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Generalized Zurek’s bound on the cost of an individual classical or quantum computation
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We consider the minimal thermodynamic cost of an individual computation, where a single input x is mapped
to a single output y. In prior work, Zurek proposed that this cost was given by K (x|y), the conditional Kolmogorov
complexity of x given y (up to an additive constant that does not depend on x or y). However, this result
was derived from an informal argument, applied only to deterministic computations, and had an arbitrary
dependence on the choice of protocol (via the additive constant). Here we use stochastic thermodynamics to
derive a generalized version of Zurek’s bound from a rigorous Hamiltonian formulation. Our bound applies to
all quantum and classical processes, whether noisy or deterministic, and it explicitly captures the dependence on
the protocol. We show that K (x|y) is a minimal cost of mapping x to y that must be paid using some combination
of heat, noise, and protocol complexity, implying a trade-off between these three resources. Our result is a kind of
“algorithmic fluctuation theorem” with implications for the relationship between the second law and the Physical
Church-Turing thesis.
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I. INTRODUCTION

It is now understood that there are fundamental relation-
ships between computational and thermodynamic properties
of physical processes. The best-known relationship is Lan-
dauer’s bound, which says that any computational process that
erases statistical information must generate a corresponding
amount of thermodynamic entropy in its environment [1,2].
For concreteness, imagine a process that implements some
stochastic input-output map p(y|x) while coupled to a heat
bath at inverse temperature β. Suppose that the process is ini-
tialized with some ensemble of inputs p(x) which is mapped
to an ensemble of outputs p(y) = ∑

x p(y|x)p(x). Landauer’s
bound implies that the generated heat, averaged across the
ensemble of system trajectories, obeys

β

ln 2
〈Q〉 � S[p(X )] − S[p(Y )], (1)

where S(·) is the Shannon entropy in bits. The result imposes
a minimal “thermodynamic cost of computation,” i.e., a min-
imal amount of internal energy and/or work that must be lost
as heat.

Importantly, Landauer’s bound depends not only on prop-
erties of the physical process but also on the choice of the
input ensemble p(x). Because of this, it cannot be used to
investigate the following natural question: what is the cost of
mapping a single input x to a single output y, independently of
which statistical ensembles (if any) the inputs are drawn from?
As a motivating example, imagine a process that deterministi-
cally maps the logical state of a 100-GB hard drive from some
particular sequence of 1011 zeros-and-ones to a sequence of
1011 zeros. Without additional assumptions about the input
ensemble, one cannot use Landauer’s bound to constrain the
heat generated by this process. The same holds for most other
bounds on the thermodynamic costs of computation, which
typically depend on the choice of the input ensemble [3–15].

In this paper, we derive a lower bound on the heat generated
by an individual computation that maps a single input x to
a single output y (see Fig. 1). Our bound, which appears in
Sec. III below, depends only on the properties of x, y, and the
protocol that carries out the transformation x → y. It reflects
the loss of algorithmic information in going from x to y [16],
rather than the loss of statistical information in going from the
ensemble p(x) to p(y), as in Landauer’s bound.

To derive our result, we suppose without loss of generality
that x and y can be represented by binary strings. The loss
of algorithmic information is quantified as the length of the
shortest computer program that outputs x when provided with
y as input:

K (x|y) = min
s

�(s) such that C(s, y) = x. (2)

Here the minimization is over all binary strings, �(s) indicates
the length of string s, and C(s, y) indicates the output of a
fixed universal computer C on program s and input y. In algo-
rithmic information theory, K (x|y) is termed the conditional
Kolmogorov complexity of x given y [16,17].

The conditional Kolmogorov complexity quantifies how
much information must be added to y in order to recover x,
and so it can be understood as the amount of algorithmic
information about x that is not in y. It is the algorithmic analog
of conditional entropy in Shannon’s information theory, and
it has many remarkable mathematical properties. Since it is
defined at the level of individual strings, rather than statistical
ensembles like Shannon entropy, it is well suited for studying
the cost of individual computations.

Our approach builds on the work by Zurek from the late
1980s [18], which suggested that K (x|y) can be used to bound
the cost of an individual computation x → y without refer-
ence to any statistical ensembles (see also [19–22]). Zurek
considered a system in contact with an environment, such as
a heat bath at inverse temperature β, which maps some input
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FIG. 1. We analyze the cost of mapping a single input x to a
single output y, given a system coupled to a heat bath and a work
reservoir that drives protocol P . We show that the conditional Kol-
mogorov complexity K (x|y) is a fundamental minimal cost, which
bounds accessible combinations of heat, noise, and complexity of
the protocol.

x to output y in a deterministic (noiseless) manner. He argued
that the heat generated by the individual computation, which
we write as Q(x → y), obeys

β

ln 2
Q(x → y) � K (x|y) + O(1), (3)

where O(1) refers to an arbitrary constant that does not depend
on x or y, but does depend on the choice of the universal
computer C and the protocol that implements the computation.
Zurek’s bound may be compared to Landauer’s bound (1),
since the latter can be written as β

ln 2 〈Q〉 � S[p(X |Y )] in the
case where X is a deterministic function of Y . The conditional
Shannon entropy S[p(X |Y )] quantifies the loss of statistical
information about the input given the output, averaged across
the ensemble of computational trajectories; the conditional
Kolmogorov complexity K (x|y) quantifies the loss of algorith-
mic information about the input given the output at the level
of a single computation. Importantly, Zurek’s bound is not
simply a special case of Landauer’s bound where the initial
ensemble is concentrated on a single input x, since in that case
S[p(X |Y )] vanishes while K (x|y) generally does not.

Zurek’s bound suggests a remarkable connection between
thermodynamics and algorithmic information theory. How-
ever, it has some drawbacks. First, it is limited to deterministic
computations. Second, it is only meaningful when considering
the behavior of a fixed protocol on different inputs. In fact, for
any particular x and y, one can construct a special protocol
that computes x → y while generating an arbitrarily small
amount of heat [[23], Sec. V]. Finally, as we discuss below,
Zurek’s bound was derived using an informal argument that
invoked Landauer’s bound as an intermediate step. This is
problematic because, as mentioned above, Landauer’s bound
only applies at the level of statistical ensembles, not individual
computations. This suggests that Zurek’s original derivation
made an implicit assumption about the statistical distribution
of inputs.

Our result is a generalized version of Zurek’s bound that
overcomes all of these issues. It holds for classical and quan-
tum processes, noisy as well as deterministic. In addition, it
explicitly quantifies how the choice of protocol enters into the
bound, via a “protocol complexity” term. Finally, our bound
is derived in an explicit manner within a rigorous Hamiltonian

framework. Our derivation uses a combination of techniques
from algorithmic information theory and stochastic thermody-
namics, which together allow us to study the thermodynamic
properties of individual computational trajectories. In general,
our work contributes to the growing body of recent research
on the relationship between algorithmic information theory
and nonequilibrium thermodynamics [10,22–25].

