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Abstract: We consider the “partial information decomposition” (PID) problem, which aims to decom-
pose the information that a set of source random variables provide about a target random variable
into separate redundant, synergistic, union, and unique components. In the first part of this paper,
we propose a general framework for constructing a multivariate PID. Our framework is defined in
terms of a formal analogy with intersection and union from set theory, along with an ordering relation
which specifies when one information source is more informative than another. Our definitions
are algebraically and axiomatically motivated, and can be generalized to domains beyond Shannon
information theory (such as algorithmic information theory and quantum information theory). In the
second part of this paper, we use our general framework to define a PID in terms of the well-known
Blackwell order, which has a fundamental operational interpretation. We demonstrate our approach on
numerous examples and show that it overcomes many drawbacks associated with previous proposals.
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1. Introduction

Understanding how information is distributed in multivariate systems is an important
problem in many scientific fields. In the context of neuroscience, for example, one may wish to
understand how information about an external stimulus is encoded in the activity of different
brain regions. In computer science, one might wish to understand how the output of a logic
gate reflects the information present in different inputs to that gate. Numerous other examples
abound in biology, physics, machine learning, cryptography, and other fields [1–10].

Formally, suppose that we are provided with a random variable Y which we call the
“target”, as well as a set of n random variables X1, . . . , Xn which we call the “sources”. The
partial information decomposition (PID), first proposed by Williams and Beer in 2010 [11], aims
to quantify how information about the target is distributed among the different sources.
In particular, the PID seeks to decompose the mutual information provided jointly by
all sources into a set of nonnegative terms, such as redundancy (information present in
each individual source), synergy (information only provided by the sources jointly, not
individually), union information (information provided by at least one individual source),
and unique information (information provided by only one individual source).

As discussed in detail below, the PID is inspired by an analogy between information
theory and set theory. In this analogy, the information that the sources provide about the
target are imagined as sets, while PID terms such as redundancy, union information, and
synergy are imagined as the sizes of intersections, unions, and complements. While the
analogy between information-theoretic and set-theoretic quantities is suggestive, it does
not specify how to actually define the PID. Moreover, it has also been shown that existing
measures from information theory (such as mutual information and conditional mutual
information) cannot be used directly to construct the PID, since these measures conflate
contributions from different terms like synergy and redundancy [11,12]. In response, many
proposals for how to define PID terms have been advanced [5,13–21]. However, existing
proposals suffer from various drawbacks, such as behaving counterintuitively on simple
examples, being limited to only two sources, or lacking a clear operational interpretation.
Today there is no generally agreed-upon way of defining the PID.
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In this paper, we propose a new and principled approach to the PID which addresses
these drawbacks. Our approach can handle any number of sources and can be justified in
algebraic, axiomatic, and operational terms. We present our approach in two parts.

In part I (Section 4), we propose a general framework for defining the PID. Our
framework does not prescribe specific definitions, but instead shows how an information-
theoretic decomposition can be grounded in a formal analogy with set theory. Specifically,
we consider the definitions of “set intersection” and “set union” in set theory: the intersec-
tion of sets S1, S2, . . . is the largest set that is contained in all of the Si, while the union of
sets S1, S2, . . . is the smallest set that contains all of the Si. As we show, these set-theoretic
definitions can be mapped into information-theoretic terms by treating “sets” as random
variables, “set size” as mutual information between a random variable and the target Y,
and “set inclusion” as some externally specified ordering relation <, which specifies when
one random variable is more informative than another. Using this mapping, we define
information-theoretic redundancy and union information in the same way that the sizes
of intersections and unions are defined in set theory (other PID terms, such as synergy
and unique information, can be computed in a straightforward way from redundancy and
union information). Moreover, while our approach is motivated by set-theoretic intuitions,
as we show in Section 4.2, it can also be derived from an alternative axiomatic foundation.
We finish part I by reviewing relevant prior work in information theory and the PID litera-
ture. We also discuss how our framework can be generalized beyond the standard setting
of the PID and even beyond Shannon information theory, to domains like algorithmic
information theory and quantum information theory.

One unusual aspect of our framework is that it provides independent definitions of union
information and redundancy. Most prior work on the PID has focused exclusively on the
definition of redundancy, because it assumed that union information can be determined from
redundancy using the so-called “inclusion-exclusion principle”. In Section 4.3, we argue that
the inclusion-exclusion principle should not be expected to hold in the context of the PID.

Part I provides a general framework. Concrete definitions of the PID can be derived
from this general framework by choosing a specific “more informative” ordering relation
<. In fact, the study of ordering relations between information sources has a long history
in statistics and information theory [22–27]. One particularly important relation is the
so-called “Blackwell order” [13,28], which has a fundamental operational interpretation in
terms of utility maximization in decision theory.

In part II of this paper (Section 5), we combine the general framework developed in part I
with the Blackwell order. This gives rise to concrete definitions of redundancy and union informa-
tion. We show that our measures behave intuitively and have simple operational interpretations
in terms of decision theory. Interestingly, while our measure of redundancy is novel, our measure
of union information has previously appeared in the literature under a different guise [13,17].

In Section 6, we compare our redundancy measure to previous proposals, and illustrate
it with various bivariate and multivariate examples. We finish the paper with a discussion
and proposals for future work in Section 7.

We introduce some necessary notation and preliminaries in the next section. In
addition, we provide background regarding the PID in Section 3. All proofs, as well as
some additional results, are found in the appendix.

2. Notation and Preliminaries

We use uppercase letters (Y, X, Q, . . . ) to indicate random variables over some under-
lying probability space. We use lowercase letters (y, x, q, . . . ) to indicate specific outcomes
of random variables, and calligraphic letters (Y ,X ,Q . . . ) to indicate sets of outcomes. We
often index random variables with a subscript, e.g., the random variable Xi with outcomes
xi ∈ Xi (so xi does not refer to the ith outcome of random variable X, but rather to some
generic outcome of random variable Xi). We use notation like A− B− C to indicate that A
is conditionally independent of C given B. Except where otherwise noted, we assume that
all random variables have a finite number of outcomes.
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We use notation like PX(x) to indicate the probability distribution associated with
random variable X, PXY(x, y) to indicate the joint probability distribution associated with
random variables X and Y, and PX|Y(x|y) to indicate the conditional probability distribution
of X given Y. Given two random variables X and Y with outcome sets X and Y , we use
notation like κX|Y(x|y) to indicate some stochastic channel of outputs x ∈ X given inputs
y ∈ Y . In general, a channel κX|Y specifies some arbitrary conditional distribution of X
given Y, which can be different from PX|Y, the actual conditional distribution of X given Y
(as determined by the underlying probability space).

As described above, we consider the information that a set of “source” random
variables X1, . . . , Xn provide a “target” random variable Y. Without loss of generality, we
assume that the marginal distributions PY and PXi for all i have full support (if they do not,
one can restrict Y and/or Xi to outcomes that have strictly positive probability).

Finally, note that despite our use of the terms “source” and “target”, we do not assume
any causal directionality between the sources and target (see also discussion in [29]). For
example, in neuroscience, Y might be an external stimulus which causes the activity of
brain regions X1, . . . , Xn, while in computer science Y might represent the output of a logic
gate caused by inputs X1, . . . , Xn (so the causal direction is reversed). In yet other contexts,
there could be other causal relationships among X1, . . . , Xn and Y, or they might not be
causally related at all.

3. Background on the Partial Information Decomposition (PID)

Given a set of sources X1, . . . , Xn and a target Y, the PID aims to decompose
I(Y; X1, . . . , Xn), the total mutual information provided by all sources about the target, into
a set of nonnegative terms such as [11,12]:

Redundancy I∩(X1; . . . ; Xn � Y), the information present in each individual source. Re-
dundancy can be considered as the intersection of the information provided by different
sources and is sometimes called “intersection information” in the literature [16,18].

Union information I∪(X1; . . . ; Xn �Y), the information provided by at least one individual
source [12,17].

Synergy S(X1; . . . ; Xn �Y), the information found in the joint outcome of all sources, but
not in any of their individual outcomes. Synergy is defined as [17]

S(X1; . . . ; Xn �Y) = I(Y; X1, . . . , Xn)− I∪(X1; . . . ; Xn �Y). (1)

Unique information in source Xi, U(Xi �Y|X1; . . . ; Xn), the non-redundant information in
each particular source. Unique information is defined as

U(Xi �Y|X1; . . . ; Xn) = I(Y; Xi)− I∩(X1; . . . ; Xn �Y). (2)

In addition to the above terms, one can also define excluded information,

E(Xi �Y|X1; . . . ; Xn) = I∪(X1; . . . ; Xn �Y)− I(Y; Xi), (3)

as the information in the union of the sources which is not in a particular source Xi. To our
knowledge, excluded information has not been previously considered in the PID literature,
although it is the natural “dual” of unique information as defined in Equation (2).

Given the definitions above, once a measure of redundancy I∩ is chosen, unique
information is determined by Equation (2). Similarly, once a measure of union information
I∪ is chosen, synergy and excluded information are determined by Equations (1) and (3).
In Figure 1, we illustrate the relationships between these different PID terms for the simple
case of two sources, X1 and X2. We show two different decompositions of the information
provided by the sources jointly, I(X1, X2; Y), and individually, I(X1; Y) and I(X2; Y). The
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diagram on the left shows the decomposition defined in terms of redundancy I∩, while the
diagram on the right shows the decomposition defined in terms of union information I∪.

I(X1, X2; Y)

I(X1; Y)

I(X2; Y)

Redundancy decomposition Union information decomposition

 
Unique

U(X1 →Y |X1; X2)

 
Unique

U(X2 →Y |X1; X2)

 
Redundancy

I∩(X1; X2 →Y)

 
Union

I∪(X1; X2 →Y)

 
Synergy

S(X1; X2 →Y)

 
Excluded

E(X2 →Y |X1; X2)

 
Excluded

E(X1 →Y |X1; X2)

Figure 1. Partial information decomposition of the information provided by two sources about a
target. On the left, we show the decomposition induced by redundancy I∩, which leads to measures
of unique information U. On the right, we show the decomposition induced by union information I∪,
which leads to measures of synergy S and excluded information E.

When more than two sources are present, the PID can be used to define additional
terms, beyond the ones shown in Figure 1. For example, for three sources, one can de-
fine redundancy terms like I∩(X1, X2, X3 �Y) (representing the information found in all
individual sources) as well as redundancy terms like I∩((X1, X2), (X1, X3), (X2, X3)� Y)
(representing the information found in all pairs of sources), and similarly for
union information.

The idea that redundancy and union information lead to two different information
decompositions is rarely discussed in the literature. In fact, the very concept of union
information is rarely discussed in the literature explicitly (although it often appears in
an implicit form via measures of synergy, since synergy is related to union information
through Equation (1)). As we discuss below in Section 4.3, the reason for this omission is
that most existing work assumes (whether implicitly or explicitly) that redundancy and
union information are not independent measures, but are instead related via the so-called
“inclusion-exclusion principle”. If the inclusion-exclusion principle is assumed to hold,
then the distinction between the two decompositions disappears. We discuss this issue in
greater detail below, where we also argue that the inclusion-exclusion principle should not
be expected to hold in the context of the PID.

