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Abstract: The partial information decomposition (PID) aims to quantify the amount of redundant
information that a set of sources provides about a target. Here, we show that this goal can be
formulated as a type of information bottleneck (IB) problem, termed the “redundancy bottleneck”
(RB). The RB formalizes a tradeoff between prediction and compression: it extracts information from
the sources that best predict the target, without revealing which source provided the information. It
can be understood as a generalization of “Blackwell redundancy”, which we previously proposed
as a principled measure of PID redundancy. The “RB curve” quantifies the prediction–compression
tradeoff at multiple scales. This curve can also be quantified for individual sources, allowing subsets
of redundant sources to be identified without combinatorial optimization. We provide an efficient
iterative algorithm for computing the RB curve.
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1. Introduction

Many research fields that study complex systems are faced with multivariate
probabilistic models and high-dimensional datasets. Prototypical examples include brain
imaging data in neuroscience, gene expression data in biology, and neural networks in
machine learning. In response, various information-theoretic frameworks have been
developed in order to study multivariate systems in a universal manner. Here, we focus on
two such frameworks, partial information decomposition and the information bottleneck.

The partial information decomposition (PID) considers how information about a target
random variable Y is distributed among a set of source random variables X1, . . . , Xn [1–4].
For example, in neuroscience, the sources X1, . . . , Xn might represent the activity of n
different brain regions and Y might represent a stimulus, and one may wish to understand
how information about the stimulus is encoded in different brain regions. A central idea
of the PID is that the information provided by the sources can exhibit redundancy, when
the same information about Y is present in each source, and synergy, when information
about Y is found only in the collective outcome of all sources. Moreover, it has been shown
that standard information-theoretic quantities, such as entropy and mutual information,
are not sufficient to quantify redundancy and synergy [1,5]. However, finding the right
measures of redundancy and synergy has proven difficult. In recent work [4], we showed
that such measures can be naturally defined by formalizing the analogy between set theory
and information theory that lies at the heart of the PID [5]. We then proposed a measure
of redundant information (Blackwell redundancy) that is motivated by algebraic, axiomatic,
and operational considerations. We argued that Blackwell redundancy overcomes many
limitations of previous proposals [4].

The information bottleneck (IB) [6,7] is a method for extracting compressed information
from one random variable X that optimally predicts another target random variable Y. For
instance, in the neuroscience example with stimulus Y and brain activity X, the IB method
could be used to quantify how well the stimulus can be predicted using only one bit of
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information about brain activity. The overall tradeoff between the prediction of Y and
compression of X is captured by the so-called IB curve. The IB method has been employed
in various domains, including neuroscience [8], biology [9], and cognitive science [10]. In
recent times, it has become particularly popular in machine learning applications [7,11–14].

In this paper, we demonstrate a formal connection between PID and IB. We focus in
particular on the relationship between the IB and PID redundancy, leaving the connection
to other PID measures (such as synergy) for future work. To begin, we show that Blackwell
redundancy can be formulated as an information-theoretic constrained optimization
problem. This optimization problem extracts information from the sources that best predict
the target, under the constraint that the solution does not reveal which source provided the
information. We then define a generalized measure of Blackwell redundancy by relaxing
the constraint. Specifically, we ask how much predictive information can be extracted from
the sources without revealing more than a certain number of bits about the identity of the
source. Our generalization leads to an IB-type tradeoff between the prediction of the target
(generalized redundancy) and compression (leakage of information about the identity of
the source). We refer to the resulting optimization problem as the redundancy bottleneck (RB)
and to the manifold of optimal solutions at different points on the prediction/compression
tradeoff as the RB curve. We also show that the RB prediction and compression terms can
be decomposed into contributions from individual sources, giving rise to an individual RB
curve for each source.

Besides the intrinsic theoretical interest of unifying PID and the IB, our approach
brings about several practical advantages. In particular, the RB curve offers a fine-grained
analysis on PID redundancy, showing how redundant information emerges at various
scales and across different sources. This fine-grained analysis can be used to uncover
sets of redundant sources without performing intractable combinatorial optimization.
Our approach also has numerical advantages. The original formulation of Blackwell
redundancy was based on a difficult optimization problem that becomes infeasible for
larger systems. By reformulating Blackwell redundancy as an IB-type problem, we are able
to solve it efficiently using an iterative algorithm, even for larger systems (code available
at https://github.com/artemyk/pid-as-ib, accessed on 12 May 2024). Finally, the RB has
some attractive formal properties. For instance, unlike the original Blackwell redundancy,
the RB curve is continuous in the underlying probability distributions.

This paper is organized as follows. In the next section, we provide the background on
the IB, PID, and Blackwell redundancy. In Section 3, we introduce the RB, illustrate it with
several examples, and discuss its formal properties. In Section 4, we introduce an iterative
algorithm to solve the RB optimization problem. We discuss the implications and possible
future directions in Section 5. All proofs are found in the Appendix A.

2. Background

We begin by providing relevant background on the information bottleneck, partial
information decomposition, and Blackwell redundancy.

2.1. Information Bottleneck (IB)

The information bottleneck (IB) method provides a way to extract information that
is present in one random variable X that is relevant for predicting another target random
variable Y [6,15,16]. To do so, the IB posits a “bottleneck variable” Q that obeys the
Markov condition Q − X − Y. This Markov condition guarantees that Q does not contain
any information about Y that is not found in X. The quality of any particular choice of
bottleneck variable Q is quantified via two mutual information terms: I(X; Q), which
decreases when Q provides a more compressed representation of X, and I(Y; Q), which
increases when Q allows a better prediction of Y. The IB method selects Q to maximize
prediction given a constraint on compression [15–17]:

IIB(R) = max
Q:Q−X−Y

I(Y; Q) where I(X; Q) ≤ R. (1)

https://github.com/artemyk/pid-as-ib
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The values of IIB(R) for different R specify the IB curve, which encodes the overall tradeoff
between prediction and compression.

In practice, the IB curve is usually explored by considering the Lagrangian relaxation
of the constrained optimization problem (1):

FIB(β) := max
Q

I(Y; Q)− 1
β

I(X; Q) (2)

Here, β ≥ 0 is a parameter that controls the tradeoff between compression cost (favored
for β → 0) and prediction benefit (favored for β → ∞). The advantage of the Lagrangian
formulation is that it avoids the non-linear constraint in Equation (1). If the IB curve is
strictly concave, then the two Equations (1) and (2) are equivalent, meaning that there is
a one-to-one map between the solutions of both problems [18]. When the IB curve is not
strictly concave, a modified objective such as the “squared Lagrangian” or “exponential
Lagrangian” should be used instead; see Refs. [18–20] for more details.

Since the original proposal, many reformulations, generalizations, and variants of the
IB have been developed [7]. Notable examples include the “conditional entropy bottleneck”
(CEB) [13,21], the “multi-view IB” [22], the “distributed IB” [23], as well as a large family
of objectives called the “multivariate IB” [24]. All of these approaches consider some
tradeoff between two information-theoretic terms: one that quantifies the prediction of
target information that should be maximized and one that quantifies the compression
of unwanted information that should be minimized. We refer to an optimization that
involves a tradeoff between information-theoretic prediction and compression terms as an
IB-type problem.

2.2. Partial Information Decomposition

The PID considers how information about a target random variable Y is distributed
across a set of source random variables X1, . . . , Xn. One of the main goals of the PID is
to quantify redundancy, the amount of shared information that is found in each of the
individual sources. The notion of redundancy in PID was inspired by an analogy between
sets and information that has re-appeared in various forms throughout the history of
information theory [25–31]. Specifically, if the amount of information provided by each
source is conceptualized as the size of a set, then the redundancy is conceptualized as the
size of the intersection of those sets [1,4,5]. Until recently, however, this analogy was treated
mostly as an informal source of intuition, rather than a formal methodology.