Although our result is motivated within the context of the
thermodynamics of computation, it is not restricted to systems
that are conventionally considered to be computers. In fact, it
is a general algorithmic bound on the heat generated by any
system that undergoes the transformation x → y while cou-
pled to a thermal reservoir. For this reason, it may also be used
to study the thermodynamic properties of individual instances
of other types of processes, including work extraction [26–28]
and algorithmic cooling [29–31] protocols.

Our paper is structured as follows. In the next section,
we provide preliminaries and discuss our setup. We derive
our main results in Sec. III and illustrate it with examples in
Sec. IV. We relate our approach to prior work in Sec. V. A
brief discussion follows in Sec. VI. Derivations of our bound
and its achievability are found in the appendices.

II. PRELIMINARIES

A. Physical setup

We consider a simple and operationally accessible physical
setup, inspired by “two-point measurement” schemes used in
quantum thermodynamics [32–36]. We suppose that there is a
computational subsystem A that carries out the transformation
x → y. This subsystem is coupled to a thermal bath, repre-
sented by subsystem B. The overall setup may be classical
or quantum, though here we focus on the quantum case for
generality.

We assume that the Hilbert spaces of A and B are both
separable, so that each one can be associated with a countable
orthonormal basis. The basis of subsystem A is indexed by
some set of binary strings A ⊆ {0, 1}∗, which we indicate as
{|a〉}a∈A. (The notation {0, 1}∗ refers to the countable set of
binary strings of finite, but arbitrary, length.) The basis vectors
|a〉 represent logical states, so that the computation x → y cor-
responds to a physical process during which subsystem A goes
from the initial state |x〉 to the final state |y〉. The environment
B is a heat bath at inverse temperature β and Hamiltonian HB.
We indicate the spectral decomposition of the Hamiltonian
as HB = ∑

b∈B εb|b〉〈b|, where B indexes the bath’s energy
eigenstates as {|b〉}b∈B. We indicate the product basis formed
by the logical states of A and the energy eigenstates of B as
V = {|a, b〉}a∈A,b∈B.

The computation x → y is carried out as follows. A and
B start in a pure product state |x, b〉 ∈ V , where |b〉 is
sampled from the Gibbs distribution π (b) = e−βεb/Z . The
two subsystems are then coupled to an external work reser-
voir and undergo a Hamiltonian driving protocol over time
t ∈ [0, τ ], corresponding to a time-dependent Hamiltonian
HAB(t ). As a result of this driving protocol, A and B jointly
evolve according to the final state U |x, b〉 under the unitary
U = T e−(i/h̄)

∫ τ

0 HAB (t )dt , where T is the time-ordered exponen-
tial. Finally, A and B undergo a projective measurement in the
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product basis V . Given initial state |x, b〉, the probability of
measuring output logical state |y〉 and bath energy eigenstate
|c〉 is

p(y, c|x, b) = |〈y, c|U |x, b〉|2. (4)

We refer to the combination of the product basis V , the unitary
U , the inverse temperature β, and the bath’s energy function
ε as “the protocol P = (V,U, β, ε).”

We will be interested in two properties of the computation
x → y as instantiated by the protocol P . The first property is
the conditional probability of output y given input x, averaged
across bath states:

p(y|x) =
∑
b,c

p(y, c|x, b)π (b). (5)

The second property is the heat generated by the computation
x → y:

Q(x → y) =
∑
b,c

p(y, c|x, b)π (b)

p(y|x)
(εc − εb). (6)

This is the average energy increase of the bath, conditioned on
input logical state x and output logical state y.

B. Computability and description of the protocol

In order to derive our results, we make an important
computability assumption in regard to the protocol P =
(V,U, β, ε): we assume that there exists a program for a
universal computer C that can approximate, to any desired
degree of numerical precision, the values of

β, εb, p(y, c|x, b) = |〈y, c|U |x, b〉|2 for all x, b, y, c.
(7)

We discuss the physical meaning of the computability as-
sumption at the end of this paper.

We refer to the shortest program that computes the values
(7) as P∗. We emphasize that any program that can compute
these values can also be used to compute the bath Gibbs distri-
bution π (b) = e−βεb/Z , as well as the entries of the stochastic
input-output map p(y|x) and the generated heat Q(x → y),
via (5) and (6), respectively. Therefore, P∗ can be interpreted
as the minimal description of the relevant computational and
thermodynamic properties of the physical protocol. We refer
to the length of this minimal description P∗ as “the complex-
ity of protocol P ,” and indicate it as K (P ) ≡ �(P∗).

In deriving our results, we will make use of the condi-
tional Kolmogorov complexity K (x|y), as defined in (2). We
also make use of the conditional Kolmogorov complexity
K (x|y,P∗), which is defined in a similar way as the length
of the shortest program that outputs x when provided with y
and the minimal description P∗ as input. K (x|y,P∗) quantifies
the algorithmic information about x that is not found in the
combination of y and P∗. It can be related to K (x|y) and K (P )
via the inequalities

K (x|y) � K (x|y,P∗) + O(1),

K (x|y) � K (P ) + K (x|y,P∗) + O(1),
(8)

where O(1) refers to additive constants that do not depend on
x, y, or P . The first inequality follows because additional side

information cannot increase conditional Kolmogorov com-
plexity. The second inequality follows because K (x|y), the
length of the shortest program that outputs x when provided
with y, cannot be longer than the length of P∗ plus a program
that outputs x when provided with y and P∗. Combining these
inequalities implies

|K (x|y) − K (x|y,P∗)| � K (P ) + O(1). (9)

We finish by noting a few technical points related to our use
of algorithmic information theory (AIT). As standard in AIT,
we assume that the universal computer C, which is used to
define our Kolmogorov complexity terms K (x|y), K (x|y,P∗),
and K (P ), accepts self-delimiting programs. This means that
the set of valid programs for C forms a prefix code [16,37]. We
also note that our Kolmogorov complexity terms depend on
the choice of the universal computer C, although we leave this
dependence implicit in our notation. A classic result in AIT
states that the choice of the universal computer only affects
K (x|y) by an additive constant: if K (x|y) and K ′(x|y) are
defined using two different universal computers C and C′, then
|K (x|y) − K ′(x|y)| � O(1), where O(1) refers to a constant
that does not depend on x or y (only on C and C′). The same
kind of invariance up to an additive constant holds for K (P )
and K (x|y,P∗). A standard textbook reference on AIT is
Ref. [17]. More succinct and physics-oriented introductions,
which are sufficient to understand the content of this paper,
can be found in Refs. [18,23].

C. Use of the quantum formalism

In this paper, we work in the quantum setting due to its
generality and preciseness, since any classical description
is ultimately an approximation of an underlying quantum
physics. It is also convenient, because the quantum formalism
naturally leads to a countable basis for the state space, which
provides a discrete set of logical states that can be studied
using algorithmic information theory. In principle, however,
similar results can be derived for a classical Hamiltonian sys-
tem with a continuous phase space, as long as one introduces
an appropriate coarse-graining of the phase space into discrete
logical states [38]. A coarse-grained version of our result
can also be derived for quantum systems where the logical
states correspond to macrostates, rather than pure states. For
simplicity, we do not consider coarse-graining in this paper.