We have not yet described how the redundancy and union information measures I∩
and I∪ are defined. In fact, this remains an open research question in the field (and one
which this paper will address). When they first introduced the idea of the PID, Williams
and Beer proposed a set of intuitive axioms that any measure of redundancy should
satisfy [11,12], which we summarize in Appendix A. In later work, Griffith and Koch [17]
proposed a similar set of axioms that union information should satisfy, which are also
summarized in Appendix A. However, these axioms do not uniquely identify a particular
measure of redundancy or union information.

Williams and Beer also proposed a particular redundancy measure which satisfies
their axioms, which we refer to as IWB

∩ [11,12]. Unfortunately, IWB
∩ has been shown to

behave counterintuitively in some simple cases [19,20]. For example, consider the so-called
“COPY gate”, where there are two sources X1 and X2 and the target is a copy of their
joint outcomes, Y = (X1, X2). If X1 and X2 are statistically independent, I(X1; X2) = 0,
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then intuition suggests that the two sources provide independent information about Y
and therefore that redundancy should be 0. In general, however, IWB

∩ (X1; X2 � Y) does
not vanish in this case. To avoid this issue, Ince [20] proposed that any valid redundancy
measure should obey the following property:

If I(X1; X2) = 0, then I∩(X1; X2 � (X1, X2)) = 0, (4)

which is called the Independent identity property.
In recent years, many other redundancy measures have been proposed [13,15,16,18–21].

However, while some of these proposals satisfy the Independent identity property, they
suffer various other drawbacks, such as exhibiting other types of counterintuitive behavior,
being limited to two sources, and/or lacking a clear operational motivation. We discuss
some of these previously proposed measures in Sections 4.4, 5.4 and 6.

Unlike redundancy, to our knowledge only two measures of union information have
been advanced. The first one appeared in the original work on the PID [12], and was
derived from IWB

∩ using the inclusion-exclusion principle. The second one appeared more
recently [13,17] and is discussed in Section 5.4 below.

4. Part I: Redundancy and Union Information from an Ordering Relation
4.1. Introduction

As mentioned above, PID is motivated by an informal analogy with set theory [12].
In particular, redundancy is interpreted analogously to the size of the intersection of
the sources X1, . . . , Xn, while union information is interpreted analogously to the size of
their union.

We propose to define the PID by making this analogy formal, and in particular by
going back to the algebraic definitions of intersection and union in set theory. In pursuing
this direction, we build on a line of previous work in information theory and PID, which
we discuss in Section 4.4.

Recall that in set theory, the intersection of sets S1, . . . , Sn ⊆ U (where U is some
universal set) is the largest set that is contained in all Si (Section 7.2, [30]). This means that
the size of the intersection can be written as∣∣∣⋂

i
Si

∣∣∣ = sup
T⊆U
|T| such that ∀i T ⊆ Si, (5)

Similarly, the union of sets S1, . . . , Sn ⊆ U is the smallest set that contains all Si
(Section 7.2, [30]), so the size of the union can be written as∣∣∣⋃

i
Si

∣∣∣ = inf
T⊆U
|T| such that ∀i Si ⊆ T. (6)

Equations (5) and (6) are useful because they express the size of the intersection and union
via an optimization over simpler terms (the size of individual sets, |T|, and the subset
inclusion relation, ⊆).

We translate these definitions to the information-theoretic setting of the PID. We take
the analogue of a “set” to be some random variable A that provides information about the
target Y, and the analogue of “set size” to be the mutual information I(A; Y). In addition,
we assume that there is some ordering relation < between random variables analogous to
set inclusion ⊆. Given such a relation, the expression A < B means that random variable B
is “more informative” than A, in the sense that the information that A provides about Y is
contained within the information that B provides about Y.

At this point, we leave the ordering relation < unspecified. In general, we believe that
the choice of < will not be determined from purely information-theoretic considerations,
but may instead depend on the operational setting and scientific domain in which the PID
is applied. At the same time, there has been a great deal of research on ordering relations in
statistics and information theory. In part II of this paper, Section 5, we will combine our
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general framework with a particular ordering relation, the so-called “Blackwell order”,
which has a fundamental interpretation in terms of decision theory.

We now provide formal definitions of redundancy and union information, relative to
the choice of ordering relation <. In analogy to Equation (5), we define redundancy as

I∩(X1; . . . ; Xn �Y) := sup
Q

I(Q; Y) such that ∀i Q < Xi (7)

where the maximization is over all random variables with a finite number of outcomes.
Thus, redundancy I∩ is the maximum information about Y in any random variable that
is less informative than all of the sources. In analogy with Equation (6), we define union
information as

I∪(X1; . . . ; Xn �Y) := inf
Q

I(Q; Y) such that ∀i Xi < Q (8)

Thus, union information I∪ is the minimum information about Y in any random variable
that is more informative than all of the sources. Given these definitions, other elements of
the PID (such as unique information, synergy, and excluded information) can be defined
using the expressions found in Section 3. Note that I∩ and I∪ depend the choice of ordering
relation <, although for convenience we leave this dependence implicit in our notation.

One of the attractive aspects of our definitions is that they do not simply quantify
the amount of redundancy and union information, but also specify the “content” of that
redundant and union information. In particular, the random variable Q that achieves
the optimum in Equation (7) specifies the content of the redundant information via the
joint distribution PYQ. Similarly, the random variable Q which achieves the optimum
in Equation (8) specifies the content of the union information via the joint distribution
PYQ. Note that these optimizing Q may not be unique, reflecting the fact that there may
be different ways to represent the redundancy or union information. (Note also that the
supremum or infinitum may not be achieved in Equations (7) and (8), in which case one
can consider Q that achieve the optimal values to any desired precision ε > 0.)

So far we have not made any assumptions about the ordering relation <. However,
we can derive some useful bounds by introducing three weak assumptions:

I. Monotonicity of mutual information: A < B =⇒ I(A; Y) ≤ I(B; Y) (less informative
sources have less mutual information).

II. Reflexivity: A < A for all A (each source is at least as informative as itself).
III. For all sources Xi, O < Xi < (X1, . . . , Xn), where O indicates a constant random

variable with a single outcome and (X1, . . . , Xn) indicates all sources considered
jointly (each source is more informative than a trivial source and less informative than
all sources jointly).

Assumptions I and II imply that the redundancy and union information of a single source
are equal to the mutual information in that source:

I∩(X1 �Y) = I∪(X1 �Y) = I(X1; Y).

Assumptions I and III imply the following bounds on redundancy and union information:

0 ≤ I∩(X1; . . . ; Xn �Y) ≤ min
i

I(Y; Xi) . (9)

max
i

I(Y; Xi) ≤ I∪(X1; . . . ; Xn �Y) ≤ I(Y; X1, . . . , Xn). (10)

Equation (9) in turn implies that the unique information in each source Xi, as defined in
Equation (2), is bounded between 0 and I(Y; Xi). Similarly, Equation (10) implies that the
synergy, as defined in Equation (1), obeys

0 ≤ S(X1; . . . ; Xn �Y) ≤ min
i

I(Y; X1, . . . , Xn|Xi),
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where we have used the chain rule I(Y; X1, . . . , Xn) = I(Y; Xi) + I(Y; X1, . . . , Xn|Xi).
Equation (10) also implies that excluded information in each source Xi, as defined in
Equation (3), is bounded between 0 and I(Y; X1, . . . , Xn|Xi).

Note that in general, stronger orders give smaller values of redundancy and larger
values of union information. Consider two orders < and <′ where the first one is stronger
than the second: A < B =⇒ A <′ B for all A and B. Then, any Q in the feasible set of
Equation (7) under < will also be in the feasible set under <′, and similarly for Equation (8).
Therefore, I∩ defined relative to < will have a lower value than I∩ defined relative to <′,
and vice versa for I∪.

In the rest of this section, we discuss alternative axiomatic justifications for our general
framework, the role of the inclusion-exclusion principle, relation to prior work, and further
generalizations. Readers who are more interested in the use of our framework to define
concrete measures of redundancy and union information may skip to Section 5.

4.2. Axiomatic Derivation

In Section 4.1, we defined the PID in terms of an algebraic analogy with intersection
and union in set theory. This definition can be considered as the primary one in our
framework. At the same time, the same definitions can also be derived in an alternative
manner from a set of axioms, as commonly sought after in the PID literature. In particular,
in Appendix B, we prove the following result regarding redundancy.

Theorem 1. Any redundancy measure that satisfies the following five axioms is equal to
I∩(X1; . . . ; Xn �Y) as defined in Equation (7).

1. Symmetry: I∩(X1; . . . ; Xn �Y) is invariant to the permutation of X1, . . . , Xn.
2. Self-redundancy: I∩(X1 �Y) = I(Y; X1).
3. Monotonicity: I∩(X1; . . . ; Xn �Y) ≤ I∩(X1; . . . ; Xn−1 �Y).
4. Order equality: I∩(X1; . . . ; Xn �Y) = I∩(X1; . . . ; Xn−1 �Y) if Xi < Xn for some i < n.
5. Existence: There is some Q such that I∩(X1; . . . ; Xn �Y) = I(Y; Q) and Q < Xi for all i.

While Symmetry, Self-redundancy, and Monotonicity axioms are standard in the PID
literature (see Appendix A), the last two axioms require some explanation. Order equality
is a generalization of the previously proposed Deterministic equality axiom, described in
Appendix A, where the condition Xi = f (Xn) (deterministic relationship) is generalized to
the “more informative” relation Xi < Xn. This axiom reflects the idea that if a new source
Xn is more informative than an existing source Xi, then redundancy shouldn’t decrease
when Xn is added.

Existence is the most novel of our proposed axioms. It says that for any set of sources
X1, . . . , Xn, there exists some random variable which captures the redundant information.
It is similar to the statement in axiomatic set theory that the intersection of a collection of
sets is itself a set (note that in Zermelo-Fraenkel set theory, this statement is derived from
the Axiom of Separation).

We can derive a similar result for union information (proof in Appendix B).

Theorem 2. Any union information measure that satisfies the following five axioms is equal to
I∪(X1; . . . ; Xn �Y) as defined in Equation (8).

1. Symmetry: I∪(X1; . . . ; Xn �Y) is invariant to the permutation of X1, . . . , Xn.
2. Self-union: I∪(X1 �Y) = I(Y; X1).
3. Monotonicity: I∪(X1; . . . ; Xn �Y) ≥ I∪(X1; . . . ; Xn−1 �Y).
4. Order equality: I∪(X1; . . . ; Xn �Y) = I∪(X1; . . . ; Xn−1 �Y) if Xn < Xi for some i < n.
5. Existence: There is some Q such that I∪(X1; . . . ; Xn �Y) = I(Y; Q) and Xi < Q for all i.

These axioms are dual to the redundancy axioms outlined above. Compared to
previously proposed axioms for union information, as described in Appendix A, the most
unusual of our axioms is Existence. It says that given a set of sources X1, . . . , Xn, there exists
some random variable which captures the union information. It is similar in spirit to the
“Axiom of Union” in axiomatic set theory [31].
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Finally, note that for some choices of <, there may not exist measures of redundancy
and/or union information that satisfy the axioms in Theorem 1 and Theorem 2, in which
case these theorems still hold but are trivial. However, even in such “pathological” cases,
I∩ and I∪ can still be defined via Equations (7) and (8), as long as < has a “least informative”
and a “most informative” element (e.g., as provided by Assumption III above), so that the
feasible sets are not empty. In this sense, the definitions in Equations (7) and (8) are more
general than the axiomatic derivations provided by Theorems 1 and 2.