In a recent paper [4], we demonstrated that the terms of PID can be defined by
formalizing this analogy to set theory. Recall that, in set theory, the intersection of sets
A1, . . . , An is defined as the largest set B that is contained in each set As for s ∈ {1 . . . n}.
Thus, the size of the intersection of finite sets A1, . . . , An is∣∣∣∣∣ n⋂

s=1

As

∣∣∣∣∣ = max
B

|B| where B ⊆ As ∀s ∈ {1 . . . n}.

We showed that PID redundancy can be defined in a similar way: the redundancy between
sources X1, . . . , Xn is the maximum mutual information in any random variable Q that is
less informative about the target Y than each individual source [4]:

I⊑∩ := max
Q

I(Q; Y) where Q ⊑ Xs ∀s ∈ {1 . . . n}. (3)

The notation Q ⊑ Xs indicates that Q is “less informative” about the target than Xs, given
some pre-specified ordering relation ⊑. The choice of the ordering relation completely
determines the resulting redundancy measure I⊑∩ . We discuss possible choices in the
following subsection.

We used a similar approach to define “union information”, which in turn leads to
a principled measure of synergy [4]. Note that union information and redundancy are
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related algebraically but not numerically; in particular, unlike in set theory, the principle of
inclusion–exclusion does not always hold.

As mentioned above, here, we focus entirely on redundancy and leave the exploration
of connections between IB and union information/synergy for future work.

2.3. Blackwell Redundancy

Our definition of PID redundancy (3) depends on the definition of the “less informative”
relation ⊑. Although there are many relations that can be considered [25,32–35], arguably
the most natural choice is the Blackwell order.

The Blackwell order is a preorder relation over “channels”, that is conditional
distributions with full support. A channel κB|Y is said to be less informative than κC|Y in
the sense of the Blackwell order if there exists some other channel κB|C such that

κB|Y = κB|C ◦ κC|Y. (4)

Throughout, we use the notation ◦ to indicate the composition of channels, as defined
via matrix multiplication. For instance, κB|Y = κB|C ◦ κC|Y is equivalent to the statement
κB|Y(b|y) = ∑c κB|C(b|c)κC|Y(c|y) for all b and y. Equation (4) implies that κB|Y is less
informative than κC|Y if κB|Y can be produced by downstream stochastic processing of the
output of channel κC|Y. We use the notation

κB|Y ⪯ κC|Y, (5)

to indicate that κB|Y is less Blackwell-informative than κC|Y. The Blackwell order can also
be defined over random variables rather than channels. Given a target random variable Y
with full support, random variable B is said to be less Blackwell-informative than random
variable C, written as

B ⪯Y C, (6)

when their corresponding conditional distributions obey the Blackwell relation, pB|Y ⪯
pC|Y [36]. It is not hard to verify that any random variable B that is independent of Y is
lowest under the Blackwell order, obeying B ⪯Y C for all C.

The Blackwell order plays a fundamental role in statistics, and it has an important
operational characterization in decision theory [36–38]. Specifically, pB|Y ⪯ pC|Y if and only
if access to channel pC|Y is better for every decision problem than access to channel pB|Y.
See Refs. [4,39] for details of this operational characterization and Refs. [4,36,39–42] for
more discussion of the relation between the Blackwell order and the PID.

Combining the Blackwell order (6) with Equation (3) gives rise to Blackwell
redundancy [4]. Blackwell redundancy, indicated here as I∩, is the maximal mutual
information in any random variable that is less Blackwell-informative than each of
the sources:

I∩ := max
Q

I(Q; Y) where Q ⪯Y Xs ∀s. (7)

The optimization is always well defined because the feasible set is not empty, given that
any random variable Q that is independent of Y satisfies the constraints. (Note also that,
for continuous-valued or countably infinite sources, max may need to be replaced by a sup;
see also Appendix A.)

I∩ has many attractive features as a measure of PID redundancy, and it overcomes
several problems with previous approaches [4]. For instance, it can be defined for any
number of sources, it uniquely satisfies a natural set of PID axioms, and it has fundamental
statistical and operational interpretations. Statistically, it is the maximum information
transmitted across any channel that can be produced by downstream processing of any one
of the sources. Operationally, it is the maximum information that any random variable can
have about Y without being able to perform better on any decision problem than any one
of the sources.
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As we showed [4], the optimization problem (7) can be formulated as the maximization
of a convex function subject to a set of linear constraints. For a finite-dimensional system,
the feasible set is a finite-dimensional polytope, and the maximum will lie on one of its
extreme points; therefore, the optimization can be solved exactly by enumerating the
vertices of the feasible set and choosing the best one [4]. However, this approach is limited
to small systems, because the number of vertices of the feasible set can grow exponentially.

Finally, it may be argued that Blackwell redundancy is actually a measure of
redundancy in the channels pX1|Y, . . . , pXn |Y, rather than in the random variables X1, . . . , Xn.
This is because the joint distribution over (Y, X1, . . . , Xn) is never explicitly invoked in the
definition of I∩; in fact, any joint distribution is permitted as long as it is compatible with
the correct marginals. (The same property holds for several other redundancy measures ([4],
Table 1), and Ref. [39] even suggested this property as a requirement for any valid measure
of PID redundancy.) In some cases, the joint distribution may not even exist, for instance
when different sources represent mutually exclusive conditions. To use a neuroscience
example, imagine that pX1|Y and pX2|Y represent the activity of some brain region X in
response to stimulus Y, measured either in younger (pX1|Y) or older (pX2|Y) subjects.
Even though there is no joint distribution over (Y, X1, X2) in this case, redundancy is
still meaningful as the information about the stimulus that can be extracted from the
brain activity of either age group. In the rest of this paper, we generally work within the
channel-based interpretation of Blackwell redundancy.

3. Redundancy Bottleneck

In this section, we introduce the redundancy bottleneck (RB) and illustrate it with
examples. Generally, we assume that we are provided with the marginal distribution pY of
the target random variable Y, as well as n source channels pX1|Y, . . . , pXn |Y. Without loss of
generality, we assume that pY has full support. We use calligraphic letters (like Y and Xs)
to indicate the set of outcomes of random variables (like Y and Xs). For simplicity, we use
notation appropriate for discrete-valued variables, such as in Equation (4), though most of
our results also apply to continuous-valued variables.

3.1. Reformulation of Blackwell Redundancy

We first reformulate Blackwell redundancy (7) in terms of a different optimization
problem. Our reformulation will make use of the random variable Y, along with two
additional random variables, S and Z. The outcomes of S are the indexes of the different
sources, S = {1, . . . , n}. The set of outcomes of Z is the union of the outcomes of the
individual sources, Z =

⋃n
s=1 Xs. For example, if there are two sources with outcomes

X1 = {0, 1} and X2 = {0, 1, 2}, then S = {1, 2} and Z = {0, 1} ∪ {0, 1, 2} = {0, 1, 2}. The
joint probability distribution over (Y, S, Z) is defined as

pYSZ(y, s, z) =

{
pY(y)νS(s)pXs |Y(z|y) if z ∈ Xs

0 otherwise
(8)

In other words, y is drawn from the marginal pY, the source s is then drawn independently
from the distribution νS, and finally z is drawn from the channel pXs |Y(z|y) corresponding
to source s. In this way, the channels corresponding to the n sources (pX1|Y, . . . , pXn |Y) are
combined into a single conditional distribution pZ|SY.

We treat the distribution νS as an arbitrary fixed parameter, and except where
otherwise noted, we make no assumptions about this distribution except that it has full
support. As we will see, different choices of νS cause the different sources to be weighed
differently in the computation of the RB. We return to the question of how to determine
this distribution below.