It is important to note that the stochastic map from ini-
tial to final states of the computational subsystem and bath,
p(y, c|x, b) in (4), is a classical conditional probability distri-
bution. The stochastic input-output map over logical states,
p(y|x) in (5), is also a classical conditional probability distri-
bution. These conditional distributions are classical because of
the two-point measurement scheme considered here, in which
the system is initialized with classical information (the choice
of a pure state from a fixed reference basis) and outputs clas-
sical information (the result of a projective measurement in a
fixed reference basis). At the same time, this does not preclude
intermediate stages of the computational process from ex-
ploiting quantum effects such as coherence and entanglement.
This setup is consistent with the process considered by Zurek
[18], as well as the standard picture of quantum computation
in which an intermediate quantum process is used to map
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classical inputs to classical outputs [39]. However, as we
touch upon in the Discussion, future work may extend our
analysis to a purely quantum formulation that does not require
fixed reference bases and projective measurements.

Because we consider the overall computation as a classical
input-output distribution, our results use standard algorithmic
information theory, as defined in terms of classical Turing
machines, rather than one of its quantum extensions [40–42].
We emphasize that there is no difficulty in describing a quan-
tum protocol P using a classical Turing machine. This is
because quantum states and quantum operations can always
be represented and manipulated on a classical computer, for
instance by using complex-valued matrices.

III. MAIN RESULTS

A. Algorithmic cost of an individual computation

Our first main result is the following algorithmic bound on
any physically instantiated computation x → y:

β

ln 2
Q(x → y) + log2

1

p(y|x)
+ γC � K (x|y,P∗). (10)

Here Q(x → y) is the generated heat by the protocol P that
carries out the computation, − log2 p(y|x) is the amount of sta-
tistical noise, and K (x|y,P∗) is the conditional Kolmogorov
complexity of input x given output y and the minimal de-
scription P∗, as discussed above. Finally, γC is an additive
constant that depends on the universal computer C, but not x,
y, or P . This result implies that K (x|y,P∗) is a fundamental
cost of carrying out the computation x → y with protocol P ,
which must be paid for either by heat or noise. A simple
rearrangement of (10) gives a lower bound on heat generation:

β

ln 2
Q(x → y) � K (x|y,P∗) − log2

1

p(y|x)
− γC. (11)

Note that the right-hand side of (11) may be negative, in
which case our result bounds the maximum heat that may be
absorbed from the heat bath.

Our result does not depend on the choice of the input
ensemble p(x). However, the noise term − log2 p(y|x) does
depend on the conditional output ensemble p(y|x), which
we treat as an intrinsic property of the protocol. The noise
term can be further decomposed into separate classical and
quantum contributions as

log2
1

p(y|x)
=

〈
E x

b

〉
π

+
〈
log2

1

p(y|x, b)
− E x

b

〉
π

+
〈
log2

p(y|x, b)

p(y|x)

〉
π

,

where 〈 fb〉π = ∑
b π (b) fb indicates expectations under the

Gibbs distribution of the bath. In this decomposition, E x
b

is the von Neumann entropy of the reduced state ρxb
A =

trB{U |x, b〉〈x, b|U †}, which is called “entanglement entropy”
[43]. It is a non-negative contribution that arises from
quantum correlations (entanglement) between the computa-
tional subsystem A and the heat bath B. The second term
− log2 p(y|x, b) − E x

b reflects the noise that arises from quan-
tum coherence of the output logical state in the measurement
basis. Averaged across initial bath states π (b) and output

logical states p(y|x), it equals 〈S(Y |x, b) − E x
b 〉 � 0, which

is the expected “relative entropy of coherence” [44]. Finally,
log2[p(y|x, b)/p(y|x)] arises due to statistical uncertainty
about the initial bath state. Averaged across initial bath states
π (b) and output logical states p(y|x), it equals I (Y ; B|x) � 0,
the mutual information between initial bath states B and out-
puts Y given input x. This is the contribution from classical
correlations between A and B.

The derivation of (10) is found in Appendix A. This deriva-
tion is based on a rigorous Hamiltonian formulation and does
not impose any idealized assumptions on the heat bath, such as
infinite heat capacity, separation of timescales, etc. Moreover,
in Appendix B, we show that the bound becomes achievable,
as long as the heat bath is nearly ideal. Specifically, we imag-
ine there is some desired computation p(y|x), as well as a
nearly ideal heat bath with inverse temperature β and energy
function ε. Then, as long as p(y|x), β, and ε are computable,
we demonstrate that there are computable protocols that come
close to equality in (10).

Our result is related to the so-called “detailed fluctuation
theorem” (DFT) in stochastic thermodynamics [36,45–47]. In
the particular setup considered here, the DFT can be used to
derive the bound

β

ln 2
Q(x → y) � log2

1

p̃(x|y)
− log2

1

p(y|x)
, (12)

where p̃(x|y) is a conditional distribution defined using a
special time-reversed protocol (see Appendix A for details).
The formal similarity between (12) and (11) is clear. However,
unlike the DFT, our result makes no explicit reference to a
time-reversed process, and − log2 p̃(x|y) is replaced by an
algorithmic information term K (x|y,P∗). Simply put, both
the DFT and our result show that the breaking of symmetry
between the forward and reverse maps must be paid for by
heat generation. However, the notion of symmetry breaking
is defined differently in these two results. Our result can be
understood as a kind of “algorithmic fluctuation theorem”
that quantifies symmetry breaking in terms of the algorithmic
reversal, rather than time reversal as in a regular DFT.

B. Generalized Zurek’s bound

We now derive a simplified version of our result, which will
add insight and highlight the connection to Zurek’s bound (3).
First, we combine the second inequality in (8) with (10), while
absorbing the additive constant into γC, to give

β

ln 2
Q(x → y) + log2

1

p(y|x)
+ K (P ) + γC � K (x|y). (13)

This bound, which is our second main result, separates those
terms that depend on the details of the protocol P (left-hand
side) from those terms that depend only on the logical com-
putation x → y (right-hand side). It implies that K (x|y) is an
unavoidable algorithmic cost of carrying out the computation
x → y with any protocol. This cost must be paid with some
combination of heat, noise, and protocol complexity, implying
a trade-off between these three resources, which is illustrated
in Fig. 1. As we discuss in more detail below, the inequality
(13) may be seen as a generalization of Zurek’s bound.
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We emphasize that (13) is generally weaker than our
first result (10), because the inequality K (x|y) � K (P ) +
K (x|y,P∗) + O(1) is not always tight. The difference between
these two bounds is illustrated in an example below. In gen-
eral, (10) may be considered as the more fundamental and
achievable bound, while (13) is a useful simplification that
allows us to separate physical from logical terms. In principle,
it is also possible to derive other bounds and decompositions
starting from (10) and (13). For example, one could derive
other bounds by decomposing the complexity term K (P ) in
(13) into contributions from different aspects of the protocol
(e.g., the complexity of the unitary versus the complexity of
the heat bath).

