (so infor-
mation is measured in bits), unless otherwise noted.

In information theory, a communication channel specifies
the conditional probability distribution of receiving different
messages at a destination given messages transmitted by
a source. Let pY|X(y|x) indicate such a conditional prob-
ability distribution. The amount of intrinsic noise in the
channel, given some probability distribution of source
messages sXðxÞ, is the conditional Shannon entropy
H(Y jX) :¼ �P

x s(x)
P

y p(yjx) log p(yjx). The amount of
information transferred across a communication channel
is quantified using the MI between the source and the
destination [2],

Ip(Y :X) :¼
X
x

s(x)
X
y

p(yjx) log p(yjx)
p(y)

, (2:3)

where p(y) is the marginal probability of receiving message y
at the destination, defined as

p(y) :¼
X
x

s(x)p(yjx): (2:4)

When writing Ip (Y : X ), we will omit the subscript p indicat-
ing the channel where it is clear from context. MI is a
fundamental measure of information transmission and can
be operationalized in numerous ways [2]. It is non-negative,
and large when (on average) the uncertainty about the mess-
age at the destination decreases by a large amount, given the
source message. MI can also be written as a weighted sum of
so-called specific MI1 terms [33–35], one for each outcome of X,

I(Y :X) ¼
X
x

s(x)I(Y :X¼x), (2:5)

where the specific MI for outcome x is given by

I(Y :X¼x) :¼
X
y

p(yjx) log p(yjx)
p(y)

¼ DKL( pYjxkpY): (2:6)

Each I(Y : X = x) indicates the contribution to MI arising from
the particular source message x. We will sometimes use the
term total mutual information (total MI) to refer to equation
(2.3), so as to distinguish it from specific MI.
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Specific MI also has an important Bayesian interpretation.
Consider an agent who begins with a set of prior beliefs about
Y, as specified by the prior distribution pY(y). The agent then
updates their beliefs conditioned on the event X = x, resulting
in the posterior distribution pY|x. The KL divergence between
the posterior and the prior, DKL( pYjxkpY) (equation (2.6)), is
called Bayesian surprise [36], and quantifies the amount of
information acquired by the agent. It reaches its minimum
value of zero, indicating that no information is acquired, if
and only if the prior and posterior distributions match exactly.
Bayesian surprise plays a fundamental role in Bayesian theory,
including in the design of optimal experiments [37–40] and the
selection of ‘non-informative priors’ [41,42]. Specific MI is a
special case of Bayesian surprise, when the prior pY is the mar-
ginal distribution at the destination, as determined by a choice
of source distribution sX and channel pY|X according to
equation (2.4). In general, however, Bayesian surprise may
be defined for any desired prior pY and posterior distribu-
tion pY|x, without necessarily making reference to a source
distribution sX and communication channel pY|X.

BecauseBayesian surprise is a generalmeasure that includes
specific MI as a special case, we will formulate our analysis of
copy and transformation information in terms of Bayesian sur-
prise, DKL( pYjxkpY). Note that, while the notation pY|x implies
conditioning on the event X = x, formally pY|x can be any distri-
bution whatsoever. Thus, we do not technically require
that there exists some full joint or conditional probability distri-
bution overX and Y. Throughout the paper, wewill refer to the
distributions pY|x and pY as the ‘posterior’ and ‘prior’.

Proofs and derivations are contained in the electronic
supplementary material.

2.2. Axioms for copy information
Wepropose that anymeasure of copy information should satisfy
a set of four axioms. Our set-up is motivated in the following
way. First, our decomposition should apply at the level of the
individual sourcemessage, i.e. wewish to be able to decompose
each specificMI term (or,more generally, Bayesian surprise) into
anon-negative (specific) copy information termandanon-negative
(specific) transformation information term. Second, we postulate
that if there are two channels with the same marginal distri-
bution at the destination, then the channel with the larger pY|
X(x|x) (probability of destination getting message x when the
source transmits message x) should have larger copy infor-
mation for source message x (this is, so to speak, our ‘central
axiom’). This postulate can also be interpreted in a Bayesian
way. Imagine two Bayesian agents with the same prior distri-
bution over beliefs, pY, who update their beliefs conditioned on
the eventX = x. We postulate that the agent with the larger pos-
teriorprobabilityonY = x shouldhave greater copy information.

Formally, we assume that each copy information term is a
real-valued function of the posterior distribution, the prior
distribution and the source message x, written generically
as F( pY|x, pY, x). Given any measure of copy information F,
the transformation information associated with message x is
then the remainder of DKL( pYjxkpY) beyond F,

Ftrans( pYjx, pY, x) :¼ DKL( pYjxkpY)� F( pYjx, pY, x): (2:7)

We now propose a set of axioms that any measure of copy
information F should satisfy.