Note that, under the distribution defined in Equation (8), Y and S are independent, so

I(Y; S) = 0. (9)
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Actually, many of our results can be generalized to the case where there are correlations
between S and Y. We leave exploration of this generalization for future work.

In addition to Y, Z, and S, we introduce another random variable Q. This random
variable obeys the Markov condition Q − (Z, S)−Y, which ensures that Q does not contain
any information about Y that is not contained in the joint outcome of Z and S. The full joint
distribution over (Y, S, Z, Q) is

pYSZQ(y, s, z, q) = pYSZ(y, s, z)pQ|SZ(q|s, z). (10)

We sometimes refer to Q as the “bottleneck” random variable.
The set of joint outcomes of (S, Z) with non-zero probability is the disjoint union of

the outcomes of the individual sources. For instance, in the example above with X1 =
{0, 1} and X2 = {0, 1, 2}, the set of joint outcomes of (S, Z) with non-zero probability
is {(1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}. Because Q depends jointly on S and Z, our results
do not depend on the precise labeling of the source outcomes, e.g., they are the same if
X2 = {0, 1, 2} is relabeled as X2 = {2, 3, 4}.

Our first result shows that Blackwell redundancy can be equivalently expressed as
a constrained optimization problem. Here, the optimization is over bottleneck random
variables Q, i.e., over conditional distributions pQ|SZ in Equation (10).

Theorem 1. Blackwell redundancy (7) can be expressed as

I∩ = max
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) = 0. (11)

Importantly, Theorem 1 does not depend on the choice of the distribution νS, as long
as it has full support.

In Theorem 1, the Blackwell order constraint in Equation (7) has been replaced by an
information-theoretic constraint I(Q; S|Y) = 0, which states that Q does not provide
any information about the identity of source S, additional to that already provided
by the target Y. The objective I(Q; Y) has been replaced by the conditional mutual
information I(Q; Y|S). Actually, the objective can be equivalently written in either form,
since I(Q; Y|S) = I(Q; Y) given our assumptions (see the proof of Theorem 1 in the
Appendix A). However, the conditional mutual information form will be useful for further
generalization and decomposition, as discussed in the next sections.

3.2. Redundancy Bottleneck

To relate Blackwell redundancy to the IB, we relax the constraint in Theorem 1 by
allowing the leakage of R bits of conditional information about the source S. This defines
the redundancy bottleneck (RB) at compression rate R:

IRB(R) := max
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) ≤ R. (12)

We note that, for R > 0, the value of IRB(R) does depend on the choice of the source
distribution νS.

Equation (12) is an IB-type problem that involves a tradeoff between prediction
I(Q; Y|S) and compression I(Q; S|Y). The prediction term I(Q; Y|S) quantifies the
generalized Blackwell redundancy encoded in the bottleneck variable Q. The compression
term I(Q; S|Y) quantifies the amount of conditional information that the bottleneck variable
leaks about the identity of the source. The set of optimal values of (I(Q; S|Y), I(Q; Y|S))
defines the redundancy bottleneck curve (RB curve) that encodes the overall tradeoff between
prediction and compression.

We prove a few useful facts about the RB, starting from monotonicity and concavity.

Theorem 2. IRB(R) is non-decreasing and concave as a function of R.
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Since IRB(R) is non-decreasing in R, the lowest RB value is achieved in the R = 0
regime, when it equals the Blackwell redundancy (Theorem 1):

IRB(R) ≥ IRB(0) = I∩. (13)

The largest value is achieved as R → ∞, when the compression constraint vanishes. It can be
shown that I(Q; Y|S) ≤ I(Z; Y|S) = I(Y; Z, S) using the Markov condition Q − (Z, S)− Y
and the data-processing inequality (see the next subsection). This upper bound is achieved
by the bottleneck variable Q = Z. Combining implies

IRB(R) ≤ I(Z; Y|S) = ∑
s

νS(s)I(Xs; Y), (14)

where we used the form of the distribution pYSZ in Equation (8) to arrive at the last
expression. The range of necessary compression rates can be restricted as 0 ≤ R ≤
I(Z; S|Y).

Next, we show that, for finite-dimensional sources, it suffices to consider finite-
dimensional Q. Thus, for finite-dimensional sources, the RB problem (12) involves the
maximization of a continuous objective over a compact domain, so the maximum is always
achieved by some Q. (Conversely, in the more general case of infinite-dimensional sources,
it may be necessary to replace max with sup in Equation (12); see Appendix A.)

Theorem 3. For the optimization problem (12), it suffices to consider Q of cardinality |Q| ≤
∑s|Xs|+ 1.

Interestingly, the cardinality bound for the RB is the same as for the IB if we take
X = (Z, S) in Equation (1) [16,20]. It is larger than the cardinality required for Blackwell
redundancy (7), where |Q| ≤ (∑s|Xs|)− n + 1 suffices [4].

The Lagrangian relaxation of the constrained RB problem (12) is given by

FRB(β) = max
Q:Q−(Z,S)−Y

I(Q; Y|S)− 1
β

I(Q; S|Y). (15)

The parameter β controls the tradeoff between prediction and compression. The β → 0
limit corresponds to the R = 0 regime, in which case, Blackwell redundancy is recovered,
while the β → ∞ limit corresponds to the R = ∞ regime, when the compression constraint
is removed. The RB Lagrangian (15) is often simpler to optimize than the constrained
optimization (12). Moreover, when the RB curve IRB(R) is strictly concave, there is a one-
to-one relationship between the solutions to the two optimization problems (12) and (15).
However, when the RB curve is not strictly concave, there is no one-to-one relationship and
the usual Lagrangian formulation is insufficient. This can be addressed by optimizing a
modified objective that combines prediction and compression in a nonlinear fashion, such
as the “exponential Lagrangian” [19]:

Fexp
RB (β) = max

Q:Q−(Z,S)−Y
I(Q; Y|S)− 1

β
eI(Q;S|Y). (16)

(See an analogous analysis for IB in Refs. [18,19].)

3.3. Contributions from Different Sources

Both the RB prediction and compression terms can be decomposed into contributions
from different sources, leading to an individual RB curve for each source. As we show
in the examples below, this decomposition can be used to identify groups of redundant
sources without having to perform intractable combinatorial optimization.
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Let Q be an optimal bottleneck variable at rate R, so that IRB(R) = I(Q; Y|S) and
I(Q; S|Y) ≤ R. Then, the RB prediction term can be expressed as the weighted average of
the prediction contributions from individual sources:

IRB(R) = I(Q; Y|S) = ∑
s

νS(s)I(Q; Y|S = s). (17)

Here, we introduce the specific conditional mutual information:

I(Q; Y|S = s) := D(pQ|Y,S=s∥pQ|S=s), (18)

where D(·∥·) is the Kullback–Leibler (KL) divergence. To build intuitions about this
decomposition, we may use the Markov condition Q− (Z, S)−Y to express the conditional
distributions in Equation (18) as compositions of channels:

pQ|Y,S=s = pQ|Z,S=s ◦ pZ|Y,S=s

pQ|S=s = pQ|Z,S=s ◦ pZ|S=s

Using the data-processing inequality for the KL divergence and Equation (8), we can
then write

I(Q; Y|S = s) ≤ D(pZ|Y,S=s∥pZ|S=s) = D(pXs |Y∥pXs).