Finally, observe that the terms K (P ) and γC in (13) do not
depend on x and y. Thus, we may generally write

β

ln 2
Q(x → y) + log2

1

p(y|x)
+ O(1) � K (x|y),

where the additive constant O(1) can now depend on the
protocol. In fact, even this additive constant may be disre-
garded in an appropriate limit, leading to a simpler inequality.
Suppose that the set of logical states is countably infinite, as
might represent the logical states of some Turing machine.
Then, consider repeating the same protocol on a sequence of
inputs x1, x2, . . . of increasing length [�(xn) = n], producing
a sequence of outputs y1, y2, . . . . In the n → ∞ limit, the heat
per input bit can be bounded without any additive constants as

lim
n→∞

β

ln 2 Q(xn → yn)

n
� lim

n→∞
K (xn|yn) + log2 p(yn|xn)

n
,

(14)
assuming that the limits exist.

C. Connection to measurable quantities

How can one measure the terms that appear in our bounds,
for instance if one wishes to compare the theoretical predic-
tions with empirical observations? In general, the heat and
noise terms can be estimated using standard techniques, e.g.,
by running the process many times starting from input x
and measuring energy transfer to the bath and output y in
each run. The algorithmic information terms, such as K (x|y),
K (x|y,P∗), and K (P ), present a bigger challenge.

In general, Kolmogorov complexity terms are uncom-
putable. However, they can be upper bounded (to arbitrary
tightness) by computable compression algorithms [16,22,48].
For instance, K (P ) in (13) can be upper bounded using nP , the
number of bits needed to specify the effective parameters that
define the protocol P = (V,U, β, ε). Any such upper bound
on K (P ) leads to a valid but weaker bound when plugged into
(13).

The terms K (x|y) and K (x|y,P∗) can also be upper
bounded using computable compressions of x with side in-
formation, for instance using “Lempel-Ziv compression with
side information” or related schemes [49–52]. However, such
computable estimates of K (x|y) are upper (not lower) bounds,
and therefore they do not generally preserve the inequalities
when plugged into (10) and (13). The estimation of K (x|y,P∗)
also faces the problem of finding the minimal description of
the protocol P∗. However, this latter issue can be ignored

for simple protocols with small K (P ), since in that case
K (x|y,P∗) ≈ K (x|y) from (9).

Nonetheless, compression-based estimators are frequently
used to approximate Kolmogorov complexity in practice
[25,48,53–56]. To the extent that these estimators are justified,
our bounds can be useful for bounding heat generation using
estimates of K (x|y) and/or log2 p(y|x). Furthermore, the prob-
lem of estimating K (x|y) is avoided if (14) is used to bound
K (xn|yn) in terms of empirical measurements of Q(xn → yn)
and log2 p(yn|xn) for large n.

IV. EXAMPLES

To make things concrete, we now illustrate our results
using two examples. In both examples, we consider a hard
drive with 2n logical states, encoding all bit strings of length
n � 1. We consider two tasks. The first is the “erasure” task
mentioned in the Introduction, which involves transforming a
long incompressible string into a string of all zeros. The sec-
ond is a “randomization” task, which involves transforming a
string of all zeros into a long incompressible output.

A. Example 1: Erasure

We first consider the erasure task, where we map a long
incompressible input x of length n to an output y consisting of
n zeros. In this case, K (x|y) ≈ K (x) ≈ n. We sketch out four
different types of processes, illustrated in Fig. 2, that perform
the erasure. We demonstrate that each type of process satu-
rates our thermodynamic bounds (10) and (13) in a different
way. In doing so, we also demonstrate that these two bounds
are equivalent for these processes.

(1) Landauer erasure, Fig. 2(a). The Hamiltonian of the
computational subsystem A is set to zero and the subsystem
is allowed to relax to a uniform equilibrium. The Hamiltonian
is then quasistatically changed so that the system moves to
an equilibrium distribution which is (nearly) a delta func-
tion centered at the all-0′s string. In the limit of quasistatic
driving and peaked final energy functions, Q(x → y) ≈ ln 2

β
n

and − log2 p(y|x) ≈ 0. This protocol has a simple description,
K (P ) ≈ 0, so (9) implies that our two bounds (10) and (13)
have the same minimal cost, K (x|y,P∗) ≈ K (x|y) ≈ n. Both
bounds are achieved, with the minimal cost paid by heat.

(2) Free expansion, Fig. 2(b). This is simply the first part
of the Landauer erasure process described above: the Hamil-
tonian of the subsystem A is set to zero and the subsystem
is again allowed to relax to a uniform equilibrium. Since
each final state is equally likely under this free relaxation,
− log2 p(y|x) = n. No heat is released or absorbed, Q(x →
y) = 0. This protocol has a simple description, K (P ) ≈ 0, so
our two bounds (10) and (13) again have the same minimal
cost, K (x|y,P∗) ≈ K (x|y) ≈ n. Both bounds are achieved,
with the minimal cost paid for by noise.

(3) Swap, Fig. 2(c). Subsystem A undergoes a unitary
that swaps the incompressible input string x with the simple
(all 0′s) output string y, while all other states are left un-
touched. This process is deterministic, − log2 p(y|x) = 0, and
no heat is exchanged with the bath, Q(x → y) = 0. However,
this process requires that the input state x be “hard coded”
into the unitary that implements the swap, so K (P ) ≈ n
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FIG. 2. Illustration of our results using the erasure task, where an input string x is mapped to an output y consisting of all 0′s, possibly in
a noisy fashion. Four different processes that achieve our bound (13): (a) Landauer erasure, where all possible inputs are mapped to the target
y. (b) Free expansion, where all inputs are allowed to thermalize to a uniform equilibrium distribution. (c) Swap, where a single input and a
single output are swapped, while all other states are left in place. (d) Controlled expansion, where a single input is allowed to thermalize to a
uniform equilibrium distribution.

and K (x|y,P∗) ≈ 0. The minimal cost in (10) vanishes,
K (x|y,P∗) ≈ 0; this bound is achieved since both heat and
noise vanish. The minimal cost in (13) is K (x|y) ≈ n; this
bound is again achieved and the cost is paid for by protocol
complexity.

(4) Controlled expansion, Fig. 2(d). The Hamiltonian of
subsystem A is initially set to a peaked function at the target
input x, and the subsystem is allowed to relax an equilibrium
distribution that is (nearly) a delta function centered at x.
The Hamiltonian is then quasistatically changed to a constant
energy function, so that the system moves to a uniform equi-
librium distribution. In the limit of quasistatic driving and
peaked initial energy function, heat can be extracted from
the bath, Q(x → y) ≈ − ln 2

β
n. However, this process is noisy,

− log2 p(y|x) ≈ n. In addition, the initial Hamiltonian must
include a description of the target input state x. Therefore,
as for the Swap, K (P ) ≈ n and K (x|y,P∗) ≈ 0. The minimal
cost in (10) vanishes, K (x|y,P∗) ≈ 0; this bound is achieved
since the heat and noise terms cancel. The minimal cost in (13)
is K (x|y) ≈ n; this bound is also achieved and the cost is paid
for by a combination of absorbed heat, noise, and protocol
complexity.