First, we postulate that copy information should
be bounded between 0 and the Bayesian surprise,
DKL( pYjxkpY). Given equation (2.7), this guarantees that both
F and Ftrans are non-negative.
Axiom 2.1. F( pYjx, pY, x) � 0:

Axiom 2.2. F( pYjx, pY, x) � DKL( pYjxkpY).

Then, we postulate that copy information for source
message x should increase monotonically as the posterior
probability of x increases, assuming the prior distribution is
held fixed (this is the ‘central axiom’ mentioned above).
Axiom 2.3. If pY|x(x)≤ qY|x(x), then F( pY|x, pY, x)≤ F(qY|x, pY, x).

In electronic supplementary material, section B, we show
that any measure of copy information that satisfies the above
three axioms must obey F(pY|x, pY, x) = 0 whenever pY|x(x)≤
pY(x). We also show that one particular measure of copy infor-
mation, which is called Dcopy

x and is discussed in the next
section, is the largest measure that satisfies the above three
axioms. However, the three axioms do not uniquely determine
what happens when pY|x(x) > pY(x). This means that Dcopy

x is
not unique, and, in fact, there are some trivial measures (such
as F(pY|x, pY, x) = 0 for all pY|x, pY and x) that also satisfy the
above axioms. Such trivial cases are excluded by our final
axiom, which states that for all prior distributions and all pos-
terior probabilities pY|x(x) > pY(x), there are posterior
distributions that contain only copy information. As we will
see below, Dcopy

x is the unique satisfying measure once this
axiom is added.
Axiom 2.4. For any pY and c∈ [pY(x), 1], there exists a posterior
distribution pY|x such that pY|x(x) = c and F( pYjx, pY, x) ¼
DKL( pYjxkpY).

2.3. The measure Dcopyx
We now present Dcopy

x , the unique measure that satisfies the
four copy information axioms proposed in the last section.
Given a prior distribution pY, posterior distribution pY|x and
source message x, this measure is defined as

Dcopy
x ( pYjxkpY) ¼ d( pYjx(x), pY(x)) if pYjx(x) . pY(x)

0 otherwise,

�
(2:8)

where we have used the notation of equation (2.2). We now
state the main result of our paper, which is as follows.
Theorem 2.5. Dcopy
x is the unique measure which satisfies axioms

2.1–2.4.

In electronic supplementary material, section A, we
demonstrate that Dcopy

x satisfies all the axioms, and in elec-
tronic supplementary material, section B, we prove that it is
the only measure that satisfies them. We further show that
if one drops axiom 2.4, then Dcopy

x is the largest possible
measure that can satisfy the remaining axioms.

Given the definition of Ftrans in equation (2.7), Dcopy
x also

defines a non-negative measure of transformation information,
which we call Dtrans

x ,

Dtrans
x ( pYjxkpY) ¼ DKL( pYjxkpY)�Dcopy

x ( pYjxkpY):

2.4. Decomposing mutual information
We now show that Dcopy

x and Dtrans
x allow for a decomposition

ofMI intoMI due to copying andMI due to transformation. Recall
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Figure 2. The binary symmetric channel (BSC) with a uniform source distri-
bution. We plot values of the MI I(Y : X ), copy information Icopy(X ! Y )
(equation (2.10)) and transformation information Itrans(X ! Y ) (equation
(2.11)) for the BSC along the whole range of error probabilities ϵ∈ [0, 1].
When ϵ≤ 1/2, all mutual information is Icopy (blue shading); when ϵ≥
1/2, all mutual information is Itrans (orange shading). (Online version in colour.)
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thatMI can bewritten as an expectation over specificMI terms,
as shown in equation (2.6). Each specificMI term can be seen as
a Bayesian surprise, where the prior distribution is the mar-
ginal distribution at the destination (see equation (2.4)), and
the posterior distribution is the conditional distribution of des-
tinationmessages given a particular sourcemessage. Thus, our
definitions of Dcopy

x and Dtrans
x provide a non-negative

decomposition of each specific MI term,

Ip(Y :X¼x) ¼ Dcopy
x ( pYjxkpY)þDtrans

x ( pYjxkpY): (2:9)

In consequence, they also provide a non-negative decompo-
sition of the total MI into two non-negative terms: the total
copy information and the total transformation information,

Ip(Y :X) ¼ Icopyp (X ! Y)þ Itransp (X ! Y),

where Icopyp (X ! Y) and Itransp (X ! Y) are given by

Icopyp (X ! Y) :¼
X
x

s(x)Dcopy
x ( pYjxkpY) (2:10)

and Itransp (X ! Y) :¼
X
x

s(x)Dtrans
x ( pYjxkpY): (2:11)

(When writing Icopy and Itrans, we will often omit the subscript
p when the channel is clear from the context.) By a simple
manipulation, we can also decompose the marginal entropy
of the destination H(Y ) into three non-negative components,

H(Y) ¼ Icopy(X ! Y)þ Itrans(X ! Y)þH(YjX): (2:12)

Thus, given a channel from X to Y, the uncertainty in Y can be
written as the sum of the copy information from X, the trans-
formed information from X and the intrinsic noise in that
channel from X to Y.