The last term is simply the mutual information I(Y; Xs) between the target and source
s. Thus, the prediction contribution from source s is bounded between 0 and the mutual
information provided by that source:

0 ≤ I(Q; Y|S = s) ≤ I(Y; Xs). (19)

The difference between the mutual information and the actual prediction contribution:

I(Y; Xs)− I(Q; Y|S = s) ≥ 0,

quantifies the unique information in source s. The upper bound in Equation (19) is achieved
in the R → ∞ limit by Q = Z, leading to Equation (14). Conversely, for R = 0, pQ|Y,S=s =
pQ|Y (from I(Q; S|Y) = 0) and pQ|S=s = pQ (from Equation (9)), so

I(Q; Y|S = s) = I(Q; Y) = IRB(0) = I∩.

Thus, when R = 0, the prediction contribution from each source is the same, and it is equal
to the Blackwell redundancy.

The RB compression cost can also be decomposed into contributions from
individual sources:

I(Q; S|Y) = ∑
s

νS(s)I(Q; S = s|Y). (20)

Here, we introduce the specific conditional mutual information:

I(Q; S = s|Y) := D(pQ|Y,S=s∥pQ|Y). (21)

The source compression terms can be related to so-called deficiency, a quantitative
generalization of the Blackwell order. Although various versions of deficiency can be
defined [43–45], here we consider the “weighted deficiency” induced by the KL divergence.
For any two channels pB|Y and pC|Y, it is defined as

δD(pC|Y, pB|Y) := min
κB|C

D(κB|C ◦ pC|Y∥pB|Y). (22)
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This measure quantifies the degree to which two channels violate the Blackwell order,
vanishing when κB|Y ⪯ κC|Y. To relate the source compression terms (20) to deficiency,
observe that pQ|Y,S=s = pQ|Z,S=s ◦ pZ|Y,S=s and that pZ|Y,S=s = pXs |Y. Given Equation (21),
we then have

I(Q; S = s|Y) ≥ δD(pXs |Y, pQ|Y). (23)

Thus, each source compression term is lower bounded by the deficiency between the source
channel pXs |Y and the bottleneck channel pQ|Y. Furthermore, the compression constraint in
the RB optimization problem (12) sets an upper bound on the deficiency of pQ|Y averaged
across all sources.

Interestingly, several recent papers have studied the relationship between deficiency
and PID redundancy in the restricted case of two sources [38,41,45–47]. To our knowledge,
we provide the first link between deficiency and redundancy for the general case of multiple
sources. Note also that previous work considered a slightly different definition of deficiency
where the arguments of the KL divergence are reversed. Our definition of deficiency is
arguably more natural, since it is more natural to minimize the KL divergence over a convex
set with respect to the first argument [48].

Finally, observe that, in both decompositions (17) and (20), the source contributions
are weighted by the distribution νS(s). Thus, the distribution νS determines how different
sources play into the tradeoff between prediction and compression. In many cases, νS can
be chosen as the uniform distribution. However, other choices of νS may be more natural in
other situations. For example, in a neuroscience context where different sources correspond
to different brain regions, νS(s) could represent the proportion of metabolic cost or neural
volume assigned to region s. Alternatively, when different sources represent mutually
exclusive conditions, as in the age group example mentioned at the end of Section 2, νS(s)
might represent the frequency of condition s found in the data. Finally, it may be possible
to set νS in an “adversarial” manner so as to maximize the resulting value of IRB(R) in
Equation (12). We leave the exploration of this adversarial approach for future work.

3.4. Examples

We illustrate our approach using a few examples. For simplicity, in all examples,
we use a uniform distribution over the sources, νS(s) = 1/n. The numerical results are
calculated using the iterative algorithm described in the next section.

Example 1. We begin by considering a very simple system, called the “UNIQUE gate” in the PID
literature. Here, the target Y is binary and uniformly-distributed, pY(y) = 1/2 for y ∈ {0, 1}.
There are two binary-valued sources, X1 and X2, where the first source is a copy of the target,
pX1|Y(x1|y) = δx1,y, while the second source is an independent and uniformly-distributed bit,
pX2|Y(x1|y) = 1/2. Thus, source X1 provides 1 bit of information about the target, while X2
provides none. The Blackwell redundancy is I∩ = 0 [4], because it is impossible to extract any
information from the sources without revealing that this information came from X1.

We performed RB analysis by optimizing the RB Lagrangian FRB(β) (15) at different
β. Figure 1a,b show the prediction I(Q; Y|S) and compression I(Q; S|Y) values for the
optimal bottleneck variables Q. At small β, the prediction converges to the Blackwell
redundancy, I(Q; Y|S) = I∩ = 0, and there is complete loss of information about
source identity, I(Q; S|Y) = 0. At larger β, the prediction approaches the maximum
I(Q; Y|S) = 0.5 × I(X1; Y) = 0.5 bit, and compression approaches I(Q; S|Y) = I(Z; S|Y)
≈ 0.311 bit. Figure 1c shows the RB curve, illustrating the overall tradeoff between
prediction and compression.



Entropy 2024, 26, 546 10 of 23

0.4 0.6 0.8 1.0

β

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ed

ic
tio

n
I
(Q

;Y
|S

) I(S, Z;Y )

(a)

X1

Prediction

0.4 0.6 0.8 1.0

β

0.0

0.1

0.2

0.3

C
om

pr
es

si
on

I
(Q
,S
|Y

) I(Z;S|Y )

X1

X2

(b) Compression

0.1 0.2 0.3

Compression I(Q;S|Y )

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ed

ic
tio

n
I
(Q

;Y
|S

) I(S, Z;Y )

(c) RB curve

0.0 0.2 0.4

Compression I(Q;S = s|Y )

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n
I
(Q

;Y
|S

=
s)

(d) Source RB curves

X1

X2

Figure 1. RB analysis for the UNIQUE gate (Example 1). (a) Prediction values found by optimizing
the RB Lagrangian (15) at different β. Colored regions indicate contributions from different sources,
νS(s)I(Q; Y|S = s) from Equation (17). For this system, only source X1 contributes to the prediction.
(b) Compression costs found by optimizing the RB Lagrangian at different β. Colored regions indicate
contributions from different sources, νS(s)I(Q; S = s|Y) from Equation (20). (c) The RB curve shows
the tradeoff between optimal compression and the prediction values; the marker colors correspond to
the β values as in (a,b). All bottleneck variables Q must fall within the accessible grey region. (d) RB
curves for individual sources.

In the shaded regions of Figure 1a,b, we show the additive contributions to the
prediction and compression terms from the individual sources, νS(s)I(Q; Y|S = s) from
Equation (17) and νS(s)I(Q; S = s|Y) from Equation (20), respectively. We also show the
resulting RB curves for individual sources in Figure 1d. As expected, only source X1
contributes to the prediction at any level of compression.

To summarize, if some information about the identity of the source can be leaked
(non-zero compression cost), then improved prediction of the target is possible. At the
maximum needed compression cost of 0.311, it is possible to extract 1 bit of predictive
information from X1 and 0 bits from X2, leading to an average of 0.5 bits of prediction.

Example 2. We now consider the “AND gate”, another well-known system from the PID literature.
There are two independent and uniformly distributed binary sources, X1 and X2. The target Y is
also binary-valued and determined via Y = X1 AND X2. Then, pY(0) = 3/4 and pY(1) = 1/4,
and both sources have the same channel:

pXs |Y(x|y) =


2/3 if y = 0, x = 0
1/3 if y = 0, x = 1
0 if y = 1, x = 0
1 if y = 1, x = 1

Because the two source channels are the same, the Blackwell redundancy obeys I∩ = I(Y; X1) =
I(Y; X2) = 0.311 bits [4]. From Equations (13) and (14), we see that IRB(R) = I∩ across all
compression rates. In this system, all information provided by the sources is redundant, so there
is no strict tradeoff between prediction and compression. The RB curve (not shown) consists of a
single point, (I(Q; Y|S), I(Q; S|Y)) = (0.311, 0).