4.3. Inclusion-Exclusion Principle

One unusual aspect of our approach is that, unlike most previous work, we propose
separate measures of redundancy and union information.

Recall that in set theory, the size of the intersection and the union are not independent
of each other, but are instead related by the inclusion-exclusion principle (IEP). For example,
given any two sets S and T, the IEP states that the size of the union of S and T is given by
the sum of their individual sizes minus the intersection,

|S ∪ T| = |S|+ |T| − |S ∩ T|. (11)

More generally, the IEP relates the sizes of intersection and unions for any number of sets,
via the following inclusion-exclusion formulas:

∣∣∣ n⋃
i=1

Si

∣∣∣ = ∑
∅ 6=J⊆{1,...,n}

(−1)|J|−1
∣∣∣⋂

i∈J
Si

∣∣∣. (12)

∣∣∣ n⋂
i=1

Si

∣∣∣ = ∑
∅ 6=J⊆{1,...,n}

(−1)|J|−1
∣∣∣⋃

i∈J
Si

∣∣∣. (13)

Historically, the IEP has played an important role in analogies between set theory and
information theory, which began to be explored in 1950s and 1960s [32–36]. Recall that the
entropy H(X) quantifies the amount of information gained by learning the outcome of
random variable X. It has been observed that, for a set of random variables X1, . . . , Xn, the
joint entropy H(X1, . . . , Xn) behaves somewhat like the size of the union of the information
in the individual variables. For instance, like the size of the union, joint entropy is sub-
additive (H(X1) + H(X2) ≥ H(X1, X2)) and increases with additional random variables
(H(X1, X2) ≥ H(X1)). Moreover, for two random variables X1 and X2, the mutual infor-
mation I(X1; X2) = H(X1) + H(X2)− H(X1, X2) acts like the size of the intersection of the
information provided by X1 and X2, once intersection is defined analogously to the IEP
expression in Equation (11) [35,36]. Given the general IEP formula in Equation (13), this
can be used to define the size of the intersection between any number of random variables.
For instance, the size of a three-way intersection is

I(X1; X2; X3) = H(X1) + H(X2) + H(X3)

− H(X1, X2)− H(X1, X3)− H(X2, X3) + H(X1, X2, X3),

a quantity called co-information or interaction information in the literature [32,33,35–37].
Unfortunately, interaction information, as well as other higher-order interaction terms

defined via the IEP, can take negative values [32,35,37]. This conflicts with the intuition
that information measures should always be non-negative, in the same way that set size is
always non-negative.

One of the primary motivations for the PID, as originally proposed by Williams and
Beer [11,12], was to solve the problem of negativity encountered by interaction informa-
tion. To develop a non-negative information decomposition, Williams and Beer took two
steps. First, they considered the information that a set of sources X1, . . . , Xn provide about
some target random variable Y. Second, they developed a non-negative measure of redun-
dancy (IWB

∩ ) which leads to a non-negative union information once an IEP formula like
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Equation (12) is applied (Theorem 4.7, [12]). For example, in the original proposal, union
information and redundancy are related via

I∪(X1; X2 �Y) ?
= I(Y; X1) + I(Y; X2)− I∩(X1; X2 �Y), (14)

which is the analogue of Equation (11). This can be plugged into expressions like Equation (1),
so as to express synergy in terms of redundancy as

S(X1; . . . ; Xn �Y) ?
= I(Y; X1, . . . , Xn)− I(Y; X1)− I(Y; X2) + I∩(X1; X2 �Y). (15)

The meaning of IEP-based identities such as Equations (14) and (15) can be illustrated using
the Venn diagrams in Figure 1. In particular, they imply that the pink region in the right
diagram is equal in size to the pink region in the left diagram, and that the grey region in
the left diagram is equal in size to the grey region in the right diagram. More generally, IEP
implies an equivalence between the information decomposition based on redundancy and
the one based on union information.

As mentioned in Section 3, due to shortcomings in the original redundancy measure
IWB
∩ , numerous other proposals for the PID have been advanced. Most of these proposals

introduce new measures of redundancy, while keeping the general structure of the PID
as introduced by Williams and Beer. In particular, most of these proposals assume that
the IEP holds, so that union information can be derived from a measure of redundancy.
While the assumption of the IEP is sometimes stated explicitly, more frequently it is implicit
in the definitions used. For example, many proposals assume that synergy is related to
redundancy via an expression like Equation (15), although (as shown above) this implicitly
assumes that the IEP holds. In general, the IEP has been largely an unchallenged and
unexamined assumption in the PID field. It is easy to see the appeal of the IEP: it builds
on deep-seated intuitions about intersection/union from set theory and Venn diagrams, it
has a long history in the information-theoretic literature, and it simplifies the problem of
defining the PID since it only requires a measure of redundancy to be defined — rather than
a measure of redundancy and a measure of union information. (Note that one can also start
from union information and then derive redundancy via the IEP formula in Equation (13),
as in Appendix B of Ref. [17], although this is much less common in the literature.)

However, there is a different way to define a non-negative PID, which is still grounded
in a formal analogy with set theory but does not assume the IEP. Here, one defines measures
of redundancy and union information based on the underlying algebra of intersection and
union: the intersection of X1, . . . , Xn is the largest element that is less than each Xi, while
the union is the smallest element that is greater than each Xi. Given these definitions,
intersections and unions are not necessarily related to each numerically, as in the IEP, but
are instead related by an algebraic duality.

This latter approach is the one we pursue in our definitions (it has also appeared in
some prior work, which we review in the next subsection). In general, the IEP will not hold
for redundancy and union information as defined in Equations (7) and (8). (To emphasize
this point, we put a question mark in Equations (14) and (15), and made the sizes of the
pink and grey regions visibly different in Figure 1). However, given the algebraic and
axiomatic justifications for I∩ and I∪, we do not see the violation of the IEP as a fatal issue.
In fact, there are many domains where generalizations of intersections and unions do not
obey the IEP. For example, it is well-known that the IEP is violated in the domain of vector
spaces, once the size of a vector space is measured in terms of its dimension [38]. The PID
is simply another domain where the IEP should not be expected to hold.

We believe that many problems encountered in previous work on the PID — such
as the failure of certain redundancy measures to generalize to more than two sources,
or the appearance of uninterpretable negative synergy values — are artifacts of the IEP
assumption. In fact, the following result shows that any measures of redundancy and
union information which satisfy several reasonable assumptions must violate the IEP as
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soon as 3 or more sources are present (the proof, in Appendix I, is based on a construction
from [39,40]).

Lemma 1. Let I∩ be any nonnegative redundancy measure which obeys Symmetry, Self-redundancy,
Monotonicity, and Independent identity. Let I∪ be any union information measure which obeys
I∪(X1; . . . ; Xn � Y) ≤ I(Y; X1, . . . , Xn). Then, I∩ and I∪ cannot be related by the inclusion-
exclusion principle for 3 or more sources.

The idea that different information decompositions may arise from redundancy versus
synergy (and therefore union information) has recently appeared in the PID
literature [15,40–43]. In particular, Chicharro and Panzeri proposed a PID that involves
two decomposition: an “information gain” decomposition based on redundancy and an
“information loss” decomposition based on synergy [41]. These decompositions correspond
to the two Venn diagrams shown in Figure 1.

4.4. Relation to Prior Work

Here we discuss prior work which is relevant to our algebraic approach to the PID.
First, note that our definitions of redundancy and union information in

Equations (7) and (8) are closely related to notions of “meet” and “join” in a field of algebra
called order theory, which generalize intersections and unions to domains beyond set
theory [44]. Given a set of objects S and an order <, the meet of a, b ∈ S is the unique
largest c ∈ S that is smaller than both a and b: c < a, c < b and d < c for any d that obeys
d < a, d < b. Similarly, the join of a, b ∈ S is the unique smallest c that is larger than both a
and b: a < c, a < c and c < d for any d that obeys a < d, b < d. Note that meets and joins
are only defined when < is a special type of partial order called a lattice. This is a strict
requirement, and many important ordering relations in information theory are not lattices
(this includes the “Blackwell order”, which we will consider in part II of this paper [45]).

In our approach, we do not require the ordering relation < to be a lattice, or even a
partial order. We do not require these properties because we do not aim to find the unique
union random variable or the unique redundancy random variable. Instead, we aim to
quantify the size of the intersection and the size of the union, which we do by optimizing
mutual information subject to constraints, as Equations (7) and (8). These definitions are
well-defined even when < is not a lattice, which allows us to consider a much broader set
of ordering relations.

We mention three important precursors of our approach that have been proposed in
the PID literature. First, Griffith et al. [16] considered the following order between random
variables:

A C B iff A = f (B) for some deterministic function f . (16)

This ordering relation C was first considered in a 1953 paper by Shannon [22], who showed
that it defines a lattice over random variables. That paper was the first to introduce the
algebraic idea of meets and joins into information theory, leading to an important line
of subsequent research [46–50]. Using this order, Ref. [16] defined redundancy as the
maximum mutual information in any random variable that is a deterministic function of
all of the sources,

IC∩ (X1; . . . ; Xn �Y) := max
Q

I(Q; Y) such that ∀i Q C Xi, (17)

which is clearly a special case of Equation (7). Unfortunately, in practice, IC∩ is not a useful
redundancy measure, as it tends to give very small values and is highly discontinuous. For
example, IC∩ (X1; . . . ; Xn �Y) = 0 whenever the joint distribution PX1 ...XnY has full support,
meaning that it vanishes on almost all joint distributions [16,18,47]. The reason for this
counterintuitive behavior is that the order C formalizes an extremely strict notion of “more
informative”, which is not robust to noise.
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Given the deficiencies of IC∩ , Griffith and Ho [18] proposed another measure of redun-
dancy (also discussed as I2

∩ in Ref. [49]),

IGH
∩ (X1; . . . ; Xn �Y) := max

Q
I(Q; Y) such that ∀i Q− Xi −Y. (18)

This measure is also a special case of Equation (7), where the more informative relation
A < B is formalized via the conditional independence condition A− B−Y. This measure
is similar to the redundancy measure we propose in part II of this paper, and we discuss it
in more detail in Section 5.4. (Note that there are some incorrect claims about IGH

∩ in the
literature: Lemmas 6 and 7 of Ref. [49] incorrectly state that IGH

∩ (X1; X2 �Y) = 0 whenever
X1 and X2 are independent — see the AND gate counterexample in Section 6 — while
Ref. [18] incorrectly states that IGH

∩ obeys a property called Target Monotonicity.)
Finally, we mention the so-called “minimum mutual information” redundancy

IMMI
∩ [51]. This is perhaps the simplest redundancy measure, being equal to the mini-

mal mutual information in any source: IMMI
∩ (X1; . . . ; Xn � Y) := mini I(Xi; Y). It can be

written in the form of Equation (7) as

IMMI
∩ (X1; . . . ; Xn �Y) := max

Q
I(Q; Y) such that ∀i I(Q; Y) ≤ I(Xi; Y). (19)

This redundancy measure has been criticized for depending only on the amount of informa-
tion provided by the different sources, being completely insensitive to the content of that
information. Nonetheless, IMMI

∩ can be useful in some settings, and it plays an important
role in the context of Gaussian random variables [51].