For illustration purposes, we plot the behaviour of Icopy

and Itrans in the classical binary symmetric channel (BSC) in
figure 2 (see caption for details). More detailed analysis of
copy and transformation information in the BSC is discussed
in electronic supplementary material, section E.

It is worthwhile pointing out several important differences
between our proposed measures and MI.

First, in the definitions of Icopy(X ! Y) and Itrans(X ! Y),
the notation X→Y indicates that X is the source and Y is the
destination. This is necessary because, unlike MI, Icopy and
Itrans are in general non-symmetric, so it is possible that
Icopy(X ! Y) = Icopy(Y ! X), and similarly for Itrans. We
also note that the above forms of Icopy and Itrans, where they
are written as sums over the individual source message, are
sometimes referred to as the trace-like forms in the literature,
and are commonly desired characteristics of information-
theoretic functionals [43,44].

Second, Icopy and Itrans do not obey the data-processing
inequality [2], and can either decrease or increase as the des-
tination undergoes further operations. In this respect, they are
different from MI (the sum of Icopy and Itrans). As an example,
consider the case where channel pY|X first transforms source
message X into an encrypted message Y, and then another
channel pX0|Y decrypts Y back into a copy of X (so X0 =X).
In this example, Icopy(X ! X0) . Icopy(X ! Y) even though
the Markov condition X−Y−X0 holds.

Finally, unlike MI, Icopy and Itrans are generally non-additive
when multiple independent channels are concatenated. As an
example, imagine that the source messages are bit strings of
length n, which are transmitted through a product of n indepen-
dent channels, p(y|x) =∏i pi(yi|xi). If the source bits
are independent, s(x) =∏i si(xi), it is straightforward to show
that the MI between X and Y has the additive form
I(Y :X) ¼ P

i I(Yi : Xi). However, Icopy will generally not have
this additive form, because copy information is defined in
terms of the probability of exactly copying the entire source
message (e.g. the entire n-bit-long string). Imagine that, in the
above example, one of the bit-wise channels carries out a bit
flip, pi(xi|yi) = 1− δ(xi, yi). In that case, the probability of receiv-
ing an exact copyof the sourcemessage at thedestination is zero,
and therefore Icopy is also zero regardless of the nature of the
other bit-wise channels pj for j≠ i. If desired, it is possible to
derive an additive version of Icopy by generalizing our measure
with an appropriate ‘loss function’, as discussed inmoredetail in
§3 and electronic supplementary material, section C.3.

2.5. Copying efficiency
Our approach provides a way to quantify which portion of
the information transmitted across a channel is due to copy-
ing rather than transformation, which we refer to as ‘copying
efficiency’. Copying efficiency is defined at the level of
individual source messages as

hp(x) :¼
Dcopy

x ( pYjxkpY)
DKL( pYjxkpY) [ [0, 1], (2:13)

where the bounds come directly from axioms 2.1 and 2.2. It
can also be defined at the level of a channel as a whole as

hp :¼
Icopy(X ! Y)

I(Y :X)
[ [0, 1]: (2:14)

The bounds follow simply given the above results.
For equations (2.13) and (2.14) to be useful efficiency

measures, there should exist channels which are either ‘com-
pletely inefficient’ (have efficiency 0) or ‘maximally efficient’
(achieve efficiency 1). For the case of equation (2.13), the
bounds can be saturated because of axiom 2.4, which guaran-
tees that, for any source message x, prior pY and desired
posterior probability pY|x(x)≥ pY(x), there exists a posterior
pY|x such that the Bayesian surprise DKL( pYjxkpY) is composed
entirely of copy information (for example, see electronic
supplementary material, Eq. (A.1)).

One can show that the bounds in equation (2.14) can also
be saturated. First, it can be verified that completely inefficient
channels exist, since any channel which has pY|x(x)≤ pY(x) for
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all x [ A will have Icopy(X ! Y) ¼ 0 (note that such channels
exist at all levels of MI). We also show that maximally efficient
channels exist, using the following result, which is proved in
electronic supplementary material, section D.
ietypublishing.org/journal/rsif
J.R.Soc
Proposition 2.6. For any source distribution sX with H(X ) <∞,
there exist channels pY|x for all levels of mutual information
Ip (Y : X ) ∈ [0, H(X )] such that Icopyp (X ! Y) ¼ Ip(Y :X).