B. Example 2: Randomization

We now consider the randomization task, where an input x
consisting of n zeros is mapped to an output y that is long and
incompressible, K (y) ≈ n. Since the input is very simple, we
have K (x|y) ≈ K (x|y,P∗) ≈ 0. From a logical perspective,
this task may be considered to be the opposite of erasure, in
that the output and input roles are swapped. However, as we
will see, the thermodynamic properties of the two tasks are
very different.

We again consider the four types of processes mentioned
in the previous section. We show that for the randomization
task, the two thermodynamics bounds (10) and (13) can be
different. We also show that only some of the processes can
saturate the tighter bound (10).

(1) Landauer reset. Subsystem A is allowed to freely relax
to a uniform equilibrium. The Hamiltonian is then quasistat-
ically changed so that the system moves to an equilibrium
distribution that is (nearly) a delta function centered at the

string y. In the limit of quasistatic driving and peaked final
energy functions, Q(x → y) ≈ ln 2

β
n and − log2 p(y|x) ≈ 0.

Plugging into (10) gives n > 0 (up to additive constants),
so the bound is not tight. Since the protocol must contain a
description of y, we also have K (P ) ≈ n. Plugging into the
weaker bound (13) shows that it is even looser, 2n > 0.

(2) Free expansion. Subsystem A is allowed to relax to a
uniform equilibrium. Since each final state is equally likely
under this free relaxation, − log2 p(y|x) = n, and no heat is
released or absorbed, Q(x → y) = 0. Plugging into (10) gives
n > 0, so the bound is not tight. In this case, the protocol is
very simple, K (P ) ≈ 0, so (13) also gives n > 0.

(3) Swap. Subsystem A undergoes a unitary that swaps x
and y, while all other states are left untouched. This process
is deterministic, − log2 p(y|x) = 0, and no heat is exchanged
with the bath, Q(x → y) = 0. In this case, the bound (10) is
achieved. However, the protocol must contain a description of
y, so K (P ) ≈ n. Therefore, the weaker bound (13) is not tight,
n > 0.

(4) Controlled expansion. The Hamiltonian of subsystem A
is initially set to a peaked function at the target input x, and the
system is allowed to relax to an equilibrium distribution that
is (nearly) a delta function centered at x. The Hamiltonian is
then quasistatically changed to a constant energy function, so
that the system moves to a uniform equilibrium distribution.
In the limit of quasistatic driving and peaked initial energy
function, heat can be extracted from the bath, Q(x → y) ≈
− ln 2

β
n. However, this process is noisy, − log2 p(y|x) ≈ n. The

bound (10) is achieved, since the noise and heat terms cancel.
However, the protocol must contain a description of y, so
K (P ) ≈ n. Therefore, the weaker bound (13) is not tight,
n > 0.

As we see, although the erasure and randomization tasks
are similar from a logical standpoint, thermodynamically they
are quite different. In general, our bound (10) can only be
achieved when the system is not allowed to thermalize to a
uniform distribution at the beginning of the process. This is
because any such thermalization dissipates initial order, i.e.,
it tends to map the simple input x to an n-bit string sampled
from the uniform distribution, which almost always has high
complexity [16]. This is why erasure and randomization tasks
differ: in the erasure task, an initial thermalization tends to
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replace the complex input x with another complex string.
It may be said that the complex input in the erasure task
is “in equilibrium” with respect to the uniform distribution,
while the simple input in the randomization task is “out of
equilibrium” with respect to the uniform distribution.

V. RELATION TO PRIOR WORK

We briefly compare our results with prior work.
We first consider Zurek′s bound (3), as proposed in

Ref. [18]. That result is a special case of (13), which applies to
deterministic computations [− log p(x|y) = 0]. Our bound is
more general because it also applies to noisy processes, and
because it explicitly highlights the dependence on protocol
complexity. Perhaps more importantly, our bound is derived
from a Hamiltonian formulation, which extends it to both
quantum and classical systems while avoiding certain prob-
lematic aspects of the original derivation (see also discussion
in [10,23]).

Let us review the derivation of the original result, which
used a two-step process [18]. First, the input x is mapped to
the pair of strings (y, s), where s is an auxiliary binary string
that allows x to be recovered from (y, s) using some computer
program. By construction, this first step is logically reversible,
so in principle it can be carried out without generating heat.
Second, the string s, which is stored in �(s) binary degrees
of freedom, is reset to all 0′s. The cost of this erasure was
argued to be Q � ln 2

β
�(s), as follows from Landauer′s bound

(1). Finally, (3) follows since x is decodable from s and y,
therefore �(s) � K (x|y) + O(1) according to the definition
of conditional Kolmogorov complexity (2) [here O(1) is a
constant that reflects the choice of the universal computer].

There are two problematic aspects of using Landauer′s
principle to say that ln 2

β
�(s) is the minimal heat needed to

reset �(s) binary degrees of freedom (the same statement also
appears in other related work [18,20–22]). The first problem
is that Landauer′s bound constrains the average heat across a
statistical ensemble of inputs. For any individual input x and
individual auxiliary string s, the reset protocol can be designed
to achieve much lower heat generation. In the extreme case, s
may be “hard coded” into the reset protocol, so that the reset
generates no heat at all (as in the example shown in Fig. 2(c)).
For this reason, a proper accounting of the second step should
also include the complexity of the reset protocol, analogous
to the term K (P ) that appears in our result [57]. The second
problem with the use of Landauer′s bound is more technical.
Suppose that the reset protocol does not have any hard-coded
information about the string s. Then, in order to reset �(s)
binary degrees of freedom at the Landauer cost of ln 2

β
�(s), the

protocol must have information about the string length �(s),
which will vary between different inputs [10]. If this length is
measured before running the reset, then this information about
�(s) also has to be erased, resulting in additional O[log �(s)]
heat generation. In fact, such logarithmic correction terms are
unavoidable when trying to erase an arbitrary binary string of
arbitrary length. (This problem can be avoided by appropriate
use of self-delimiting codes during the erasure process, as
done in our construction in Appendix B).

In our own recent work, we rederived a version of
Zurek′s bound (3) using modern methods [23]. Although our

derivation did not make use of Landauer′s bound as an in-
termediate step, it only applied to classical and deterministic
computations. In addition, unlike the result presented here, it
relied on idealized assumptions (such as the assumption of an
idealized bath).

Finally, our approach should be contrasted with “single-
shot thermodynamics” as recently considered in quantum
thermodynamics and quantum information theory [4,26,58–
60]. Single-shot thermodynamics focuses on the thermody-
namic costs and benefits incurred by individual computations
at a guaranteed high probability, relative to some input en-
semble. For this reason, single-shot costs are still defined
in terms of statistical ensembles [4]. In general, the goals
of single-shot thermodynamics are different from our goal,
which is to derive an algorithmic bound on the cost of a
(deterministic or noisy) computation that does not reference
any input ensemble.

VI. DISCUSSION

In this paper, we identified a fundamental thermodynamic
bound on the cost of an individual computation. Our bound,
which makes no reference to the statistical ensemble of inputs,
was derived by combining ideas from two different lines of
research. The first is AIT, which defines information at the
level of individual strings, rather than statistical ensembles.
The second is stochastic thermodynamics, which defines ther-
modynamic quantities at the level of individual trajectories,
rather than ensembles of trajectories.