Example 3. We now consider a more sophisticated example with four sources. The target is binary-
valued and uniformly distributed, pY(y) = 1/2 for y ∈ {0, 1}. There are four binary-valued
sources, where the conditional distribution of each source s ∈ {1, 2, 3, 4} is a binary symmetric
channel with error probability ϵs:

pXs |Y(x|y) =
{

1 − ϵs if y = x
ϵs if y ̸= x

(24)

We take ϵ1 = ϵ2 = 0.1, ϵ3 = 0.2, and ϵ4 = 0.5. Thus, sources X1 and X2 provide most information
about the target; X3 provides less information; X4 is completely independent of the target.
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We performed our RB analysis and plot the RB prediction values in Figure 2a and the
compression values in Figure 2b, as found by optimizing the RB Lagrangian at different
β. At small β, the prediction converges to the Blackwell redundancy, I(Q; Y|S) = I∩ = 0,
and there is complete loss of information about source identity, I(Q; S|Y) = 0. At large β,
the prediction is equal to the maximum I(Z; Y|S) ≈ 0.335 bit, and compression is equal to
I(Q; S|Y) ≈ 0.104 bit. Figure 2c shows the RB curve.
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Figure 2. RB analysis for the system with 4 binary symmetric channels (Example 3). (a,b) Prediction
and compression values found by optimizing the RB Lagrangian (15) at different β. Contributions
from individual sources are shown as shaded regions. (c) The RB curve shows the tradeoff between
optimal compression and prediction values; marker colors correspond to the β values as in (a,b).
(d) RB curves for individual sources.

In Figure 2a,b, we show the additive contributions to the prediction and compression
terms from the individual sources, νS(s)I(Q; Y|S = s) and νS(s)I(Q; S = s|Y), respectively,
as shaded regions. We also show the resulting RB curves for individual sources in Figure 2d.

As expected, source X4 does not contribute to the prediction at any level of
compression, in accord with the fact that I(Q; Y|S = s) ≤ I(X4; Y) = 0. Sources X1
and X2 provide the same amount of prediction and compression at all points, up to
the maximum I(X1; Y) = I(X2; Y) ≈ 0.531. Source X3 provides the same amount of
prediction and compression as sources X1 and X2, until it hits its maximum prediction
I(X3; Y) ≈ 0.278. As shown in Figure 2d, at this point, X3 splits off from sources X1 and
X2 and its compression contribution decreases to 0; this is compensated by increasing the
compression cost of sources X1 and X2. The same behavior can also be seen in Figure 2a,b,
where we see that the solutions undergo phase transitions as different optimal strategies
are uncovered at increasing β. Importantly, by considering the prediction/compression
contributions from the the individual sources, we can identify that sources X1 and X2
provide the most redundant information.

Let us comment on the somewhat surprising fact that, at larger β, the compression cost
of X3 decreases—even while its prediction contribution remains constant and the prediction
contribution from X1 and X2 increases. At first glance, this appears counter-intuitive if
one assumes that, in order to increase prediction from X1 and X2, the bottleneck channel
pQ|Y should approach pX1|Y = pX2|Y, thereby increasing the deficiency δD(pX3|Y, pQ|Y) and
the compression cost of X3 via the bound (23). In fact, this is not the case, because the
prediction is quantified via the conditional mutual information I(Q; Y|S), not the mutual
information I(Q; Y). Thus, it is possible that the prediction contributions from X1 and X2
are large, even when the bottleneck channel pQ|Y does not closely resemble pX1|Y = pX2|Y.

More generally, this example shows that it is possible for the prediction contribution
from a given source to stay the same, or even increase, while its compression cost decreases.
In other words, as can be seen from Figure 2d, it is possible for the RB curves of the
individual sources to be non-concave and non-monotonic. It is only the overall RB curve,
Figure 2c, representing the optimal prediction–compression tradeoff on average, that must
be concave and monotonic.
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Example 4. In our final example, the target consists of three binary spins with a uniform
distribution, so Y = (Y1, Y2, Y3) and pY(y) = 1/8 for all y. There are three sources, each of
which contains two binary spins. Sources X1 and X2 are both equal to the first two spins of
the target Y, X1 = X2 = (Y1, Y2). Source X3 is equal to the first and last spin of the target,
X3 = (Y1, Y3).

Each source provides I(Y; Xs) = 2 bits of mutual information about the target. The
Blackwell redundancy I∩ is 1 bit, reflecting the fact that there is a single binary spin that is
included in all sources (Y1).

We performed our RB analysis and plot the RB prediction values in Figure 3a and the
compression values in Figure 3b, as found by optimizing the RB Lagrangian at different
β. At small β, the prediction converges to the Blackwell redundancy, I(Q; Y|S) = I∩ = 1,
and I(Q; S|Y) = 0. At large β, the prediction is equal to the maximum I(Z; Y|S) = 2 bit,
and compression is equal to I(Z; S|Y) ≈ 0.459. Figure 3c shows the RB curve. As in the
previous example, the RB curve undergoes phase transitions as different optimal strategies
are uncovered at different β.
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Figure 3. RB analysis for the system with a 3-spin target (Example 4). (a,b) Prediction and compression
values found by optimizing the RB Lagrangian (15) at different β. Contributions from individual
sources are shown as shaded regions. (c) The RB curve shows the tradeoff between optimal
compression and prediction values; marker colors correspond to the β values as in (a,b). (d) RB
curves for individual sources.

In Figure 3a,b, we show the additive contributions to the prediction and compression
terms from the individual sources, νS(s)I(Q; Y|S = s) and νS(s)I(Q; S = s|Y), as shaded
regions. We also show the resulting RB curves for individual sources in Figure 3d.

Observe that sources X1 and X2 provide more redundant information at a given
level of compression. For instance, as shown in Figure 3d, at source compression
I(Q; S = s|Y) ≈ .25, X1 and X2 provide 2 bits of prediction, while X3 provides only
a single bit. This again shows how the RB source decomposition can be used for identifying
sources with high levels of redundancy.

3.5. Continuity

It is known that the Blackwell redundancy I∩ can be discontinuous as a function of
the probability distribution of the target and source channels [4]. In Ref. [4], we explain
the origin of this discontinuity in geometric terms and provide sufficient conditions for
Blackwell redundancy to be continuous. Nonetheless, the discontinuity of I∩ is sometimes
seen as an undesired property.

On the other hand, as we show in this section, the value of RB is continuous in the
probability distribution for all R > 0.

Theorem 4. For finite-dimensional systems and R > 0, IRB(R) is a continuous function of the
probability values pXs |Y(x|y), pY(y), and νS(s).

Thus, by relaxing the compression constraint in Theorem 1, we “smooth out” the
behavior of Blackwell redundancy and arrive at a continuous measure. We illustrate this
using a simple example.
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Example 5. We consider the COPY gate, a standard example in the PID literature. Here, there are
two binary-valued sources jointly distributed according to

pX1X2(x1, x2) =

{
1/2 − ϵ/4 if x1 = x2

ϵ/4 if x1 ̸= x2

The parameter ϵ controls the correlation between the two sources, with perfect correlation at ϵ = 0
and complete independence at ϵ = 1. The target Y is a copy of the joint outcome of the two sources,
Y = (X1, X2).

It is known that Blackwell redundancy I∩ is discontinuous for this system, jumping
from I∩ = 1 at ϵ = 0 to I∩ = 0 for ϵ > 0 [4]. On the other hand, the RB function IRB(R) is
continuous for R > 0. Figure 4 compares the behavior of Blackwell redundancy and RB as
a function of ϵ, at R = 0.01 bits. In particular, it can be seen that IRB(R) = 1 at ϵ = 0 and
then decays continuously as ϵ increases.
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Figure 4. The RB function IRB(R) is continuous in the underlying probability distribution for R > 0,
while Blackwell redundancy can be discontinuous. Here illustrated on the COPY gate, Y = (X1, X2),
as a function of correlation strength ϵ between X1 and X2 (perfect correlation at ϵ = 0, independence
at ϵ = 1). Blackwell redundancy jumps from I∩ = 1 at ϵ = 0 to I∩ = 0 at ϵ > 0, while IRB(R) (at
R = 0.01) decays continuously.