Proposition 2.6 shows that it is possible to achieve all values
of total copy information, which is defined at the level of a chan-
nel. Note that this proposition does not follow immediately from
axiom 2.4, which is a statement about copy information at
the level of a prior pY and posterior pY|x, where no particular
relationship between pY and pY|x is assumed.
.Interface
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3. Generalization and relation to rate distortion
We now show thatDcopy

x can bewritten as a particular element
among a broad family of copy information measures, which
generalize the formal definition of what is meant by ‘copying’.

As we showed above, Dcopy
x is the unique measure that

satisfies the four axioms proposed in §2.2. In particular, it
satisfies axiom 2.3, which states that, given the same prior
pY, copy information should be larger for qY|x than for pY|x
whenever qY|x(x)≥ pY|x(x). It also satisfies axiom 2.4, which
states that there exist posterior distributions that have only
copy information for all possible pY|x(x)∈ [ pY(x), 1].

These axioms are based on one particular definition of
copying, which states that copying occurs when the source
and destination messages match perfectly. In fact, this can
be generalized to other definitions of copying and transform-
ation by using a loss function ℓ(x, y), which quantifies the
dissimilarity between source message x and destination
message y. For a given loss function, ℓ(x, y) = 0 indicates
that x and y should be considered a perfect copy of each
other, while ℓ(x, y) > 0 indicates that x and y should be con-
sidered as somewhat different. Importantly, ℓ(x, y) can
quantify similarity in a graded manner, so that ℓ(x,
y0) > ℓ(x, y) indicates that y is closer to being a copy of x
than y0 (even though neither y nor y0 may be a perfect copy
of x).

Given an externally specified loss function ℓ(x, y), one can
define axioms 2.3 and 2.4 in a generalized manner. The
generalized version of axiom 2.3 states that posterior distri-
bution qY|x should have higher copy information than pY|x
whenever its expected loss is lower:
Axiom 3.1*. If E pYjx [‘(x,Y)] � EqYjx [‘(x,Y)], then F( pY|x, pY,
x)≤ F(qY|x, pY, x).

The generalized version of axiom 2.4 states that, at all
values of the expected loss which are lower than the expected
loss achieved by pY, there are channels which transmit
information only by copying.
Axiom 3.2*. For any pY and c [ [miny ‘(x, y), E pY [‘(x,Y)]],
there exists a posterior distribution pY|x such that
E pYjx [‘(x,Y)] ¼ c and F( pYjx, pY, x) ¼ DKL( pYjxkpY).
Note that, in defining axiom 3.2*, we used that min yℓ(x, y)
is the lowest expected loss that can be achieved by any
posterior distribution.

Each particular loss function induces its own measure of
copy information. In fact, as we show in electronic supplemen-
tary material, section C.1, there is a unique measure of copy
information which satisfies axioms 2.1 and 2.2, as defined in
§2.2, plus the generalized axioms 3.1* and 3.2*, as defined
here in terms of the loss function ℓ(x, y). This generalized
measure of copy information has the following form:

Gcopy
x ( pYjxkpY) :¼ min

rY
DKL(rYkpY) (3:1)

s.t. ErY [‘(x,Y)] � E pYjx [‘(x,Y)]: (3:2)

Recall that the KL divergence DKL(rYkpY) reflects the amount
of information acquired by an agent in going from prior distri-
bution pY to posterior distribution rY. Thus, Gcopy

x ( pYjxkpY)
quantifies the minimum information that must be acquired
by an agent in order to match the copying performance of
the actual posterior pY|x, as measured by the expected loss.

Equation (3.1) is an instance of a ‘minimum cross-entropy’
problem, which is closely related to the ‘maximum entropy’
principle [45–47]. The distribution that optimizes equation
(3.1) can be written in a simple form [48, pp. 299–300],

w(y) ¼ 1
Z(l)

pY(y) e�l‘(x,y),

where λ≥ 0 is a Lagrange multiplier chosen so that the cons-
traint in equation (3.1) is satisfied, and Z(l) ¼ P

y pY(y)e
�l‘(x,y)

is a normalization constant. Note that, whenever
E pYjx [‘(x, Y)] � E pY [‘(x, Y)], λ= 0 and wY= pY [48]. Otherwise,
λ> 0 and the constraint in equation (3.1)will be tight up to equal-
ity. In practice, equation (3.1) can be solved by sweeping across
the one-dimensional space of possible λ≥ 0 values (it can also
be solved by standard convex optimization techniques). Once
λ is determined, the value of copy information is given by

Gcopy
x ¼ �lE pYjx [‘(x, Y)]� logZ(l):

It can be verified that Dcopy
x , the measure derived above, corre-

sponds to the special case ℓ(x, y) := 1− δ(x, y), which is called
‘0–1 loss’ in statistics [49] and ‘Hamming distortion’ in infor-
mation theory [2] (see electronic supplementary material,
section C.2).