Interestingly, unlike IMMI
∩ , the original redundancy measure proposed by Williams and

Beer [11], IWB
∩ , does not appear to be a special case of Equation (7) (at least not under the

natural definition of the ordering relation <). We demonstrate this using a counter-example
in Appendix H.

As mentioned in Section 4.1, stronger ordering relations give smaller values of redun-
dancy. For the orders considered above, it is easy to show that

A C B =⇒ A− B−Y =⇒ I(A; Y) ≤ I(B; Y). (20)

This implies that IC∩ ≤ IGH
∩ ≤ IMMI

∩ . In fact, IMMI
∩ is the largest measure that is compatible

with the monotonicity of mutual information (Assumption I in Section 4.1).

4.5. Further Generalizations

We finish part I of this paper by noting that one can further generalize our approach,
by considering other analogues of “set”, “set size”, and “set inclusion” beyond the ones
considered in Section 4.1. Such generalizations allow one to analyze notions of information
intersection and union in a wide variety of domains, including setups different from the
standard one considered in the PID, and domains not based on Shannon information theory.

At a general level, consider a set of object Ω that represents possible “sources”, which
may be random variables, as in Section 4.1, or otherwise. Assume there is some function
φ : Ω → R that quantifies the “amount of information” in a given source Ω, and some
relation < on Ω that indicates which sources are more informative than others. Then, in
analogy to Equations (5) and (6), for any set of sources {b1, . . . , bn} ⊆ Ω, one can define
redundancy and union information as

I∩(b1; . . . ; bn) := sup
a∈Ω

φ(a) such that ∀i a < bi (21)

I∪(b1; . . . ; bn) := inf
a∈Ω

φ(a) such that ∀i bi < a. (22)

Synergy, unique, and excluded information can then be defined via Equations (1) to (3).
There are many possible examples of such generalizations, of which we mention a few

as illustrations.
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Shannon information theory (beyond mutual information). In Section 4.1, φ was the mutual
information between each random variable and some target Y. This can be generalized by
choosing a different “amount of information” function φ, so that redundancy and union
information are quantified in terms of other measures of statistical dependence. Among
many other options, possible choices of φ include Pearson’s correlation (for continuous ran-
dom variables) and measures of statistical dependency based f -divergences [52], Bregman
divergences [53], and Fisher information [54].

Shannon information theory (without a fixed target). The PID can also be defined for a different
setup than the typical one considered in the literature. For example, consider a situation
where the sources are channels κX1|Y, . . . , κXn |Y, while the marginal distribution over the
target Y is left unspecified. Here one may take Ω as the set of channels, φ as the channel
capacity φ(κA|Y) := maxPY IPYκA|Y (A; Y), and < as some ordering relation on channels [24]

Algorithmic information theory. The PID can be defined for other notions of information, such
as the ones used in Algorithmic Information Theory (AIT) [55]. In AIT, “information” is
not defined in terms of statistical uncertainty, but rather in terms of the program length
necessary to generate strings. For example, one may take Ω as the set of finite strings, <
as algorithmic conditional independence (a < b iff K(y|b)− K(y|b, a) ≤ const, where K(·|·)
is conditional Kolmogorov complexity), and φ(a) := K(y)− K(y|a) as the “algorithmic
mutual information” with some target string y. (This setup is closely related to the notion
of algorithmic “common information” [47].)

Quantum information theory. As a final example, the PID can be defined in the context of
quantum information theory. For example, one may take Ω as the set of quantum channels,
< as quantum Blackwell order [56–58], and φ(Φ) = I(ρ, Φ), where I is the Ohya mutual
information for some target density matrix ρ under channel Φ ∈ Ω [59].

5. Part II: Blackwell Redundancy and Union Information

In the first part of this paper, we proposed a general framework for defining PID
terms. In this section, which forms part II of this paper, we develop a concrete definition of
redundancy and union information by combining our general framework with a particular
ordering relation <. This ordering relation is called the “Blackwell order”, and it plays
a fundamental role in statistics and decision theory [28,45,60]. We first introduce the
Blackwell order, then use it to define measures of redundancy and union information, and
finally discuss various properties of our measures.

5.1. The Blackwell Order

We begin by introducing the ordering relation that we use to define our PID. Given
three random variables B, C and Y, the ordering relation B ≺Y C is defined as follows:

B ≺Y C iff PB|Y(b|y) = ∑
c

κB|C(b|c)PC|Y(c|y) for some channel κB|C and all b, y. (23)

We refer to the relation ≺Y as the Blackwell order relative to random variable Y. (Note that
the Blackwell order and Blackwell’s Theorem are usually formulated in terms of channels
— that is, conditional distributions like κB|Y and κC|Y — rather than of random variables as
done here. However, these two formulations are equivalent, as shown in [45].)

In words, Equation (23) means the conditional distribution by PB|Y can be generated
by first sampling from the conditional distribution PC|Y, and then applying some channel
κB|C to the outcome. The relation B ≺Y C implies that PB|Y is more noisy than PC|Y and, by
the “data processing inequality” [61], B must have less mutual information about Y than C:

B ≺Y C =⇒ I(B; Y) ≤ I(C; Y). (24)

Intuition suggests that when B ≺Y C, the information that B provides about Y is
contained in the information that C provides about Y. This intuition is formalized within a
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decision-theoretic framework using the so-called Blackwell’s Theorem [28,45,60]. To intro-
duce this theorem, imagine a scenario in which Y represents the state of the environment.
Imagine also that there is an agent who acquires information about the environment via
the conditional distribution PB|Y(b|y), and then uses outcome B = b to select actions a ∈ A
according to some “decision rule” given by the channel κA|B. Finally, the agent gains utility
according to some utility function u(a, y), which depends on the agent’s action a and the
environment’s state y. The maximum expected utility achievable by any decision rule is
given by

Vmax
Y (B, u) := max

κA|B
∑

y,b,a
PY(y)PB|Y(b|y)κA|B(a|b)u(a, y). (25)

From an operational perspective, it is natural to say that B is less informative than C about
Y if there is no utility function such that an agent with access to B can achieve higher
expected utility than an agent with access to C. Blackwell’s Theorem states that this is
precisely the case if and only if B ≺Y C [28,45]:

B ≺Y C iff Vmax
Y (B, u) ≤ Vmax

Y (C, u) for all u. (26)

In some sense, this operational description of the relation ≺Y is deeper than the data
processing inequality, Equation (24), which says that B ≺Y C is sufficient (but not nec-
essary) for I(B; Y) ≤ I(C; Y). In fact, it can happen that I(B; Y) ≤ I(C; Y) even though
B 6≺Y C [26,60,62].

A connection between PID and Blackwell’s theorem was first proposed in [13], which
argued that the PID should be defined in an operational manner (see Section 5.3 for further
discussion of [13]).

5.2. Blackwell Redundancy

We now define a measure of redundancy based on the Blackwell order. Specifically,
we use our general definition of redundancy, Equation (7), while using the Blackwell order
relative to Y as the “more informative” relation <:

I≺∩ (X1; . . . ; Xn �Y) := sup
Q

I(Q; Y) such that ∀i Q ≺Y Xi. (27)

We refer to this measure as Blackwell redundancy.
Given Blackwell’s Theorem, I≺∩ has a simple operational interpretation. Imagine two

agents, Alice and Bob, who can acquire information about Y via different random variables,
and then use this information to maximize their expected utility. Suppose that Alice has
access to one of the sources Xi. Then, the Blackwell redundancy I≺∩ is the maximum
information that Bob can have about Y without being able to do better than Alice on any
utility function, regardless of which source Alice has access to.

Blackwell redundancy can also be used to define a measure of Blackwell unique
information, U≺(Xi �Y|X1; . . . ; Xn) := I(Y; Xi)− I≺∩ (X1; . . . ; Xn �Y), via Equation (2). As
we show in Appendix I, U≺ satisfies the following property, which we term the Multivariate
Blackwell property.

Theorem 3. U≺(Xi �Y|X1; . . . ; Xn) = 0 if and only if Xi ≺Y Xj for all j 6= i.

Operationally, Theorem 3 means that source Xi has non-zero unique information iff
there exists a utility function such that an agent with access to source Xi can achieve higher
utility than an agent with access to any other source Xj.

Computing I≺∩ involves maximizing a convex function subject to a set of linear con-
straints. These constraints define a feasible set which is a convex polytope, and the maxi-
mum must lie on one of the vertices of this polytope [63]. In Appendix C, we show how to
solve this optimization problem. In particular, we use a computational geometry package to
enumerate the vertices of the feasible set, and then choose the best vertex (code is available
at [64]). In that appendix, we also prove that an optimal solution to Equation (27) can
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always be achieved by Q with cardinality |Q| = (∑i|Xi|)− n + 1. Note that the supremum
in Equation (27) is always achieved. Note also that I≺∩ satisfies the redundancy axioms in
Section 4.2.

As discussed above, solving the optimization problem in Equation (27) gives a (possi-
bly non-unique) optimal random variable Q which specifies the content of the redundant
information. As shown in Appendix C, solving Equation (27) also provides a set of channels
κQ|Xi

for each source Xi, which identify the redundant information in each source.
Note that the Blackwell order satisfies assumptions I-III in Section 4.1, thus Blackwell

redundancy satisfies the bounds derived in that section. Finally, note that like many other
redundancy measures, Blackwell redundancy becomes equivalent to the measure IMMI

∩
(as defined in Equation (19)) when applied to Gaussian random variables (for details, see
Appendix E).

5.3. Blackwell Union Information

We now define a measure of union information using our general definition in
Equation (8), while using the Blackwell order relative to Y as the “more informative”
relation:

I≺∪ (X1; . . . ; Xn �Y) := inf
Q

I(Q; Y) such that ∀i Xi ≺Y Q. (28)

We refer to this measure as Blackwell union information.
As for Blackwell redundancy, Blackwell union information can be understood in

operational terms. Consider two agents, Alice and Bob, whose use information about Y
to maximize their expected utility. Suppose that Alice has access to one of the sources Xi.
Then, the Blackwell union information I≺∪ is the minimum information that Bob must have
about Y in order to do better than Alice on any utility function, regardless of which source
Alice has access to.

Blackwell union information can be used to define measures of synergy and excluded
information via Equations (1) and (3). The resulting measure of excluded information
E≺(Xi � Y|X1; . . . ; Xn) := I≺∪ (X1; . . . ; Xn � Y)− I(Y; Xi) satisfies the following property,
which is the “dual” of the Multivariate Blackwell property considered in Theorem 3. (See
Appendix I for the proof.)

Theorem 4. E≺(Xi �Y|X1; . . . ; Xn) = 0 if and only if Xj ≺Y Xi for all j 6= i.

Operationally, Theorem 4 means that there is excluded information for source Xi iff
there exists a utility function such that an agent with access to one of the other sources Xj
can achieve higher expected utility than an agent with access to Xi.

We discuss the problem of numerically solving the optimization problem in
Equation (28) in the next subsection.