The main assumption used to derive our results, and the
most unusual one in the physics literature, is the computabil-
ity assumption, which says that there exists a program that
approximates the values of p(y, c|x, b), β, and εb to arbitrary
precision. It may be difficult to imagine a physical unitary or
observable that cannot be calculated numerically using a finite
program. Nonetheless, such noncomputable unitaries and ob-
servables do exist in a mathematical sense [61], although it is
not clear whether they can be realized in any real-world phys-
ical system. The so-called “Physical Church-Turing thesis”
(PCT), whose validity is the subject of ongoing discussion,
postulates that noncomputable unitaries and observables are
not physically realizable [62–65]. If the PCT is true, then our
computability assumption is satisfied by all protocols that can
be realized in real-world physical systems. If the PCT is not
true, then there exists some physically realizable protocol P
that does not satisfy the computability assumption; that is, it
does not have a minimal description P∗, so (10) does not ap-
ply. In general, our results point to an interesting relationship
between PCT and thermodynamics.

There are several possible directions for future research.
As mentioned in Sec. III A, our results may be understood
as “algorithmic fluctuation theorems,” that is, algorithmic
versions of detailed fluctuation theorems from stochastic ther-
modynamics. One may investigate other results from stochas-
tic thermodynamics, such as thermodynamic uncertainty
relations [66] and thermodynamic speed limits [67], which
may also have algorithmic analogs.

Another interesting research direction would extend our
approach to fully quantum computations. As discussed in
Sec. II C, even though our analysis applies to quantum
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processes, the computation is operationalized using a two-
point measurement scheme, in which a fixed reference basis
is used to initialize the input and determine the output via a
projective measurement. Therefore, the overall computation
that maps the input string x to the output string y is classical,
even if the process may use quantum effects at intermediate
stages. In future work, it may be interesting to investigate
the thermodynamic cost of a quantum computation that maps
some input pure state |ψ〉〈ψ | to some output pure state |φ〉〈φ|,
without assuming that |ψ〉〈ψ | and |φ〉〈φ| belong to any fixed
basis or result from projective measurements.
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APPENDIX A: DERIVATION OF (10)

Here we derive our main result, (10). We begin by proving
the following useful inequality,

− log2 p(y|x) + β

ln 2
Q(x → y) � − log2 p̃(x|y), (A1)

where p(y|x) is defined as in (5) and

p̃(x|y) :=
∑
b,c

p(y, c|x, b)π (c). (A2)

Note that p(y, c|x, b) = |〈y, c|U |x, b〉|2 = |〈x, b|U †|y, c〉|2,
which can be interpreted as the conditional probability of
observing final state |x, b〉 given initial state |y, c〉 under the
adjoint unitary evolution U †. Therefore

∑
x,b p(y, c|x, b) =

1 and
∑

x p̃(x|y) = 1, meaning that p̃(x|y) is a normalized
conditional probability distribution. In addition, the adjoint
unitary U † can be understood as the time reversal of the actual
unitary U [34,35]. Therefore, p̃(x|y) can also be seen as the
probability of output x from input y under the time-reversed
process.

Next, write the following identity:

p(y, c|x, b)π (c) = p(y, c|x, b)π (b)e−β(εc−εb). (A3)

We sum both sides of (A3) over the initial and final bath states
b and c to give

p̃(x|y) =
∑
b,c

p(y, c|x, b)π (b)e−β(εc−εb)

= p(y|x)
∑
b,c

p(y, c|x, b)π (b)

p(y|x)
e−β(εc−εb)

� p(y|x)e−βQ(x→y). (A4)

In the first line, we used the definition of p̃(x|y) from (A2). In
the second line, we used the definition of p(y|x) from (5). In
the last line, we used Jensen′s inequality and the definition
of Q(x → y) from (6). Rearranging (A4) gives (A1). The
inequality (A4) becomes tight when heat fluctuations become

small, which is expected in the limit of a large self-averaging
heat bath and slow driving. This inequality appears as (12) in
the main text. We note that this type of derivation is often used
to prove detailed fluctuation theorems in stochastic thermody-
namics [35,36,45–47,68].

Next, we introduce the bound

− log2 p̃(x|y) + γC � K (x|y,P∗), (A5)

where K (x|y,P∗) is the conditional Kolmogorov complexity
described in Sec. II B, and γC is a constant that does not
depend on x, y, or P . While (A5) is a standard result in AIT
[17], here we sketch out its proof at a high level. Recall that
P∗ is a program that computes the values of p(y, c|x, b) and
π (b) to arbitrary precision (7). Next, we define the following
program that outputs x when provided with y and P∗ as input:

(1) It calculates the conditional probability distribution
x′ → p̃(x′|y) for the given y and all x′ ∈ {0, 1}∗. This is done
by running the provided program P∗ and computing p̃(x′|y)
via (A2).

(2) Using the conditional probability distribution p̃(x′|y),
it constructs a codebook, a function that maps code words
s ∈ {0, 1}∗ to strings x′ ∈ {0, 1}∗. Using a standard coding
algorithm, such as Shannon-Fano coding or Huffman coding,
the code word sx′ assigned to string x′ may be chosen to have
length �(sx′ ) � �− log2 p̃(x′|y)�.

(3) The program contains a copy of the code word sx that
maps to string x. It looks up this code word in the generated
codebook and prints the resulting string x.

The length of this program is no more than

�(sx ) + γC � − log2 p̃(x′|y) + γC + 1,

where γC is an additive constant that reflects the length of
the algorithm needed to compute the conditional distribu-
tion p̃(x′|y) (while calling P∗ as a subroutine), generate the
codebook, and look up the code word sx. The bound (A5)
follows after absorbing 1 into the additive constant γC, since
K (x|y,P∗) is the length of the shortest program that outputs x
when provided with y and P∗ as input.

Combining with (A5) and (A1) gives (10).

APPENDIX B: ACHIEVABILITY OF (10)

Here we show that the bound (10) can be achieved.

1. Protocol construction

Formally, we imagine that we are provided with some
desired input-output conditional probability distribution pY |X .
We also imagine that we are provided with a thermal environ-
ment with by an inverse temperature β and energy function ε.
We assume that these are all computable, meaning that there
exists some computer program that can output the value of any
p(y|x), any εb, and β to any desired degree of precision. We
also assume that the heat bath described by ε and β is nearly
ideal, i.e., it is large and undergoes rapid self-equilibration.
Then, in the limit of an ideal bath, we show that there exists a
protocol P that can come arbitrarily close to the bound (10).
We do so by sketching out the construction of such a protocol
P at a high level, without delving into full technical rigor
which would go beyond the scope of this paper.
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TABLE I. Description of the nine-step protocol that implements a stochastic input-output map that is arbitrarily close to some desired
p(y|x), while achieving a heat dissipation arbitrarily close to the bound (10). δ is the Kronecker delta function.