The generalized measure Gcopy
x has many similarities to

Dcopy
x . Like Dcopy

x , it naturally leads to a non-negative measure
of generalized transformation information,

Gtrans
x ( pYjxkpY) ¼ DKL( pYjxkpY)� Gcopy

x ( pYjxkpY): (3:3)

Gcopy
x can also be used to decompose total MI into (general-

ized) total copy and transformation information, akin to
equations (2.10) and (2.11). Finally, one can use Gcopy

x to
define a generalized measure of copying efficiency, following
the approach described in §2.5.

While we believe Dcopy
x , as defined via the 0–1 loss func-

tion, is a simple and reasonable choice in a variety of
applications; in some cases, it may also be useful to consider
other loss functions. One important example is when the
source and destination have different sets of outcomes.
Recall that Dcopy

x assumes that the source and destination
share the same set of possible outcomes, A. When this
assumption does not hold, generalized measures of copy
and transformation information can still be defined, as long
as an appropriate loss function ‘ :X � Y ! R is provided
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(where X and Y indicate the outcomes of the source and
destination, respectively).

Another important use case occurs when the loss function
specifies continuously varying degrees of functional simi-
larity between source and destination messages. For
example, imagine that pY|X is an image compression algor-
ithm which maps raw images X to compressed outputs Y.
Research in computer vision has developed sophisticated
loss functions for image compression which correlate
strongly with human perceptual judgements [50]. By defining
copy information in terms of such a loss function, one could
measure how much perceptual information is copied by a
particular image compression algorithm.

Our generalized approach can also be used to define copy
and transformation information for random variables with
continuous-valued outcomes. The 0–1 loss function, as used
in Dcopy

x , is not very meaningful for continuous-valued
outcomes, since it depends on a measure-0 property of pY|x.
A more natural measure of copy information is produced
by the squared-error loss function ℓ(x, y): = (x− y)2, giving

min
rY

DKL(rYkpY) s.t. ErY [(Y� x)2] � E pYjx [(Y� x)2]:

This particular optimization problem has been investigated in
the maximum entropy literature, and has been shown to be
particularly tractable when pY belongs to an exponential
family [51–53].

Finally, it is also possible to generalize this approach to
vector-valued loss functions ‘ :X � Y ! Rn, which allow
one to specify dissimilarity in a multi-dimensional way.
We discuss the relevant axioms and resulting copy informa-
tion measure for vector-valued loss functions in electronic
supplementary material, section C.3. We also demonstrate
that vector-valued loss functions can be used to define
measures of copy and transformation information that are
additive for independent channels, in the sense discussed
in §2.4.

After what we have discussed so far, it is natural to briefly
review the similarities between our generalized approach
and rate-distortion theory [2]. In rate-distortion theory, one is
given a distribution over source messages sX and a ‘distortion
function’ ℓ(x, y) which specifies the loss incurred when
source message x is encoded with destination message y.
The problem is to find the channel rY|X which minimizes
MI without exceeding some constraint on the expected
distortion,

min
rYjX

DKL(rYjXkrY) s.t. Er[‘(X,Y)] � a, (3:4)

where α is an externally determined parameter. The prototypi-
cal application of rate distortion is compression, i.e. to find a
compression channel rY|X that has both low MI and low
expected distortion. As can be seen by comparing equations
(3.1) and (3.4), the optimization problem considered in our
definition of generalized copy information and the optimiz-
ation found in rate distortion are quite similar: they both
involve minimizing a KL divergence subject to an expected
loss constraint. Nonetheless, there are some important differ-
ences. First and foremost, the goals of the two approaches
are different. In our approach, the aim is to decompose the
information transmitted by a fixed externally specified channel
into copy and transformation. In rate distortion, there is no
externally specified channel and the aim is instead to find an
optimal channel de novo. Second, our approach is motivated
by a set of axioms which postulate how a measure of copy
information should behave, rather than from channel-coding
considerations which are used to derive the optimization pro-
blem in rate distortion [2]. Lastly, copy information is defined
in a point-wise manner for each source message x, rather than
for an entire set of source messages at once, as is rate
distortion.

We finish by noting that one can also define equation (3.1)
in a channel-wise manner (by minimizing DKL(rYjXkrY), as in
equation (3.4)) rather than a pointwise manner (minimize
DKL(rYjX¼xkpY), as in equation (3.1)). Under that formulation,
one could no longer decompose specific MI into non-negative
copy and information terms, though total MI could still be
decomposed in that way. Interestingly, this alternative formu-
lation would become equivalent to the so-called minimum
information principle, a previous proposal for quantifying
how much information about source messages is carried by
different properties of destination messages [54].
4. Thermodynamic costs of copying
Given the close connection between information theory and
statistical physics, many information-theoretic quantities can
be interpreted in thermodynamic terms [8]. As we show
here, this includes our proposed measure of copy infor-
mation, Dcopy

x . Specifically, we will show that Dcopy
x reflects

the minimal amount of thermodynamic work necessary to
copy a physical entity such as a polymer molecule. This
latter example emphasizes the difference between infor-
mation transfer by copying versus by transformation in a
fundamental, biologically inspired physical set-up.