4. Iterative Algorithm

We provide an iterative algorithm to solve the RB optimization problem. This
algorithm is conceptually similar to the Blahut–Arimoto algorithm, originally employed for
rate distortion problems and later adapted to solve the original IB problem [6]. A Python
implementation of our algorithm is available at https://github.com/artemyk/pid-as-ib;
there, we also provide updated code to exactly compute Blackwell redundancy (applicable
to small systems).

To begin, we consider the RB Lagrangian optimization problem, Equation (15). We
rewrite this optimization problem using the KL divergence:

FRB(β) = max
rQ|SZ

D(rY|QS∥pY|S)−
1
β

D(rQ|SY∥rQ|Y). (25)

Here, notation like rQ|Y, rY|QS, etc., refers to distributions that include Q and therefore
depend on the optimization variable rQ|SZ, while notation like pY|S refers to distributions
that do not depend on Q and are not varied under the optimization. Every choice
of conditional distribution rQ|SZ induces a joint distribution rYSZQ = pYSZrQ|SZ via
Equation (10).

https://github.com/artemyk/pid-as-ib
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We can rewrite the first KL term in Equation (25) as

D(rY|QS∥pY|S) = D(rY|QS∥pY|S)− min
ωYSZQ

D(rY|QS∥ωY|QS)

= max
ωYSZQ

EpYSZrQ|SZ

[
ln

ω(y|q, s)
p(y|s)

]
.

where E indicates the expectation, and we introduced the variational distribution ωYSZQ.
The maximum is achieved by ωYSZQ = rYSZQ, which gives ωY|QS = rY|QS. We rewrite the
second KL term in Equation (25) as

D(rQ|SY∥rQ|Y) = D(rQ|SYrZ|SYQ∥rQ|YrZ|SYQ)

= min
ωYSZQ

D(rQ|SYrZ|SYQ∥ωQ|YωZ|SYQ).

Here, we introduce the variational distribution ωYSZQ, where the minimum is achieved by
ωYSZQ = rYSZQ. The term rQ|SYrZ|SYQ can be rewritten as

r(q|s, y)r(z|s, y, q) =
r(z, s, y, q)

p(s, y)
=

r(q|s, z)p(z, s, y)
p(s, y)

= r(q|s, z)p(z|s, y)

where we used the Markov condition Q − (S, Z) − Y. In this way, we separate the
contribution from the conditional distribution rQ|SZ being optimized.

Combining the above allows us to rewrite Equation (25) as

FRB(β) = max
rQ|ZS ,ωYSZQ

EpYSZrQ|SZ

[
ln

ω(y|q, s)
p(y|s)

]
− 1

β
D(rQ|SZ pZ|SY∥ωQ|YωZ|SYQ). (26)

We now optimize this objective in an iterative and alternating manner with respect to rQ|SZ
and ωYSZQ. Formally, let L(rQ|SZ, ωYSZQ) refer to the objective in Equation (26). Then,

starting from some initial guess r(0)Q|SZ, we generate a sequence of solutions

ω
(t+1)
YSZQ = arg max

ωYSZQ

L(r(t)Q|SZ, ωYSZQ) (27)

r(t+1)
Q|SZ = arg max

rQ|SZ

L(rQ|SZ, ω
(t+1)
YSZQ) (28)

Each optimization problem can be solved in closed form. As already mentioned, the
optimizer in Equation (27) is

ω
(t+1)
YSZQ = r(t)YSZQ = r(t)Q|SZ pSZY.

The optimization (28) can be solved by taking derivatives, giving

r(t+1)(q|s, z) ∝ e
∑y p(y|s,z)

[
β ln ω(t)(y|q,s)−ln p(z|s,y)

ω(t)(q|y)ω(t)(z|s,y,q)

]
,

where the proportionality constant in ∝ is fixed by normalization ∑q r(t+1)(q|s, z) = 1.
Each iteration increases the value of objective L. Since the objective is upper bounded

by I(Z; Y|S), the algorithm is guaranteed to converge. However, as in the case of the
original IB problem, the objective is not jointly convex in both arguments, so the algorithm
may converge to a local maximum or a saddle point, rather than a global maximum. This
can be partially alleviated by running the algorithm several times starting from different
initial guesses r(0)Q|SZ.

When the RB is not strictly concave, it is more appropriate to optimize the exponential
RB Lagrangian (16) or another objective that combines the prediction and compression
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terms in a nonlinear manner [18,19]. The algorithm described above can be used with such
objectives after a slight modification. For instance, for the exponential RB Lagrangian, we
modify (26) as

Fexp
RB (β) = max

rQ|SZ ,ωYSZQ
EpYSZrQ|SZ

[
ln

ω(y|q, s)
p(y|s)

]
− 1

β
eD(rQ|ZS pZ|SY∥ωQ|YωZ|SYQ). (29)

A similar analysis as above leads to the following iterative optimization scheme:

ω
(t+1)
YSZQ = r(t)Q|SZ pSZY

r(t+1)(q|s, z) ∝ e
∑y p(y|s,z)

[
β(t) ln ω(t)(y|q,s)−ln p(z|s,y)

ω(t)(q|y)ω(t)(z|s,y,q)

]
,

where β(t) = βe−I
r(t)

(Q;S|Y) is an effective inverse temperature. (Observe that, unlike
the squared Lagrangian [18], the exponential Lagrangian leads to an effective inverse
temperature β(t) that is always finite and converges to β as Ir(t)(Q; S|Y) → 0.)

When computing an entire RB curve, as in Figure 1a–c, we found good results by
annealing, that is by re-using the optimal rQ|SZ found for one β as the initial guess at
higher β. For quantifying the value of the RB function IRB(R) at a fixed R, as in Figure 4,
we approximated IRB(R) via a linear interpolation of the RB prediction and compression
values recovered from the RB Lagrangian at varying β.

5. Discussion

In this paper, we propose a generalization of Blackwell redundancy, termed the
redundancy bottleneck (RB), formulated as an information-bottleneck-type tradeoff
between prediction and compression. We studied some implications of this formulation
and proposed an efficient numerical algorithm to solve the RB optimization problem.

We briefly mention some directions for future work.
The first direction concerns our iterative algorithm. The algorithm is only applicable to

systems where it is possible to enumerate the outcomes of the joint distribution pQYSZ. This
is impractical for discrete-valued variables with very many outcomes, as well as continuous-
valued variables as commonly found in statistical and machine learning settings. In future
work, it would be useful to develop RB algorithms suitable for such datasets, possibly by
exploiting the kinds of variational techniques that have recently gained traction in machine
learning applications of IB [11–13].

The second direction would explore connections between the RB and other
information-theoretic objectives for representation learning. To our knowledge, the RB
problem is novel to the literature. However, it has some similarities to existing objectives,
including among others the conditional entropy bottleneck [13], multi-view IB [22], and the
privacy funnel and its variants [49]. Showing formal connections between these objectives
would be of theoretical and practical interest, and could lead to new interpretations of the
concept of PID redundancy.

Another direction would explore the relationship between RB and information-
theoretic measures of causality [50,51]. In particular, if the different sources represent
some mutually exclusive conditions—such as the age group example provided at the end
of Section 2—then redundancy could serve as a measure of causal information flow that is
invariant to the conditioning variable.