5.4. Relation to Prior Work

Our measure of Blackwell redundancy I≺∩ is new to the PID literature. The most
similar existing redundancy measure is IGH

∩ [18], which is discussed above in Section 4.4.
IGH
∩ is a special case of Equation (7), once the “more informative” relation B < C is defined

in terms of conditional independence B− C− Y. Note that conditional independence is
stronger than the Blackwell order: given the definition of ≺Y in Equation (23), it is clear
that B−C−Y implies B ≺Y C (the channel κB|C can be taken to be PB|C), but not vice versa.
As discussed in Section 4.1, stronger ordering relations give smaller values of redundancy,
so in general IGH

∩ ≤ I≺∩ . Note also that B ≺Y C depends only on the pairwise marginals
PBY and PCY, while conditional independence B− C−Y depends on the joint distribution
PBCY. As we discuss in Appendix F, the conditional independence order can be interpreted
in decision-theoretic terms, which suggests an operational interpretation for IGH

∩ .
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Interestingly, Blackwell union information I≺∪ is equivalent to two measures that have
been previously proposed in the PID literature, although they were formulated in a different
way. Bertschinger et al. [13] considered the following measure of bivariate redundancy:

IBROJA
∩ (X1; X2 �Y) := I(Y; X1) + I(Y; X2)− IBROJA

∪ (X1; X2 �Y), (29)

where IBROJA
∪ is defined via the optimization problem

IBROJA
∪ (X1; X2 �Y) = min

X̃1,X̃2

I(Y; X̃1, X̃2) such that PX̃1Y = PX1Y, PX̃2Y = PX2Y, (30)

and reflects the minimal mutual information that two random variables can have about Y,
given that their pairwise marginals with Y are fixed to be PX1Y and PX2Y. Note that Ref. [13]
did not refer to IBROJA

∪ as a measure of union information (we use our notation in writing it
as IBROJA
∪ ). Instead, these measures were derived from an operational motivation, with the

goal of deriving a unique information measure that obeys the so-called Blackwell property:
I(Y; X1)− IBROJA

∩ (X1; X2 �Y) = 0 if X1 ≺Y X2 (see Theorems 3 and 4 above).
Starting from a different motivation, Griffith and Koch [17] proposed a multivariate

version of IBROJA
∪ ,

IBROJA
∪ (X1; . . . ; Xn �Y) = min

X̃i ,...,X̃n

I(Y; X̃1, . . . , X̃n) such that ∀i PX̃iY
= PXiY. (31)

The goal of Ref. [17] was to derive a measure of multivariate synergy from a measure of
union information, as in Equation (1). In that paper, IBROJA

∪ was explicitly defined as a
measure of union information. To our knowledge, Ref. [17] was the first (and perhaps only)
paper to propose a measure of union information that was not derived from redundancy
via the inclusion-exclusion principle.

While IBROJA
∪ (X1; . . . ; Xn �Y) and I≺∪ (X1; . . . ; Xn �Y) are stated as different optimiza-

tion problems, we prove in Appendix G that these optimization problems are equivalent,
in that they will always achieve the same optimum value. Interestingly, since IBROJA

∪ and
I≺∪ are equivalent, our measure of Blackwell redundancy I≺∩ appears as the natural dual
to IBROJA

∪ . Another implication of this equivalence is that Blackwell union information
I≺∪ can be quantified by solving the optimization problem in Equation (31), rather than
Equation (28). This is advantageous, because Equation (31) involves the minimization of
a convex function over a convex polytope, which can be solved using standard convex
optimization techniques [65].

In Ref. [13], the redundancy measure IBROJA
∩ in Equation (29) was only defined for the

bivariate case. Since then, it has been unclear how to extend this redundancy measure to
more than two sources. However, by comparing Equation (29) and Equation (14), we see
the root of the problem: IBROJA

∩ is derived by applying the inclusion-exclusion principle to
a measure of union information, IBROJA

∪ . It cannot be extended to more than two sources
because the inclusion-exclusion principle generally leads to counterintuitive results for
more than 2 sources, as shown in Lemma 1. Note also that what Ref. [13] called the unique
information in X1, IBROJA

∪ (X1; X2 �Y)− I(Y; X2), in our framework would be considered a
measure of the excluded information for X2.

At the same time, the union information measure IBROJA
∪ , and the corresponding

synergy from Equation (1), does not use the inclusion-exclusion principle. Therefore, it can
be easily extended to any number of sources [17].

5.5. Continuity of Blackwell Redundancy and Union Information

It is often desired that information-theoretic measures are continuous, meaning that
small changes in underlying probability distributions lead to small changes in the resulting
measures. In this section, we consider the continuity of our proposed measures, I≺∩ and I≺∪ .
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We first consider Blackwell redundancy I≺∩ . It turns out that this measure is not
always continuous in the joint probability PX1 ...XnY (a discontinuous example is provided
in Section 5.6). However, the discontinuity of I≺∩ is not necessarily pathological, and we
can derive an interpretable geometric condition that guarantees that I≺∩ is continuous.

Consider the conditional distribution of the target Y given some source Xi, PY|Xi
. Let

rank PY|Xi
indicate its rank, meaning the dimension of the space spanned by the vectors

{PY|Xi=xi
}xi∈Xi . The rank of PY|Xi

quantifies the number of independent directions that the
target distribution PY can be moved by manipulating the source distribution PXi , and it
cannot be larger than |Y|. The next theorem shows that I≺∩ is locally continuous, as long as
n− 1 or more of the source conditional distributions have this maximal rank.

Theorem 5. As a function of the joint distribution PX1,...,Xn ,Y, I≺∩ is locally continuous whenever
n− 1 or more of the conditional distributions PY|Xi

have rank PY|Xi
= |Y|.

In proving this result, we also show that I≺∩ is continuous almost everywhere (see
proof in Appendix D). Finally, in that appendix we also use Theorem 5 to show that I≺∩ is
continuous everywhere if Y is a binary random variable.

We illustrate the meaning of Theorem 5 visually in Figure 2 . We show two situations,
both of which involve two sources X1 and X2 and a target Y with cardinality |Y| = 3. In
one situation, both pairwise conditional distributions have rank equal to |Y|, so I≺∩ is locally
continuous. In the other situation, both pairwise conditional distributions are rank deficient
(e.g., this might happen because X1 and X2 have cardinality |X1| = |X2| = 2), so I≺∩ is
not guaranteed to be continuous. From the figure it is easy to see how the discontinuity
may arise. Given the definition of the Blackwell order and I≺∩ , for any random variable Q
in the feasible set of Equation (27), the conditional distributions PY|Q=q must fall within
the intersection of the distributions spanned by PY|X1

and PY|X2
(the intersection of the

red and green shaded regions in Figure 2). On the right, the size of this intersection can
discontinuously jump from a line (when PY|X1

and PY|X2
are perfectly aligned) to a point

(when PY|X1
and PY|X2

are not perfectly aligned). Thus, the discontinuity of I≺∩ arises
from a geometric phenomenon, which is related to the discontinuity of the intersection of
low-dimensional vector subspaces.

We briefly comment on the continuity of I≺∪ . As we described above, this measure
turns out to be equivalent to IBROJA

∪ . The continuity of IBROJA
∪ in the bivariate case was

proven in Theorem 35 of Ref. [66]. We believe that the continuity of IBROJA
∪ for an arbitrary

number of sources can be shown using similar methods, although we leave this for future
work.

PY

PY|X1=1

PY|X1=2

PY|X1=0

PY|X2=2

PY|X2=1

PY|X2=0

PY

PY|X1=1

PY|X1=0

PY|X2=0

PY|X2=1

Figure 2. Illustration of Theorem 5, which provides a sufficient condition for the local continuity of I≺∩ .
Consider two scenarios, both of which involves two sources X1 and X2 and a target Y with cardinality
|Y| = 3. The blue areas indicate the simplex of probability distributions over Y , with the marginal PY

and the pairwise conditionals PY|Xi=xi
marked. On the left, both sources have rank PY|Xi

= 3 = |Y|,
so I≺∩ is locally continuous. On the right, both sources have rank PY|Xi

= 2 < |Y|, so I≺∩ is not
necessarily locally continuous. Note that I≺∩ is also continuous if only source has rank PY|Xi

= 3.
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5.6. Behavior on the COPY Gate

As mentioned in Section 3, the “COPY gate” example is often used to test the behavior
of different redundancy measures. The COPY gate has two sources, X1 and X2, and a target
Y = (X1, X2) which is a copy of the joint outcome. It is expected that redundancy should
vanish if X1 and X2 are statistically independent, as formalized by the Independent identity
property in Equation (4).

Blackwell redundancy I≺∩ satisfies the Independent identity. In fact, we prove a more
general result, which shows that I≺∩ (X1, X2 � (X1, X2)) is equal to an information-theoretic
measure called Gács-Körner common information C(X ∧ Y) [16,47,67]. C(X ∧ Y) quantifies
the amount of information that can be deterministically extracted from both random
variables X or Y, and it is closely related to the “deterministic function” order C defined in
Equation (16). Formally, it can be written as

C(X ∧Y) = sup
Q

H(Q) such that Q C X, Q C Y, (32)

where H is Shannon entropy. In Appendix I, we prove the following result.

Theorem 6. I≺∩ (X1, X2 � (X1, X2)) = C(X1 ∧ X2).

Note that 0 ≤ C(X1 ∧ X2) ≤ I(X1; X2) [47], so I≺∩ satisfies the Independent identity
property. At the same time, C(X1 ∧ X2) can be strictly less than I(X1; X2). For example,
if PX1X2 has full support, then I(X1; X2) can be arbitrarily large while C(X1 ∧ X2) = 0
(see proof of Theorem 6). This means that I≺∩ violates a previously proposed prop-
erty, sometimes called the Identity property, that suggests that redundancy should satisfy
I∩(X1; X2 � (X1, X2)) = I(X1; X2). However, the validity of the Identity property is not clear,
and several papers have argued against it [15,39].

The value of C(X1 ∧ X2) depends on the precise pattern of zeros in the joint distri-
bution PX1X2 and is therefore not continuous. For instance, for the bivariate COPY gate,
redundancy can change discontinuously as one goes from the situation where X1 = X2
(so that all information is redundant, I≺∩ = I(X1; X2)) to one where X1 and X2 are almost,
but not entirely, identical. This discontinuity can be understood in terms of Theorem 5
and Figure 2: in the COPY gate, the cardinality of the target variable |Y| = |X1| × |X2| is
larger than the cardinality of the individual sources. In other words, when the sources X1
and X2 are not perfectly correlated, they provide information about different “subspaces”
of the target (X1, X2), and so it is possible that very little (or none) of their information
is redundant.

At the same time, the Blackwell property, Theorem 3, implies that

I≺∩ (X1, X2 �X1) = I(X1; X2) = I≺∩ (X1, X2 �X2) (33)

In other words, the redundancy in X1 and X2, where either one of the individual sources is
taken as the target, is given by the mutual information I(X1; X2). This holds even though
the redundancy in the COPY gate can be much lower than I(X1; X2).

It is also interesting to consider how Blackwell union information, I≺∪ , behaves on
the COPY gate. Using techniques from [13], it can be shown that the union information is
simply the joint entropy,

I≺∪ (X1; X2 � (X1, X2)) = H(X1, X2). (34)

Since H(X1, X2) = I(X1, X2; X1, X2), Equation (34) and Equation (1) together imply that
the COPY gate has no synergy.