Consider a physical system coupled to a heat bath at temp-
erature T, and which is initially in an equilibrium distribution
p(i)/ e�EðiÞ=ðkTÞ with respect to some Hamiltonian E (k is Boltz-
mann’s constant).Now imagine that the system is driven to some
non-equilibriumdistribution p by a physical process, and that by
the end of the process the Hamiltonian is again equal to E. The
minimal amount of work required by any such process is related
to the KL divergence between p and π [55],

W � kT DKL(pkp): (4:1)

The limit is achievedby thermodynamically reversibleprocesses.
(In this subsection, in accordancewith the convention in physics,
we assume that all logarithms are in base e, so information is
measured in nats.)

Recent work has analysed the fundamental thermodyn-
amic constraints on copying in a physical system, for
example for an information-carrying polymer like DNA
[56,57]. Here, we will generally follow the model described
in [56], while using our notation and omitting some details
that are irrelevant for our purposes (such as the microstate/
macrostate distinction). In this model, the source X represents
the state of the original system (e.g. the polymer to be
copied), and the destination Y represents the state of the repli-
cate (e.g. the polymer produced by the copying mechanism).
We make several assumptions. First, the source X is not
modified during the copying process. Second, X and Y
have the same Hamiltonian before and after the copying pro-
cess. Finally, we follow [56] in assuming that Y is a persistent
copy of X, meaning that before and after the copying process
Y is physically separated from X and there is no interaction
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energy between them. This does not preclude X and Y from
coming into contact and interacting energetically during inter-
mediate stages of the copying process (for instance by template
binding). The assumption of persistent copying means that
there are no unaccounted energetic costs involved in preparing
the copying system and transporting the produced replicate
(e.g. moving the replicate Y to a daughter cell).

Assume that Y starts in the equilibrium distribution, indi-
cated as πY (note that, by our persistent copy assumption, the
equilibrium distribution cannot depend on the state of X). Let
pY|x(x) indicate the conditional distribution of replicates after
the end of the copying process, where x is the state of the
original system X. Following equation (4.1), the minimal
work required to bring Y out of equilibrium and produce
replicates according to pY|x(x) is given by

W(x) � kT DKL( pYjxkpY): (4:2)

Note that equation (4.2) specifies the minimal work
required to create the overall distribution pY|x. However, in
many real-world scenarios, probably including DNA copy-
ing, the primary goal is to create exact copies of the original
state, not transformed versions of it (such as non-random
mutations). That means that, for a given source state x, the
quality of the replication process can be quantified by the
probability of making an exact copy, pY|x(x). We can now
ask: what is the minimal work required by a physical replica-
tion process whose probability of making exact copies is at
least as large as pY|x(x)? To make the comparison fair, we
require that the process begins and ends with the same equi-
librium distribution, πY. The answer is given by the minimum
of the RHS of equation (4.2) under a constraint on the exact-
copy yield, which is exactly proportional to Dcopy

x ,

Wexact
min (x) ¼ kT min

rY:rY(x)� pYjx(x)
DKL(rYkpY)

� �
(4:3)

¼ kT Dcopy
x ( pYjxkpY), (4:4)

where equation (4.4) follows from electronic supplementary
material, section C.2. The additional work that is expended
by the replication process is then lower bounded by a
quantity proportional to Dtrans

x ,

W(x)�Wexact
min (x) � kTDtrans

x ( pYjxkpY): (4:5)

This shows formally the intuitive idea that transformation
information contributes to thermodynamic costs but not to
the accuracy of correct copying.

In most cases, a replication system is designed for copying
not just one source state x, but an entire ensemble of source
states (for example, the DNA replication system can copy a
huge ensemble of source DNA sequences, not just one).
Assume that X is distributed according to some sX(x).
Across this ensemble of source states, the minimal amount
of expected thermodynamic work required to produce repli-
cates according to conditional distribution pY|X is given by

hWi � kT
X
x

s(x)DKL(pYjxkpY) (4:6)

¼ kT[Ip(Y :X)þDKL(pYkpY)]: (4:7)

Since KL is non-negative, the minimum expected work is
lowest when the equilibrium distribution πY matches the mar-
ginal distribution of replicates, pY(y) ¼

P
x s(x)p(yjx). Using

similar arguments as above, we can ask about the minimum
expected work required to produce replicates, assuming each
source state x achieves an exact-copy yield of at least pY|x(x).
This turns out to be the expectation of equation (4.4),

hWexact
min i ¼ kT

X
x

s(x)Dcopy
x ( pYjx(x)kpY) (4:8)