Finally, one of the central ideas of this paper is to treat the identity of the source
as a random variable in its own right, which allows us to consider what information
different bottleneck variables reveal about the source. In this way, we convert the search
for topological or combinatorial structure in multivariate systems into an interpretable
and differential information-theoretic objective. This technique may be useful in other
problems that consider how information is distributed among variables in complex systems,
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including other PID measures such as synergy [4], information-theoretic measures of
modularity [52,53], and measures of higher-order dependency [54,55].
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Appendix A

We provide proofs of the theorems in the main text. Throughout, we use D for
the Kullback–Leibler (KL) divergence, H for the Shannon entropy, and I for the mutual
information.

Appendix A.1. Proof of Theorem 1

We begin by proving a slightly generalized version of Theorem 1, that is we show the
equivalence between the two optimization problems:

I∩ = sup
Q

I(Q; Y) where Q ⪯Y Xs ∀s (A1)

I∩ = sup
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) = 0. (A2)

The slight generalization comes from replacing max by sup, so that the result also holds
for systems with infinite-dimensional sources, where the supremum is not guaranteed to
be achieved. For finite-dimensional systems, the supremum is always achieved, and we
reduce to the simpler case of Equations (7) and (11).

Proof. Let V1 indicate the supremum in Equation (A1) and V2 the supremum in
Equation (A2), given some νS(s) with full support. We prove that V1 = V2.

We will use that, for any distribution that has the form of Equation (10) and obeys
I(Q; S|Y) = 0, the following holds:

I(Q; Y|S) = H(Q|S)− H(Q|S, Y)

= H(Q)− H(Q|Y) = I(Q; Y)
(A3)

Here, we used the Markov condition Q − Y − S, as well as I(Q; S) = H(Q)− H(Q|S) = 0,
as follows from Equation (9) and the data-processing inequality.

Let Q be a feasible random variable that comes within ϵ ≥ 0 of the objective in (A1),
I(Q; Y) ≥ V1 − ϵ. Define the joint distribution:

pQYSZ(q, y, s, z) = κQ|Xs(q|z)pY(y)νS(s)pXs |Y(z|y)

whenever z ∈ Xs, otherwise pQYSZ(q, y, s, z) = 0. Here, we used the channels κQ|Xs
associated with the Blackwell relation Q ⪯Y Xs, so that pQ|Y = κQ|Xs ◦ pXs |Y. Under
the distribution pQYSZ, the Markov conditions Q − (S, Z)− Y and Q − Y − S hold, the
latter since

pQS|Y(q, s|y) = pQ|Y(q|y)νS(s). (A4)
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Therefore, this distribution has the form of Equations (8) and (10) and satisfies the
constraints in Equation (A2). Using Equation (A3), we then have

V1 − ϵ ≤ I(Q; Y) = I(Q; Y|S) ≤ V2.

Conversely, let pYSZQ be a feasible joint distribution for the optimization of
Equation (A2) that comes within ϵ ≥ 0 of the supremum, I(Q; Y|S) ≥ V2 − ϵ. Using
the form of this joint distribution from Equation (10), we can write

pQ|Y(q|y)
(a)
= pQ|YS(q|y, s)

= ∑
z

pQ|YSZ(q|y, s, z)pZ|YS(z|y, s)

(b)
= ∑

z
pQ|SZ(q|z, s)pZ|YS(z|y, s)

(c)
= ∑

z
pQ|SZ(q|z, s)pXs |Y(z|y)

In (a), we used I(Q; S|Y) = 0; in (b), we used Q − (S, Z) − Y; in (c), we used that
pZ|YS=s = pXs |Y. This implies that pQ|Y ⪯ pXs |Y for all s. Therefore, pQ|Y satisfies the
constraints in Equation (A1), so I(Q; Y) ≤ V1. Combining with Equation (A3) implies

V2 − ϵ ≤ I(Q; Y|S) = I(Q; Y) ≤ V1.

Taking the limit ϵ → 0 gives the desired result.

Appendix A.2. Proof of Theorem 2

We now prove a slightly generalized version of Theorem 2. We show that the solution
to the following optimization problem is non-decreasing and concave in R:

IRB(R) := sup
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) ≤ R. (A5)

The slight generalization comes from replacing max in Equation (12) by sup, so that the
result also holds for systems with infinite-dimensional sources where the supremum is not
guaranteed to be achieved.

Proof. IRB(R) is non-decreasing in R because larger R give weaker constraints (larger
feasible set) in the maximization problem (A5).

To show concavity, consider any two points on the RB curve as defined by
Equation (A5): (R, IRB(R)) and (R′, IRB(R′)). For any ϵ > 0, there exist Q and Q′ such that

I(Q; S|Y) ≤ R I(Q; Y|S) ≥ IRB(R)− ϵ

I(Q′; S|Y) ≤ R′ I(Q′; Y|S) ≥ IRB(R′)− ϵ

Without loss of generality, suppose that both variables have the same set of outcomes Q.
Then, we define a new random variable Qλ with outcomes Qλ = {1, 2} ×Q, as well as a
family of conditional distributions parameterized by λ ∈ [0, 1]:

pQλ |ZS(1, q|z, s) = λpQ|ZS(q|z, s)

pQλ |ZS(2, q|z, s) = (1 − λ)pQ′ |ZS(q|z, s)

In this way, we define Qλ via a disjoint convex mixture of Q and Q′ onto non-overlapping
subspaces, with λ being the mixing parameter. With a bit of algebra, it can be verified that,
for every λ,

H(Qλ|Y) = λH(Q|Y) + (1 − λ)H(Q′|Y),
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and similarly for H(Qλ|Y, S) and H(Qλ|S). Therefore,

I(Qλ; S|Y) = λI(Q; S|Y) + (1 − λ)I(Q′; S|Y)
≤ λR + (1 − λ)R′

I(Qλ; Y|S) = λI(Q; Y|S) + (1 − λ)I(Q′; Y|S)
≥ λIRB(R) + (1 − λ)IRB(R′)− ϵ

Since IRB is defined via a maximization, we have

IRB(λR + (1 − λ)R′) ≥ I(Qλ; Y|S) ≥ λIRB(R) + (1 − λ)IRB(R′)− ϵ.

Taking the limit ϵ → 0 proves the concavity.

Appendix A.3. Proof of Theorem 3

Proof. We show that, for any Q that achieves I(Q; S|Y) ≤ R, there is another Q′ with
cardinality |Q′| ≤ ∑s|Xs|+ 1 that satisfies I(Q′; S|Y) ≤ R and I(Q′; Y|S) ≥ I(Q; Y|S).

Consider any joint distribution pQSZY from Equation (10) that achieves I(Q; S|Y) ≤ R,
and let Q be the corresponding set of outcomes of Q. Fix the corresponding conditional
distribution pSZ|Q, and note that it also determines the conditional distributions:

pYSZ|Q(y, s, z|q) = pY|SZ(y|s, z)pSZ|Q(s, z|q) (A6)

=
νS(s)pXs |Y(z|y)pY(y)

pSZ(s, z)
pSZ|Q(s, z|q) (A7)

pY|SQ(y|s, q) =
∑z pYSZ|Q(y, s, z|q)

∑z,y′ pYSZ|Q(y′, s, z|q) (A8)

pS|YQ(s|y, q) =
∑z pYSZ|Q(y, s, z|q)

∑z,s′ pYSZ|Q(y, s′, z|q) (A9)

Next, consider the following linear program:

V = max
ωQ′∈∆

∑
q

ωQ′(q)D(PY|SQ=q∥PY|S) (A10)

where ∑
q

ωQ′(q)pSZ|Q(s, z|q) = pSZ(s, z) ∀s, z (A11)

∑
q

ωQ′(q)H(S|Y, Q = q) = H(S|Y, Q) (A12)

where ∆ is the |Q|-dimensional unit simplex, and we use the notation H(S|Y, Q = q) =
−∑y,s pYS|Q(y, s|q) ln pS|YQ(s|y, q). The first set of constraints (A11) guarantees that
ωQ′ pYSZ|Q belongs to the family (10) and, in particular, that the marginal over (S, Z, Y) is
νS(s)pXs |Y(z|y)pY(y) (see Equation (A7)). There are ∑s|Xs| possible outcomes of (s, z),
but ∑s,z pSZ(s, z) = 1 by the conservation of probability. Therefore, Equation (A11)
effectively imposes ∑s|Xs| − 1 constraints. The last constraint (A12) guarantees that
H(S|Y, Q′) = H(S|Y, Q); hence,

I(Q′; S|Y) = H(S|Y)− H(S|Y, Q′)

= H(S|Y)− H(S|Y, Q) = I(Q; S|Y) ≤ R.