Note that we can use Theorem 6 and Equation (34) to illustrate that I≺∩ and I≺∪ violate
the inclusion-exclusion principle, Equation (14). Using Equation (34) and a bit of rear-

ranging, Equation (14) becomes equivalent to I≺∩ (X1; X2 � (X1, X2))
?
= I(X1; X2), which is

the Identity property mentioned above. I≺∩ violates this property, since redundancy for the
COPY gate can be smaller than I(X1; X2).
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6. Examples and Comparisons to Previous Measures

In this section, we compare our proposed measure of Blackwell redundancy I≺∩ to
existing redundancy measures. We focus on redundancy, rather than union information,
because redundancy has seen much more development in the literature, and because
Blackwell union information I≺∪ is equivalent to an existing measure (see Section 5.4).

6.1. Qualitative Comparison

In Table 1, we compare I≺∩ to six existing measures of multivariate redundancy:

• IWB
∩ , the redundancy measure first proposed by Williams and Beer [11].

• IMMI
∩ , the “minimum mutual information” [51], Equation (19) in Section 4.4.

• IC∩ , proposed by Griffith et al. [16], Equation (17) in Section 4.4.
• IGH

∩ , proposed by Griffith and Ho [18], Equation (18) in Section 4.4.
• IInce

∩ , proposed by Ince [20].
• IFL

∩ , proposed by Finn and Lizier [21].

We also compare I≺∩ to three existing measures of bivariate redundancy (i.e., for 2 sources):

• IBROJA
∩ , proposed by Bertschinger et al. [13], defined in Equation (29).

• IHarder
∩ , proposed by Harder et al. [19].

• Idep
∩ , proposed by James et al. [15].

For I≺∩ as well as the 9 existing measures, we consider the following properties, which are
chosen to highlight differences between our approach and previous proposals:

1. Has it been defined for more than 2 sources
2. Does it obey the Monotonicity axiom from Section 4.2
3. Is it compatible with the inclusion-exclusion principle (IEP) for the bivariate case,

such that union information as defined in Equation (14) obeys I∪(X1; X2 � Y) ≤
I(X1, X2; Y)

4. Does it obey the Independent identity property, Equation (4)
5. Does it obey the Blackwell property (possibly in its multivariate form, Theorem 3)

We also consider two additional properties, which require a bit of introduction.
The first property was suggested by Ref. [13], who argued that redundancy should

only depend on the pairwise marginal distributions of each source with the target,

If pXiY = pX̃iỸ
for all i, then I∩(X1; . . . ; Xn �Y) = I∩(X̃1; . . . ; X̃n � Ỹ). (35)

In Table 1, we term this property Pairwise marginals. We believe that the validity of Equa-
tion (35) is not universal, but may depend on the particular setting in which the PID is
being used. However, redundancy redundancy measures that satisfy this property have
one important advantage: they are well-defined not only when the sources are random
variables X1, . . . , Xn, but also in the more general case when the sources are channels
κX1|Y, . . . , κXn |Y.

Table 1. Comparison of different redundancy measures. ? indicate properties that we could not easily
establish.

I≺∩ IWB
∩ IMMI

∩ IC∩ IGH
∩ IInce

∩ IFL
∩ IBROJA

∩ IHarder
∩ Idep

∩
More than 2 sources � � � � � � �

Monotonicity � � � � � � � �

IEP for bivariate case � � ? ? � � �

Independent identity � � � � � � �

Blackwell property � � �

Pairwise marginals � � � � � �

Target equality � � � � � �
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The second property has not been previously considered in the literature, although
it appears to be highly intuitive. Observe that the target random variable Y contains all
possible information about itself. Thus, it may be expected that adding the target to the set
of sources should not decrease the redundancy:

I∩(X1; . . . ; Xn; Y�Y) = I∩(X1; . . . ; Xn �Y). (36)

In Table 1, we term this property Target equality. Note that for redundancy measures which
can be put in the form of Equation (7), Target Equality is satisfied if the order < obeys Xi < Y
for all sources Xi. (Note also that Target Equality is unrelated to the previously proposed
Strong Symmetry property; for instance, it is easy to show that the redundancy measures
IWB
∩ and IMMI

∩ satisfy Target Equality, even though they violate Strong Symmetry [68].)

6.2. Quantitative Comparison

We now illustrate our proposed measure of redundancy I≺∩ on some simple examples,
and compare its behavior to existing redundancy measures.

The values of I≺∩ were computed with our code, provided at [64]. The values of all
other redundancy measures except IGH

∩ were computed using the dit Python package [69].
To our knowledge, there have been no previous proposals for how to compute IGH

∩ . In fact,
this measure involves maximizing a convex function subject to linear constraints, and can
be computed using similar methods as I≺∩ . We provide code for computing IGH

∩ at [64].
We begin by considering some simple bivariate examples. In all cases, the sources X1

and X2 are binary and uniformly distributed. The results are shown in Table 2.

Table 2. Behavior of I≺∩ and other redundancy measures on bivariate examples.

Target I≺∩ IWB
∩ IMMI

∩ I∧∩ IGH
∩ IInce

∩ IFL
∩

IBROJA
∩

IHarder
∩

Idep
∩

Y = X1 AND X2 0.311 0.311 0.311 0 0.123 0.104 0.561 0.311 0.082

Y = X1 + X2 0.5 0.5 0.5 0 0 0 0.5 0.5 0.189

Y = X1 I(X1;X2) I(X1;X2) I(X1;X2) C(X1∧X2) I(X1;X2) * 1 I(X1;X2) I(X1;X2)

Y = (X1, X2) C(X1∧X2) 1 1 C(X1∧X2) C(X1∧X2) * 1 I(X1;X2) I(X1;X2)

1. The AND gate, Y = X1 AND X2, with X1 and X2 independent. (It is incorrectly stated
in Refs. [18,49] that IGH

∩ vanishes here; actually IGH
∩ (X1; X2 � X1 AND X2) ≈ 0.123,

which corresponds to the maximum achieved in Equation (18) by Q = X1 OR X2.)
2. The SUM gate: Y = X1 + X2, with X1 and X2 independent.
3. The UNQ gate: Y = X1. Here IInce

∩ (marked with ∗) gave values that increased with
the amount of correlation between X1 and X2 but were typically larger than I(X1;X2).

4. The COPY gate: Y = (X1, X2). Here, our redundancy measure is equal to the Gács-
Körner common information between X and Y, as discussed in Section 5.6. The same
holds for the redundancy measures IGH

∩ and IC∩ , which can be shown using a slight
modification of the proof of Theorem 6. For this gate, IInce

∩ (marked with ∗) gave the
same values as for the UNQ gate, which increased with the amount of correlation
between X1 and X2 but were typically larger than I(X1; X2).

We also analyze several examples with three sources, with the results shown in Table 3.
We considered those previously proposed measures which can be applied to more than two
sources (we do not show IGH

∩ , as our implementation was too slow for these examples).

1. Three-way AND gate: Y = X1 AND X2 AND X3, where the sources are binary and
uniformly and independently distributed.

2. Three-way SUM gate: Y = X1 + X2 + X3, where the sources are binary and uniformly
and independently distributed.

3. “Overlap” gate: we defined four independent uniformly distributed binary random
variables, A, B, C, D. These were grouped into three sources X1, X2, X3 as X1 = (A, B),
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X2 = (A, C), X3 = (A, D). The target was the joint outcome of all three sources,
Y = (X1, X2, X3) = ((A, B), (A, C), (A, D)). Note that the three sources overlap on a
single random variable A, which suggests that the redundancy should be 1 bit.

Table 3. Behavior of I≺∩ and other redundancy measures on three sources.

Target I≺∩ IWB
∩ IMMI

∩ I∧∩ IInce
∩ IFL

∩
Y = X1 AND X2 AND X3 0.138 0.138 0.138 0 0.024 0.294

Y = X1 + X2 + X3 0.311 0.311 0.311 0 0 0.561

Y = ((A, B), (A, C), (A, D)) 1 2 2 1 1 2

7. Discussion and Future Work

In this paper, we proposed a new general framework for defining the partial infor-
mation decomposition (PID). Our framework was motivated in several ways, including
a formal analogy with intersections and unions in set theory as well as an axiomatic
derivation.

We also used our general framework to propose concrete measures of redundancy
and union information, which have clear operational interpretations based on Blackwell’s
theorem. Other PID measures, such as synergy and unique information, can be computed
from our measures of redundancy and union information via simple expressions.

One unusual aspect of our framework is that it provides separate measures of re-
dundancy and union information. As we discuss above, most prior work on the PID
assumed that redundancy and union information are related to each other via the so-called
“inclusion-exclusion” principle. We argue that the inclusion-exclusion principle should not
be expected to hold in the context of the PID, and in fact that it leads to counterintuitive
behavior once 3 or more sources are present. This suggests that different information
decompositions should be derived for redundancy vs. union information. This idea is
related to a recent proposal in the literature, which argues that two different PIDs are
needed, one based on redundancy and one based on synergy [41]. An interesting direction
for future work is to relate our framework with the dual decompositions proposed in [41].

From a practical standpoint, an important direction for future work is to develop
better schemes for computing our redundancy measure. This measure is defined in terms
of a convex maximization problem, which in principle can be NP-hard (a similar convex
maximization problem was proven to be NP-hard in [70]). Our current implementation,
which enumerates the vertices of the feasible set, works well for relatively small state
spaces, but we do not expect it to scale to situations with many sources, or where the
sources have large cardinalities. However, the problem of convex maximization with
linear constraints is a very active area of optimization research, with many proposed
algorithms [63,71,72]. Investigating these algorithms, as well as various approximation
schemes such as relaxations and variational bounds, is of interest.

Finally, we showed how our framework can be used to define measures of redundancy
and union information in situations that go beyond the standard setting of the PID (e.g.,
when the probability distribution of the target is not specified). Our framework can even be
applied in domains beyond Shannon information theory, such as algorithmic information
theory and quantum information theory. Future work may exploit this flexibility to explore
various new applications of the PID.
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Appendix A. PID Axioms

In developing the PID framework, Williams and Beer [11,12] proposed that any mea-
sure of redundancy should obey a set of axioms. In slightly modified form, these axioms
can be written as follows:

• Symmetry: I∩(X1; . . . ; Xn �Y) is invariant to the permutation of X1, . . . , Xn.
• Self-redundancy: I∩(X1 �Y) = I(Y; X1).
• Monotonicity: I∩(X1; . . . ; Xn �Y) ≤ I∩(X1; . . . ; Xn−1 �Y).
• Deterministic equality: I∩(X1; . . . ; Xn � Y) = I∩(X1; . . . ; Xn−1 � Y) if Xi = f (Xn) for

some i < n and deterministic function f .

These axioms are based on intuitions regarding the behavior of intersection in set theory [12].
The Symmetry axiom is self-explanatory. Self-redundancy states that if only a single-source is
present, all of its information is redundant. Monotonicity states that redundancy should not
increase when an additional source is considered (consider that the size of set intersection
can only decrease as more sets are considered). Deterministic equality states that redundancy
should remain the same when an additional source Xn is added that contains all (or more) of
the same information that is already contained in an existing source Xi (which is formalized
as the condition Xi = f (Xn)).

Union information was considered the original PID proposal [12,73], as well as a more
recent paper [17]. Ref. [17] proposed that any measure of union information should satisfy
the following set of natural axioms, stated here in slightly modified form:

• Symmetry: I∪(X1; . . . ; Xn �Y) is invariant to the permutation of X1, . . . , Xn.
• Self-union: I∪(X1 �Y) = I(Y; X1).
• Monotonicity: I∪(X1; . . . ; Xn �Y) ≥ I∪(X1; . . . ; Xn−1 �Y).
• Deterministic equality: I∪(X1; . . . ; Xn � Y) = I∪(X1; . . . ; Xn−1 � Y) if Xn = f (Xi) for

some i < n and deterministic function f .