¼ kT[Icopyp (X ! Y)þDKL(pYkpY)]: (4:9)

The additional expected work that is needed by the replica-
tion process, above and beyond an optimal process that
achieves the same exact-copy yield, is lower bounded by
the transformation information,

hWi � hWexact
min i � kTItransp (X ! Y): (4:10)

When the equilibrium distribution πY matches the marginal
distribution pY, hWexact

min i is exactly equal to kTIcopy. Further-
more, in this special case, the thermodynamic efficiency of
exact copying, defined as the ratio of minimal work to
actual work, becomes equal to the information-theoretic
copying efficiency of p, as defined in equation (2.14),

hWexact
min i

hWi ¼ Icopyp (X ! Y)

Ip(Y :X)
¼ hp: (4:11)

As can be seen, standard information-theoretic measures,
such as equation (4.2), bound the minimal thermodynamic
costs of transferring information from one physical system to
another, whether that transfer happens by copying or by trans-
formation. However, as we have argued above, the difference
between copying and transformation is essential in many bio-
logical scenarios, as well as other domains. In such cases,Dcopy

x

arises naturally as the minimal thermodynamic work required
to replicate information by copying.

Concerning the example of DNA copying that we dis-
cussed throughout this section, our results should be
interpreted with some care. We have generally imagined that
the source system represents the state of an entire polymer,
e.g. the state of an entire DNA molecule, and that the prob-
ability of exact copying refers to the probability that the entire
sequence is reproduced without any errors. Alternatively, one
can use the same framework to consider the probability of
copying a single monomer in a long polymer (assuming that
the thermodynamics of polymerization can be disregarded),
as might be represented for instance by a single-nucleotide
DNA substitution matrix [17], as analysed in the last section.
Generally speaking, Dcopy

x computed at the level of single
monomers will be different from Dcopy

x computed at the level
of entire polymers, since the probability of exact copying
means different things in these two formulations.
5. Copy and transformation in amino acid
substitution matrices

In the previous section, we saw howDcopy
x and Icopy arise natu-

rally when studying the fundamental limits on the
thermodynamics of copying, which includes the special case
of replicating information-bearing polymers. Here,we demon-
strate how these measures can be used to characterize the
information-transmission properties of a real-world biological
replication system, as formalized by a communication channel
pY|X from parent to offspring [17,58]. In this context, we show
how Icopy can be used to quantify precisely how much infor-
mation is transmitted by copying, without mutations. At the
same time,wewill use Itrans to quantify howmuch information
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is transmitted by transformation, that is, by systematic
non-random mutations that carry information but do not pre-
serve the identity of the original message [16–18]. We also
quantify the effect of purely random mutations, which
correspond to the conditional entropy of the channel,H(Y|X ).

We demonstrate these measures on empirical data of point
accepted mutations (PAMs) of amino acids. PAM data represent
the rates of substitutions between different amino acids during
the course of biological evolution, and have various appli-
cations, including evolutionary modelling, phylogenetic
reconstructions and protein alignment [58]. We emphasize
that amino acid PAMmatrices do not reflect the direct physical
transfer of information from protein to protein, but rather the
effects of underlying processes of DNA-based replication
and selection, followed by translation.

Formally, an amino acid PAM matrix Q is a continuous-
time rate matrix. Qyx represents the instantaneous rates of
substitutions from amino acid x to amino acid y, where
both x and y belong to A ¼ {1, . . . , 20}, representing the 20
standard amino acids. We performed our analysis on a par-
ticular PAM matrix Q which was published by Le &
Gascuel [58] (this matrix was provided by the pyvolve

Python package [59]). We calculated a discrete-time con-
ditional probability distribution pY|X from this matrix by
computing the matrix exponential pY|X = exp(τQ). Thus,
p(y|x) represents the probability that amino acid x is replaced
by amino acid y over time scale τ. For simplicity, we used time
scale τ = 1. We used the stationary distribution of Q as the
source distribution sX, which correlates closely with empiri-
cally observed amino acid frequencies [58, fig. 1]. Using the
decomposition presented in equation (2.11), we arrived at
the following values for the communication channel
described by the conditional probabilities pY|X:

I(Y :X) ¼ Icopy(X ! Y)þ Itrans(X ! Y) � 1:2 bits,

where

Icopy(X ! Y) ¼
X
x

s(x)Dcopy
x ( pYjxkpY) � 0:88 bits

and Itrans(X ! Y) ¼
X
x

s(x)Dtrans
x ( pYjxkpY) � 0:32 bits:

We also computed the intrinsic noise for this channel (see
equation (2.12)),

H(YjX) ¼
X
x

s(x)H(YjX ¼ x) � 2:97 bits:

Finally, we computed the specific copy and transformation
information, Dcopy

x and Dtrans
x , for different amino acids. The

results are shown in figure 3. We remind the reader that the
sum of Dcopy

x ( pYjxkpY) and Dtrans
x ( pYjxkpY) for each amino

acid x—that is, the total height of the stacked bar plots in
the figure—is equal to the specific MI I(Y : X = x) for that x,
as explained in the decomposition of equation (2.9).