Equation (A10) involves a maximization of a linear function over the simplex, subject
to ∑s|Xs| hyperplane constraints. The feasible set is compact, and the maximum is achieved
at one of the extreme points of the feasible set. By Dubin’s theorem [56], any extreme point
of this feasible set can be expressed as a convex combination of at most ∑s|Xs|+ 1 extreme
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points of ∆. Thus, the maximum is achieved by a marginal distribution ωQ′ with support
on at most ∑s|Xs|+ 1 outcomes. This distribution satisfies:

∑
q

ωQ′(q)D(PY|SQ=q∥PY|S) ≥ ∑
q

pQ(q)D(PY|SQ=q∥PY|S)

since the actual marginal distribution pQ is an element of the feasible set. Finally, note that

∑
q

ωQ′(q)D(PY|SQ=q∥PY|S) = I(Q′; Y|S)

∑
q

pQ(q)D(PY|SQ=q∥PY|S) = I(Q; Y|S);

therefore, I(Q′; Y|S) ≥ I(Q; Y|S).

Appendix A.4. Proof of Theorem 4

Proof. For a finite-dimensional system, we may restrict the optimization problem in
Theorem 1 to Q with cardinality |Q| ≤ ∑s|Xs|+ 1 (Theorem 3). In this case, the feasible set
can be restricted to a compact set, and the objective is continuous; therefore, the maximum
will be achieved.

Now, consider a tuple of random variables (S, Z, Y, Q) that obey the Markov
conditions S − Y − Z and Q − (S, Z) − Y. Suppose that Q achieves the maximum in
Theorem 1 for a given R > 0:

I(Q; Y|S) = IRB(R), I(Q; S|Y) ≤ R. (A13)

Consider also a sequence of random variables (Sk, Zk, Yk, Qk) for k = 1, 2, 3 . . . where each
tuple has the same outcomes as (S, Z, Y, Q) and obeys the Markov conditions Sk − Yk − Zk
and Qk − (Sk, Zk)−Yk. Let Ik

RB(R) indicate the redundancy bottleneck defined in Theorem 1
for random variables Zk, Yk, Sk, and suppose that Qk achieves the optimum for problem k:

I(Qk; Yk|Sk) = Ik
RB(R) I(Qk; Sk|Yk) ≤ R. (A14)

To prove continuity, we assume that the joint distribution of (Sk, Zk, Yk) approaches the
joint distribution of (S, Z, Y),

lim
k

∥∥pSkZkYk − pSXY
∥∥

1 = 0.

We first show that
IRB(R) ≥ lim

k
Ik
RB(R). (A15)

First, observe that given our assumption that pSZ has full support, we can always take k
sufficiently large so that each pSkZk has full support. Next, we define the random variable
Q′

k that obeys the Markov condition Q′
k − (S, Z)− Y, with conditional distribution:

pQ′
k |SZ(q|s, z) := pQk |SkZk

(q|s, z).

This conditional distribution is always well-defined, given that pSkZk has the same support
as pSZ. By assumption, pSkZkYk → pSZY; therefore,

pQ′
kSZY − pQkSkZkYk → 0. (A16)
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Conditional mutual information is (uniformly) continuous due to the (uniform) continuity
of entropy (Theorem 17.3.3, [57]). Therefore,

0 = lim
k
[I(Qk; Sk|Yk)− I(Q′

k; S|Y)] ≤ R − lim
k

I(Q′
k; S|Y), (A17)

where we used Equation (A14). We also define another random variable Qα
k , which also

obeys the Markov condition Qα
k − (S, Z)− Y, whose conditional distribution is defined in

terms of the convex mixture:

pQα
k |SZ(q|s, z) := αk pQ′ |SX(q|s, z) + (1 − αk)pU(q),

αk := min
{

1,
R

I(Q′
k; S|Y)

}
∈ [0, 1] (A18)

Here, pU(q) = 1/|Q| is a uniform distribution over an auxiliary independent random
variable U with outcomes Q. From the convexity of conditional mutual information [58],

I(Qα
k ; S|Y) ≤ αk I(Q′

k; S|Y) + (1 − αk)I(U; S|Y) ≤ R.

In the last inequality, we used I(U; S|Y) = 0 and plugged in the definition of αk. Observe
that the random variable Qα

k falls in the feasible set of the maximization problem that
defines IRB, so

IRB(R) ≥ I(Qα
k ; Y|S). (A19)

Combining Equations (A17) and (A18), and R > 0 implies that αk → 1, so

pQα
k SZY − pQ′

kSZY → 0.

Combining with Equations (A14), (A16) and (A19), along with continuity of conditional
mutual information, gives

IRB(R) ≥ lim
k

I(Qα
k ; Y|S) = lim

k
I(Q′

k; Y|S) = lim
k

I(Qk; Yk|Sk) = lim
k

Ik
RB(R).

We now proceed in a similar way to prove

IRB(R) ≤ lim
k

Ik
RB(R). (A20)

We define the random variable Q′′ that obeys the Markov condition Q′′ − (Sk, Zk)− Yk,
with conditional distribution

pQ′′
k |SkZk

(q|s, z) = pQ|SX(q|s, z).

Since pSkZkYk → pSZY by assumption,

pQ′′
k SkZkYk

− pQSZY → 0. (A21)

We then have

0 = lim
k
[I(Q; S|Y)− I(Q′′

k ; Sk|Yk)] ≤ R − lim
k

I(Q′′
k ; Sk|Yk). (A22)

where we used Equation (A13). We also define the random variable Qα′ that obeys the
Markov condition Qα′ − (Sk, Zk)− Yk, with conditional distribution

pQα′
k |SkZk

(q|s, z) = α′k pQ′′ |SkZk
(q|s, z) + (1 − α′k)pU(q),

α′k := min
{

1,
R

I(Q′′
k ; Sk|Yk)

}
∈ [0, 1] (A23)
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Using the convexity of conditional mutual information, I(U; Sk; Yk) = 0, and the definition
of α′k, we have

I(Qα′
k ; Sk|Yk) ≤ α′k I(Q′′

k ; Sk|Yk) + (1 − α′k)I(U; Sk|Yk) ≤ R.

Therefore, the random variable Qα′
k falls in the feasible set of the maximization problem

that defines Ik
RB, so

Ik
RB(R) ≥ I(Qα′

k ; Yk|Sk). (A24)

Combining Equations (A22) and (A23), and R > 0 implies α′k → 1; therefore,

pQα′
k SkZkYk

− pQ′′
k SkZkYk

→ 0.

Combining this with Equations (A13), (A21) and (A24), along with the continuity of
conditional mutual information, gives

lim
k

Ik
RB(R) ≥ lim

k
I(Qα′

k ; Yk|Sk) = lim
k

I(Q′′
k ; Yk|Sk) = I(Q; Y|S) = IRB(R).
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