Step Description State of X × M at end of step Heat for input x and output y

Initialize Subsystems X × M begin with the initial
Hamiltonian

HX M =
∑

x′,m
(χx′ + μm )|x′, m〉〈x′, m|. (B1)

|x, ∅〉〈x, ∅|

Copy Input state |x〉 is copied from X into M using
unitary over X × M.

|x, x〉〈x, x|

Quench 1 Hamiltonian HX M is quenched from (B1) to

HX M =
∑

x′,m
(χx′ + μm − ηδx′,m )|x′, m〉〈x′, m|.

(B2)

|x, x〉〈x, x|

Relax 1 X freely relaxes to conditional equilibrium for
HX M , while M is held fixed.

≈|x, x〉〈x, x| ≈0

Compute Hamiltonian HX M is quasistatically changed to

HX M =
∑

y′,m
[−β−1 ln p(y′|m)+μm]|y′, m〉〈y′, m|,

(B3)
during which X is allowed to relax to equilibrium
and M is held fixed.

≈∑
y′ p(y′|x)|y′, x〉〈y′, x| ≈β−1 ln p(y|x)

Quench 2 Hamiltonian HX M is quenched from (B3) to

HX M =
∑

y′,m
ωy′m|y′, m〉〈y′, m|. (B4)

Relax 2 M freely relaxes to conditional equilibrium for
(B4) while X is held fixed.

≈∑
y′,m p(y′|x)qeq

ω (m|y′)|y′, m〉〈y′, m| ≈ωyx − 〈ω〉qeq
ω (M|y)

Reset Hamiltonian HX M is quasistatically changed to

HX M =
∑

y′,m
(χy′ + μm − ηδ∅,m )|y′, m〉〈y′, m|,

(B5)
during which M is allowed to relax to equilibrium
and X is held fixed.

≈∑
y′ p(y′|x)|y′, ∅〉〈y′, ∅| ≈β−1S(qeq

ω (M|y))

Final quench Hamiltonian HX M is quenched to the initial
Hamiltonian in (B1).

≈∑
y′ p(y′|x)|y′, ∅〉〈y′, ∅|

Our construction will suppose that subsystem X has ac-
cess to an additional “memory subsystem” M. The memory
subsystem has the same dimensionality as X and it acts as
a catalyst: it is initialized in an unentangled “empty string”
pure state |∅〉 at the beginning of the protocol, and it is left
in (nearly) the same pure state after the protocol finishes. We
will perform protocols on X that depend on the state of M
while holding the state of M fixed, and vice versa for protocols
over M with X held fixed. Such protocols are often termed
“feedback control” in the literature [5,69].

We will also use the fact that a nearly ideal bath can be
weakly coupled to subsystems X × M, and then used to carry
out transformations over X × M in a (nearly) quasistatic and
thermodynamically reversible manner (see constructions in
[27,58,70,71]). Weak coupling also allows us to write the first
law as Q = W − �EXM , where Q is generated heat, W is work
done on the system, and �EXM is the expected energy increase
of subsystems X × M.

Our protocol consists of nine steps, which are described in
Table I. The third column in Table I shows the approximate
state of subsystems X × M at the end of each step. (The

approximations become exact in the limit of slow driving,
idealized bath, complete relaxation to equilibrium, and in-
finitely peaked energy functions η → ∞.) It can be verified
that the protocol maps X from input state |x〉 to output state
|y〉 sampled from ≈ p(y|x), while the memory subsystem M
starts and ends arbitrarily close to the pure state |∅〉. Note
also that the protocol starts and ends on the same Hamiltonian,
(B1). The protocol is effectively classical, in that it does not
exploit coherence or entanglement, even though it may be
implemented on a quantum system.

We emphasize a few aspects of our construction. First,
the Copy step does not violate the no-cloning theorem, since
|x〉 is assumed to come from the fixed orthonormal basis
{|a〉}a∈{0,1}∗ . Second, two of the steps (Compute and Reset)
involve thermodynamically reversible feedback control oper-
ations, as discussed above (see also [[71], Sec. 5.1]). Third,
there are three energy functions χ,μ,ω and a scalar η that
appear in our construction, which may be chosen somewhat
arbitrarily. The energy functions χ and μ, which appear in
(B1), (B2), (B3), and (B5), refer to arbitrary “baseline” energy
values for X and M, respectively. The scalar η � 0 refers
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to a large energy value that favors equilibrium correlations
between X and M under the Hamiltonian (B2), and favors
equilibrium reset of M to state |∅〉 under the Hamiltonian
(B5). We usually consider very large η, approaching the limit
η → ∞. The energy function ω in (B4) refers to a set of
energy values over X × M, which we will return to below.
Below we will assume that χ, μ, ω, and η are algorithmically
simple (i.e., there exists a short program to compute their
values).

We now calculate the heat generated by this protocol dur-
ing the computation x → y. The approximate amount of heat
generated by each step of the protocol, conditioned on input
|x〉 and output |y〉, is shown in the last column of Table I (as
above, the approximations become exact under appropriate
limits). We describe the calculated heat values in more depth.
Copy involves a unitary over X × M, so it does not involve
any heat exchange. The three quench steps (Quench1, Quench
2, Final Quench) refer to (nearly) instantaneous changes of the
Hamiltonian, so they also do not involve any heat exchange.

Relax 1 does not involve driving, therefore the heat is given
by the decrease of the energy of subsystem X × M due to the
change of the statistical state. In fact, the statistical state does
not change (in the limit η → ∞) and so the generated heat
vanishes. For Relax 2, the heat is also equal to the decrease
of the energy of X × M due to the change of the statistical
state. Conditioned on input x and output y, subsystems X × M
are (nearly) in pure state |y, x〉〈y, x| at the beginning of this
step. At the end of this step, subsystem M is found in the
conditional equilibrium distribution

qeq
ω (M = m|X = y) = e−β(ωym−Fω

M|X=y ), (B6)

where we defined the conditional free energy

Fω
M|X=y = − 1

β
ln

∑
m

e−βωym . (B7)

To calculate the heat generated by Compute, we use the first
law of thermodynamics, Q = W − �EXM . We also use that in
the quasistatic and classical limit, work is equal to the increase
of the equilibrium free energy of X × M and work fluctuations
vanish [72,73]. Since M is held fixed in state |x〉, we consider
the increase of the conditional free energy, W ≈ �FX |M=x.
Then, observe that in this step, X × M is transformed from
the pure state |x, x〉〈x, x| with Hamiltonian (B2) to the mixed
state

∑
y′ p(y′|x)|y′, x〉〈y′, x| with Hamiltonian (B3), so

�FX |M=x = − 1

β
ln

∑
y

eln p(y|x)−βμx − (χx + μx − η)

= μx − (χx + μx − η).

The change of energy of X × M, conditioned on input
x and output y, is �EXM ≈ −β−1 ln p(y|x) + μx − (χx +
μx − η). Plugging into Q ≈ �FX |M=x − �EXM gives Q ≈
β−1 ln p(y|x), as found in Table I.