While we do not dive deeply in the biological significance
of these results, we highlight several interesting findings.
First, for this PAM matrix and time scale (τ = 1), a consider-
able fraction of the information (≈1/4) is transmitted not by
copying but by non-random mutations. Generally, such non-
random mutations represent underlying physical, genetic
and biological constraints that allow some pairs of amino
acids to substitute each other more readily than other pairs.

Second, we observe considerable variation in the amount
of specific MI, copy information and transformation between
different amino acids, as well as different ratios of copy infor-
mation to transformation information. In general, amino acids
with more copy information are conserved unchanged over
evolutionary time scales. At the same time, it is known that
conserved amino acids tend to be ‘outliers’ in terms of their
physio-chemical properties (such as hydrophobicity, volume,
polarity, etc.), since mutations to such outliers are likely to
alter protein function in deleterious ways [60,61]. To analyse
this quantitatively, we used Miyata’s measure of distance
between amino acids, which is based on differences in
volume and polarity [62]. For each amino acid, we quantified
its degree of ‘outlierness’ in terms of its mean Miyata distance
to all 19 other amino acids. The Spearman rank correlation
between this outlierness measure and copy information (as
shown in figure 3) was 0.57 (p = 0.009). On the other hand,
the rank correlation between outlierness and transformation
informationwas 0.22 (p = 0.352). Similar results were observed
for other chemically motivated measures of amino acid dis-
tance, such as Grantham’s distance [63] and Sneath’s index
[64]. This demonstrates that amino acids with unique chemical
characteristics tend to have more copy information, but not
more transformation information.
6. Discussion
Although MI is a very common and successful measure of
transmitted information, it is insensitive to the distinction
between information that is transmitted by copying versus
information that is transmitted by transformation. Nonethe-
less, as we have argued, this distinction is of fundamental
importance in many real-world systems.

In this paper, we propose a rigorous and practical way to
decompose specific MI, and more generally Bayesian surprise,
into two non-negative terms corresponding to copy and
transformation, I ¼ Icopy þ Itrans. We derive our decomposition
using an axiomatic framework: we propose a set of four axioms
that any measure of copy information should obey, and then
identify the unique measure that satisfies those axioms. At
the same time, we show that our measure of copy information
is one of a family of functionals, each of which corresponds to a
different way of quantifying error in transmission. We also
demonstrate that our measures have a natural interpretation
in thermodynamic terms, which suggests novel approaches
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for understanding the thermodynamic efficiency of biological
replication processes, in particular DNA and RNA duplication.
Finally, we demonstrate our results on real-world biological
data, exploring copy and transformation information of
amino acid substitution rates. We find significant variation
among the amount of information transmitted by copying
versus transformation among different amino acids.

Several directions for future work present themselves.
First, there is a large range of practical and theoretical

application of our measures, from analysis of biological and
neural information transmission to the study of the thermo-
dynamics of self-replication, a fundamental and challenging
problem in biophysics [65].

Second, we suspect our measures of copy and transform-
ation information have further connections to existing formal
treatments in information theory, in particular, rate-distortion
theory [2], whose connections we started to explore here. We
also believe that our decomposition may be generalizable
beyond Bayesian surprise and MI to include other infor-
mation-theoretic measures, including conditional MI and
multi-information. Decomposing conditional MI is of particu-
lar interest, since it will permit a decomposition of the
commonly used transfer entropy [66] measure into copy and
transformation components, thus separating two different
modes of dynamical information flow between systems.

Finally, we point out that our proposed decomposition
has some high-level similarities to other recent proposals
for information-theoretic decomposition, such as the ‘partial
information decomposition’ of multivariate information into
redundant and synergistic components [67], integrated
information decompositions [68,69] and decompositions of
MI into ‘semantic’ (valuable) and ‘non-semantic’ (non-valuable)
information [70]. We also mention another recent proposal
for an alternative information-theoretic notion of ‘copying’
[71], in which copying is said to occur in a multivariate
system when information that is present in one variable
spreads to other variables (regardless of any transformations
that information may undergo). Further research should
explore if and how the decomposition proposed in this
paper relates to these other approaches.
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Endnote
1Readers should be aware that the term ‘specific MI’ has been used to
refer to two different measures in the literature [33]. The version
of specific MI used here, as specified by equation (2.6), is also
sometimes called ‘specific surprise’.
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