These axioms are based on intuitions concerning the behavior of the union operator in set
theory, and are the natural “duals” of the redundancy axioms mentioned above.

Appendix B. Uniqueness Proofs

Proof of Theorem 1. Assume there is a redundancy measure I′∩ that obeys the five axioms
stated in the theorem. We will show that I′∩ = I∩, as defined in Equation (7).

Given Equation (7) and the definition of the supremum, for any ε > 0 there exists a
random variable Q such that Q < Xi for i ∈ {1, . . . , n} and

I(Q; Y) ≥ I∩(X1; . . . ; Xn �Y)− ε, (A1)

By Order equality, I′∩(Q; X1; . . . ; Xk �Y) = I′∩(Q; X1; . . . ; Xk−1 �Y). Induction gives

I′∩(Q; X1; . . . ; Xn �Y) = I′∩(Q�Y) = I(Q; Y) ≥ I∩(X1; . . . ; Xn �Y)− ε

where we used Self-redundancy and Equation (A1). We also have I′∩(Q; X1; . . . ; Xn �Y) ≤
I′∩(X1; . . . ; Xn �Y) by Symmetry and Monotonicity. Combining gives

I∩(X1; . . . ; Xn �Y)− ε ≤ I′∩(X1; . . . ; Xn �Y).

We now show that I∩ is the largest measure that satisfies Existence. Let Q be a random
variable that obeys Q < Xi for all i ∈ {1, . . . , n} and I′∩(X1; . . . ; Xn �Y) = I(Y; Q). Since Q
falls within the feasible set of the optimization problem in Equation (7),

I′∩(X1; . . . ; Xn �Y) = I(Q; Y) ≤ I∩(X1; . . . ; Xn �Y).

Combining gives

I′∩(X1; . . . ; Xn �Y)− ε ≤ I∩(X1; . . . ; Xn �Y)− ε ≤ I′∩(X1; . . . ; Xn �Y).
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Since this holds for all ε > 0, taking the limit ε→ 0 gives I′∩ = I∩.

Proof of Theorem 2. Assume there is a union information measure I′∪ that obeys the five
axioms stated in the theorem. We will show that I′∪ = I∪, as defined in Equation (8).

Given Equation (8) and the definition of the infinitum, for any ε > 0 there exists a
random variable Q such that Q < Xi for i ∈ {1, . . . , n} and

I(Q; Y) ≤ I∪(X1; . . . ; Xn �Y) + ε, (A2)

By Order equality, I′∪(Q; X1; . . . ; Xk �Y) = I′∪(Q; X1; . . . ; Xk−1 �Y). Induction gives

I′∪(Q; X1; . . . ; Xn �Y) = I′∪(Q�Y) = I(Q; Y) ≤ I∪(X1; . . . ; Xn �Y) + ε

where we used Self-union and Equation (A2). We also have I′∪(Q; X1; . . . ; Xn � Y) ≥
I′∪(X1; . . . ; Xn �Y) by Symmetry and Monotonicity. Combining gives

I∪(X1; . . . ; Xn �Y) + ε ≥ I′∪(X1; . . . ; Xn �Y).

We now show that I∩ is the smallest measure that satisfies Existence. Let Q be a random
variable that obeys Xi < Q for all i ∈ {1, . . . , n} and I′∪(X1; . . . ; Xn �Y) = I(Y; Q). Since Q
falls within the feasible set of the optimization problem in Equation (8),

I′∪(X1; . . . ; Xn �Y) = I(Q; Y) ≥ I∪(X1; . . . ; Xn �Y).

Combining gives

I′∪(X1; . . . ; Xn �Y) ≤ I∪(X1; . . . ; Xn �Y) + ε ≤ I′∩(X1; . . . ; Xn �Y) + ε.

Since this holds for all ε > 0, taking the limit ε→ 0 gives I′∪ = I∪.

Appendix C. Computing I≺∩
Here we consider the optimization problem that defines our proposed measure of

redundancy, Equation (27). We first prove a bound on the required cardinality of Q.

Theorem A1. For optimizing Equation (27), it suffices to consider Q with cardinality |Q| =
(∑i|Xi|)− n + 1.

Proof. Consider any random variable Q with outcome set Q which satisfies Q ≺Y Xi for
all i. We show that whenever Q has full support on |Q| > (∑i|Xi|)− n + 1 outcomes, there
is another random variable Q̃ which achieves I(Q̃; Y) ≥ I(Q; Y), while satisfying Q̃ ≺Y Xi
for all i and having support on at most (∑i|Xi|)− n + 1 outcomes.

To begin, let Ω indicate the set of random variables over outcomes Q, such that all
Q̃ ∈ Ω satisfy:

PY|Q̃(y|q) = PY|Q(y|q) for all y, q ∈ {q ∈ Q : PQ̃(q) > 0} (A3)

∑
q

PQ̃(q)PXi |Q(xi|q) = PXi (xi) for all i, xi. (A4)

Since Q ≺Y Xi, by Equation (23) there exist channels κQ|Xi
(q|xi) that satisfy PQ|Y(q|y) =

∑xi
κQ|Xi

(q|xi)PXi |Y(xi|y). Now write the conditional distribution over Q̃ and Y as

PQ̃Y(q, y) =
PQ̃(q)
PQ(q)

PQY(q, y) = ∑
xi

PQ̃(q)
PQ(q)

κQ|Xi
(q|xi)PXi |Y(xi|y)PY(y)

= ∑
xi

κ′Q̃|Xi
(q|xi)PXi |Y(xi|y)PY(y), (A5)
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where we used Equation (A3) and defined the channel κ′Q̃|Xi
as

κ′Q̃|Xi
=

PQ̃(q)
PXi (xi)

[
PXi (xi)

PQ(q)
κQ|Xi

(q|xi)

]
,

(Note this is a kind of double Bayesian inverse, given Equation (A4).) Equation (A5) implies
that Q̃ ≺Y Xi for all i.

We now show that there is Q̃ ∈ Ω that achieves I(Q; Y) ≤ I(Q̃; Y) and has support on
at most (∑i|Xi|)− n + 1 outcomes in Q. Write the mutual information between any Q̃ ∈ Ω
and Y as

I(Q̃; Y) = ∑
q

PQ̃(q)DKL(PY|Q̃=q‖PY) = ∑
q

PQ̃(q)DKL(PY|Q=q‖PY), (A6)

where DKL is the Kullback-Leibler divergence. We consider the maximum of this mutual
information across Ω, I∗ = maxQ̃∈Ω I(Q̃; Y). Using Equation (A4) and Equation (A6), this
maximum can be written as

I∗ = max
ω∈∆

∑
q

ω(q)D(PY|Q=q‖PY) such that ∀i, xi : ∑
q

ω(q)PXi |Q(xi|q) = PXi (xi),

where ∆ is the set of all distributions overQ. By conservation of probability, ∑xi
PXi (xi) = 1,

so we can eliminate a constraint for one of the outcomes xi of each source i. Thus, I∗ is the
maximum of a linear function over ∆, subject to ∑i(|Xi| − 1) = (∑i|Xi|)− n hyperplane
constraints.

The feasible set is compact, and the maximum will be achieved at one of the extreme
points of the feasible set. By Dubin’s Theorem [74], any extreme point of this feasible set
can be expressed as a convex combination of at most (∑i|Xi|)− n + 1 extreme points of ∆.
In other words, the maximum in Equation (27) is achieved by a random variable Q̃ with
support on at most (∑i|Xi|)− n + 1 values of Q. This random variable satisfies

I(Q̃; Y) = I∗ ≥ I(Q; Y),

where the last inequality comes from the fact that Q is an element of Ω.

We now return to the optimization problem in Equation (27). Given Theorem A1 and
the definition of the Blackwell order in Equation (23), it can be rewritten as

I≺∩ (X1; . . . ; Xn �Y) = max
κQ|Y ,κQ|X1,...,κQ|Xn

Iκ(Q, Y) (A7)

such that ∀i, y, xi : ∑
xi

κQ|Xi
(q|xi)PXi |Y(xi|y) = κQ|Y(q|y).

where the optimization is over channels withQ of cardinality (∑i|Xi|)− n+ 1. The notation
Iκ(Q; Y) indicates the mutual information that arises from the marginal distribution PY and
the conditional distribution κQ|Y,

Iκ(Q; Y) = ∑
y

PY(y)κQ|Y(q|y) ln
κQ|Y(q|y)

∑y′ κQ|Y(q|y′)PY(y′)
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Equation (A7) involves maximizing a convex function over the convex polytope defined by
the following system of linear (in)equalities:

Λ =
{
(κQ|Y, κQ|X1,...,κQ|Xn) :

∀i, xi, q κQ|Xi
(q|xi) ≥ 0, (A8)

∀q, y κQ|Y(q|y) ≥ 0, (A9)

∀y ∑
q

κQ|Y(q|y) = 1, (A10)

∀i, xi ∑
q

κQ|Xi
(q|xi) = 1, (A11)

∀i, y, q ∈ Q \ {0}
[
∑
xi

κQ|Xi
(q|xi)PXiY(xi, y)

]
− κQ|Y(q|y)PY(y) = 0

}
, (A12)

We do not place a constraint on q = 0 in Equation (A12) because that would be redundant
with the constraints Equation (A10) and Equation (A11). Also, note that we replaced the sup
in Equation (27) with max in Equation (A7), which is justified since we are optimizing over
a finite dimensional, closed, and bounded region (thus the supremum is always achieved).

The maximum of a convex function over a convex polytope is found at one of the
vertices of the polytope. To find the solution to Equation (A7), we use a computational
geometry package to enumerate the vertices of Λ. We evaluate Iκ(Y; Q) at each vertex,
and pick the maximum value. This procedure also finds optimal conditional distributions
κQ|Y, κQ|X1,...,κQ|Xn . Code is available at [64].

Appendix D. Continuity of I≺∩
To prove the continuity of I≺∩ , we begin by considering the feasible set of the optimiza-

tion problem in Equation (A7), as specified by the system (in)equalities in Equations (A8)
to (A12). For convenience, write this system of (in)equalities in matrix notation,

Λ =
{
~κ ∈ R|Q||Y|+∑i |Q||Xi | : κ ≥ 0, Aκ = a

}
, (A13)

where ~κ is a vector representation of (κQ|Y, κQ|X1,...,κQ|Xn), the matrix A encodes the left-
hand side of Equations (A10) to (A12), and the vector a is filled with 1s and 0s, as appropriate.

We first prove the following lemma.

Lemma A1. The matrix A defined in Equation (A13) is full rank if n− 1 or more of the pairwise
conditional distributions have rank PY|Xi

= |Y|.

Proof. Without loss of generality, assume that PY has full support (otherwise none of the

pairwise marginals PXiY can achieve rank |Y|). Write A in block matrix form as A =

[
B
C

]
,

where the matrix B has |Y|+ ∑i |Xi| rows and encodes the constraints of Equation (A10)
and Equation (A11), and the matrix C has n|Y|(|Q| − 1) rows and encodes the constraints
of Equation (A12).