For Reset, we use that the heat generated by a thermody-
namically reversible feedback control operation, where M is
modified while X is held fixed, is β−1 times the decrease of the
conditional Shannon entropy S(M|X ) [71]. Since subsystem
X is observed in output state y at the end of the process,
and since it does not change in between Reset and the end

of the process, it must be in state y during this step. Thus,
we consider the decrease of the conditional Shannon entropy
S(M|X = y). The conditional distribution over energy eigen-
states of M at the beginning of this step is (approximately)
qeq

ω (M = m|X = y). At the end of this step, M is (nearly) in
the pure state |∅〉, independently of the state of X , so the
conditional Shannon entropy vanishes. Combining gives the
result in Table I.

Summing together the heat values in Table I implies that
the overall generated heat is

Q(x → y) ≈ 1

β
ln p(y|x) + ωyx − Fω

M|X=y, (B8)

where we used the identity Fω
M|X=y = 〈ω〉qeq

ω (M|y) − β−1

S[qeq
ω (M|y)].

2. Sketch of proof of achievability

We now show that the protocol P described above can
approach the bound (10). We imagine there is some desired
computation pY |X , as well as a nearly ideal heat bath described
by the inverse temperature β and energy function ε. We use
R = (pY |X , ε, β ) to refer to the details of the computation.
Importantly, we assume that R is computable. We show that
the corresponding nine-step protocol P , as defined in the
previous subsection, comes close to equality in (10).

It must be emphasized that in the following, the protocol P
is treated as a function of the desired computation R. For this
reason, the additive constant O(1) that appears below refers
to a quantity that doesn’t depend on x, y, or the desired com-
putation R. Similarly, within the family of protocols defined
in the last subsection, γC in (10) should be understood as an
additive constant that doesn’t depend on x, y, or the details of
the computation R.

To begin, we define some algorithmic information mea-
sures. Let R∗ ∈ {0, 1}∗ refer to the shortest program for the
universal computer C that computes the conditional distribu-
tion pY |X , energy function ε, and inverse temperature β to
arbitrary precision. In addition, let K (x|y,R∗) indicate the
length of the shortest program that produces x when provided
with y and R∗ as side information and let K (R|y,P∗) indicate
the length of the shortest program for computing (pY |X , ε, β )
given y and P∗ as side information [recall that P∗ is the
shortest program for computing the values (7) for our proto-
col]. Finally, let K (P|y,R∗) indicate the length of the shortest
program for computing values (7) given y and R∗ as side
information.

In addition, let D indicate some computable compression
algorithm with side information (e.g., Lempel-Ziv compres-
sion with side information). Let �D indicate the length of
a program implementing this compression algorithm. Impor-
tantly, we assume that this algorithm is simple in the sense
that �D = O(1). In addition, let c(x|y,R∗) indicate the length
of the self-delimiting code word produced by this algorithm
for x when provided with side information y and R∗. Without
loss of generality, we assume that the codebook that defines
c(x|y,R∗) is complete for all y, so that Kraft′s inequality holds
with equality [16,37],

∑
x 2−c(x|y,R∗ ) = 1.

Recall that we are free to choose any set of energy values
ω in (B4), as long as the conditional free energy Fω

M|X=y is
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finite and qeq
ω (x|y) is a normalized conditional distribution. We

define these energy values ω as

β

ln 2
ωyx = �D + c(x|y,R∗). (B9)

Using
∑

x 2−c(x|y,R∗ ) = 1 and (B7), we calculate that
Fω

M|X=y = ln 2
β

�D. Plugging into (B8) and rearranging gives

β

ln 2
Q(x → y) ≈ log2 p(y|x) + c(x|y,R∗). (B10)

Note that better compression algorithms, which have smaller
code lengths, lead to lower heat production.

A known result from AIT states that conditional Kol-
mogorov complexities obey a type of “triangle inequality”
[[16], Lemma 3.9.1],

K (x|y,P∗) � K (R|y,P∗) + K (x|y,R∗) + O(1),

K (x|y,R∗) � K (P|y,R∗) + K (x|y,P∗) + O(1).

We will use this to show that

K (x|y,R∗) = K (x|y,P∗) + O(1). (B11)

Suppose that one is given R∗ (which computes values of pY |X ,
ε, and β) along with a program that computes the values of
χ, μ, η and ω that appear in the nine-step protocol outlined in
Table I. In that case, one could compute not only ε and β, but
also the unitary U that implements that protocol P , giving the
values of p(y, c|x, b) = |〈y, c|U |x, b〉|2 in (7). Thus, we may
write

K (P|y,R∗) � K (χ,μ, η|y,R∗) + K (ω|y,R∗) + O(1).

Since χ , μ, and η are arbitrary, we may assume that they
can be produced by a simple program when provided with
y and R∗ as side information, so K (χ,μ, η|y,R∗) = O(1).
(Note that the scaling η → ∞ can be achieved without addi-
tional algorithmic cost by scaling η as a function of the heat
bath energy function ε, as specified by R∗.) The values of
ω are determined by β plus the choice of the compression
algorithm D, which obeys �(D) = O(1), hence K (ω|y,R∗) =
O(1). Combining implies that K (x|y,R∗) � K (x|y,P∗) +
O(1). But it is also the case that K (R|y,P∗) = O(1), since
if one had a program to compute the values (7) that define
P , one could easily compute ε, β, and pY |X [the latter via

(5)]. Therefore K (x|y,P∗) � K (x|y,R∗) + O(1). Combining
implies (B11).

Finally, we have that

c(x|y,R∗) = �D + c(x|y,R∗) + O(1)

� K (x|y,R∗) + O(1) (B12)

= K (x|y,P∗) + O(1), (B13)

where in the first line we used �D = O(1), in the second
line the definition of K (x|y,R∗), and in the last line (B11).
Combining (B10) and (B13) then implies the bound

β

ln 2
Q(x � y) � log2 p(y|x) + K (x|y,P∗) + O(1). (B14)

The inequality in (B14) can be made arbitrarily tight under
an appropriate limit, which implies the achievability of our
bound (10). Specifically, the inequality (B10) can be made
arbitrarily tight in the limit of slow driving, idealized bath,
complete relaxation to equilibrium, and infinitely peaked en-
ergy functions η → ∞. The inequality (B12) can be made
arbitrarily tight in the limit of increasingly good compres-
sion algorithms, so that c(x|y,R∗) approaches the ultimate
algorithmic bound K (x|y,R∗) in (B12). In fact, there are
known techniques to construct a sequence of compression
algorithms such that c(x|y,R∗) approaches K (x|y,R∗) for
any finite set of x and y. Such techniques are sometimes
called “dovetailing” algorithms in the literature [16]. (We note
that the compression algorithm D can “scale” the dovetailing
parameter in line with the scaling of the heat bath, as specified
by the side information R∗, without incurring an additional
algorithmic cost.)

At the same time, Kolmogorov complexity is uncom-
putable, so the convergence c(x|y,R∗) → K (x|y,R∗) cannot
be uniform across x and y, and in general one cannot know
how far away from the ultimate limit is any given compression
algorithm [16]. To summarize, our bound (10) is achievable
in the sense that it is possible to construct a sequence of ther-
mal environments and physical protocols that come arbitrarily
close to equality for any finite set of x and y. At the same time,
it is impossible to know how far in the sequence one must go
in order to guarantee that, for any desired x and y, the deficit
in (10) is bounded by a constant.
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