Each row in B has a 1 in some column which is zero in every other row of B and
every row of C. This column corresponds either to κQ|Y(0|y) for a particular y (for con-
straints like Equation (A10)), or to κQ|Xi

(0|xi) for a particular i and xi (for constraints like
Equation (A11)). These columns are 0 in C because q = 0 is omitted Equation (A12). This
means that no row of B is a linear combination of other rows in B or C, and that no row in
C is a linear combination of any set of other rows that includes a row in B. Therefore, if the
rows of A are linearly dependent, it must be that the rows of C are linearly dependent.

Next, let~ci,y,q indicate the row of C that represents the constraints in Equation (A12)
for some source i and outcomes y, q 6= 0. Any such row has a column for each xi ∈ Xi
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with value PXiY(xi, y) (at the same index as the row in~κ that represents κQ|Xi
(q|xi)). Since

PXiY(xi, y) > 0 for at least one xi ∈ Xi, one of these columns must be non-zero. At the same
time, these columns are zero in every row ~cj,y,q′ where j 6= i or q′ 6= q. This means that
row~ci,y,q can only be a linear combination of other rows in C if, for all xi, PXiY(xi, y) is a
linear combination of PXiY(xi, y′) for y′ 6= y. In linear algebra terms, this can be stated as
rank PY|Xi

< |Y|.
The previous argument shows that if A is linearly dependent, there must be at least

one source i with rank PY|Xi
< |Y| and some row ~ci,y,q which is a linear combination of

other rows from C. Observe that this row~ci,y,q has a column with value PY(y) > 0 (at the
same index as the row in~κ that represents κQ|Y(q|y)). This column is zero in every other
row ~ci,y′ ,q′ for y′ 6= y or q′ 6= q. This means that ~ci,y,q is a linear combination of a set of
other rows in C that include some row~cj,y,q for j 6= i. This implies that~cj,y,q is also a linear
combination of other rows in C, which means that rank PY|Xj

< |Y|.
We have shown that if A is linearly dependent, there must be at least two pairwise

conditionals with rank PY|Xi
< |Y|.

We are now ready to prove Theorem 5.

Proof of Theorem 5. For the case of a single source (n = 1), I≺∩ reduces to the mutual
information I≺∩ = I(Y; X1), which is continuous (Section 2.3, [75]). Thus, without loss of
generality, we assume that n ≥ 2.

Next, we define some notation. Note that the optimum value (I≺∩ ) and the feasible
set of the optimization problem in Equation (A7) is a function of the pairwise marginal
distributions PX1Y, . . . , PXnY. We write Ω for the set of all pairwise marginal distributions
which have the same marginal over Y:

Ω =
{
(qX1Y, . . . , qXnY) : ∑

xi

qXiY(xi, y) = ∑
xj

qXjY(xj, y) ∀i, j
}

.

For any r ∈ Ω, let I≺∩ (r) indicate the corresponding optimum value in Equation (A7), given
the marginals in r, and let Λ(r) indicate the feasible set of the optimization problem, as
defined in Equation (A13).

Note that the matrix A in Equation (A13) depends on the choice of r, which we indicate
by writing it as the matrix-valued function A(r). Given any r = (qX1Y, . . . , qXnY) ∈ Ω and
feasible solution κ = (κQ|Y, κQ|X1,...,κQ|Xn) ∈ Λ(r), let I(r, κ) indicate the corresponding
mutual information I(Q; Y), where the marginal distribution over Y is specified by r
and the conditional distribution of Q given Y is specified by κQ|Y. Using this notation,
I≺∩ (r) = maxκ∈Λ(r) I(r, κ).

Below, we show that I≺∩ (r) is continuous if r is rank regular [76], which means that
there is a neighborhood U ⊆ Ω of r such that rank A(r′) = rank A(r) for all r′ ∈ U. Then,
to prove the theorem, we assume that A(r) is full rank. Given Lemma A1, this is true as
long as n− 1 or more of the pairwise conditionals PY|Xi

have rank PY|Xi
= |Y|. Note that

a matrix M is full rank iff the singular values σ(M) are all strictly positive. Since A(r) is
full rank, and A(r) and σ(M) are continuous, there is a neighborhood U of r such that the
singular values σ(A(r′)) are all strictly positive for all r′ ∈ U, therefore all A(r′)) have full
rank. This shows that r is rank regular and so I≺∩ is continuous at r.

We now prove that I≺∩ (r) is continuous if A(r) is rank regular. To do so, we will use
Hoffman’s Theorem [77,78]. In our case, it states that for any pair of marginals r, r′ ∈ Ω
and a feasible solution κ′ ∈ Λ(r′), there exists a feasible solution κ ∈ Λ(r) such that∥∥κ − κ′

∥∥ ≤ α
∥∥A(r)− A(r′)

∥∥, (A14)

where α is a constant that does not depend on r′ or κ′. (In the notation of [78], we
take G = G′, g = g′ and d′ = d, and use that the norm of s = κ′ is bounded, given
that it is finite dimensional and has entries in [0, 1]). We will also use Daniel’s theorem
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(Theorem 4.2, [78]), which states that for any r, r′ ∈ Ω such that rank A(r) = rank A(r′),
and any feasible solution κ ∈ Λ(r), there exists κ′ ∈ Λ(r′) such that∥∥κ − κ′

∥∥ ≤ β
∥∥A(r)− A(r′)

∥∥, (A15)

where β is a constant that doesn’t depend on r′ (in the notation of [78], ε′ =
∥∥A(r)− A(r′i)

∥∥
and again use that κ have a bounded norm).

Now consider also any sequence r′1, r′2, · · · ∈ Ω that converges to a marginal r ∈ Ω.
Let κ′i ∈ Λ(r′i) indicate an optimal solution of Equation (A7) for ri, so that I(r′i , κ′i) = I≺∩ (r′i).
Given Equation (A14), there is a corresponding sequence κ1, κ2, · · · ∈ Λ(r) such that∥∥κi − κ′i

∥∥ ≤ α
∥∥A(r)− A(r′i)

∥∥.

Since A(·) is continuous and r′i converges to r, we have limi→∞ A(r′i) = A(r) and therefore
limi→∞

∥∥κi − κ′i
∥∥ = 0. This implies

0 = lim
i→∞

I(r′i , κ′i)− I(r, κi) ≥ lim
i→∞

I≺∩ (r
′
i)− I≺∩ (r) (A16)

where we first used continuity of mutual information, I(r′i , κ′i) = I≺∩ (r′i) and I(r, κi) ≤
I≺∩ (r).

Now assume that r is rank regular. Since ri converges to r, rank A(r′i) = rank A(r)
for all sufficiently large i. Let κ ∈ Λ(r) be an optimal solution of Equation (A7) for r, so
that I(r, κ) = I≺∩ (r). Given Equation (A15), for all sufficiently large i there exists κ′i ∈ Λ(r′i)
such that ∥∥κ − κ′i

∥∥ ≤ β
∥∥A(r)− A(r′i)

∥∥.

As before, we have limi→∞ A(r′i) = A(r) and limi→∞
∥∥κ − κ′i

∥∥ = 0, which implies

0 = lim
i→∞

I(r′i , κ′i)− I(r, κ) ≤ lim
i→∞

I≺∩ (r
′
i)− I≺∩ (r) (A17)

where we first used continuity of mutual information, I(r′i , κ′i) ≤ I≺∩ (r′i), and I(r, κ) ≤
I≺∩ (r).

Combining Equation (A16) and Equation (A17) proves continuity, limi→∞ I≺∩ (ri) =
I≺∩ (r), under the assumption that A(r) is rank regular.

Finally, note that A(r) is a real analytic function of r. This means that almost all r rank
regular, because those r which are not rank regular form a proper analytic subset of Ω
(which has measure zero) [76]. Thus, I≺∩ (r) is continuous almost everywhere.

We finish our analysis of the continuity of I≺∩ by showing global continuity when the
target is a binary random variable.

Corollary A1. I≺∩ (X1; . . . ; Xn �Y) is continuous everywhere when Y is a binary random variable.

Proof. In an overloading of notation, let I≺∩ (r) and Ir(Xi; Y) indicate I≺∩ (X1; . . . ; Xn � Y)
and the mutual information I(Xi; Y), respectively, for the joint distribution rX1 ...XnY. By
Theorem 5, I≺∩ can only be discontinuous at the joint distribution PX1 ...XnY if there is a
source Xi with rank PY|Xi

= 1 < |Y|. However, if source Xi has rank 1, then the conditional
distributions PY|Xi=xi

are the same for all xi, so IP(Xi; Y) = 0 and I≺∩ (P) = 0 (since

0 ≤ I≺∩ (P) ≤ IP(Xi; Y)). Finally, consider any sequence of joint distributions s(n)X1 ...XnY for
n = 1, 2, . . . that converges to PX1 ...XnY. We have

0 ≤ lim
n→∞

I≺∩ (s
(n)) ≤ lim

n→∞
Is(n)(Xi; Y) = IP(Xi; Y) = 0,

where we used the continuity of mutual information. This shows that limn→∞ I≺∩ (s(n)) =
0 = I≺∩ (P), proving continuity.
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Appendix E. Behavior of I≺∩ on Gaussian Random Variables

Although in this paper we focused on random variables with finite sets of outcomes,
we can briefly comment on the behavior of Blackwell redundancy on Gaussian random
variables. Suppose that all sources X1, . . . , Xn and the target Y are continuous-valued, and
that the pairwise marginals PXiY are multivariate Gaussians. In addition, suppose that Y
is one-dimensional (the sources Xi can be multi-dimensional). Given these assumptions,
Barrett [51] analyzed the IBROJA

∪ measure and showed that the corresponding excluded
information obeys E(Xj �Y|Xi; Xj) = 0 whenever I(Xi; Y) ≤ I(Xj; Y). Recall that IBROJA

∪
is equivalent to Blackwell union information I≺∪ . Then, given the Blackwell property,
Theorem 4, and the data processing inequality, Equation (24), the result in Ref. [51] implies
that Xi ≺Y Xj if and only if I(Xi; Y) ≤ I(Xj; Y). Thus, for Gaussian random variables,
Blackwell redundancy I≺∩ is equivalent to IMMI

∩ redundancy, as defined in Equation (19).
This parallels the case for most other redundancy measures [51].

Appendix F. Operational Interpretation of the IGH
∩

As mentioned in the main text, the redundancy measure IGH
∩ is a special case of

Equation (7), where the “more informative” order B < C is defined in terms of conditional
independence B − C − Y. Here we show that this ordering relation can be given an
operational interpretation, which is similar but distinct from the operational interpretation
of the Blackwell order ≺Y discussed in Section 5.1.

To introduce this operational interpretation, let the random variable Y represent the
state of the environment, and assume there are two random variables B and C which have
some information about Y. Suppose that an agent tries to maximize expected utility u(a, y)
by using a strategy that depends either on the outcomes of B or C. Blackwell’s theorem
tells us that B ≺Y C iff an agent with access to C can always achieve higher expected utility
than an agent with access to B. It is possible, however, the agent with access to C may do
worse than the agent with access to B, conditional on the event that random variable C has some
particular outcome c. In the following theorem, we show B− C−Y iff the agent cannot do
better with B than C, even when conditioned on any particular outcome C = c. (We thank
Johannes Rauh for suggesting this simplified proof.)

Theorem A2. Given random variables B, C, and Y, B− C−Y if and only if

max
κA|B

∑
y,a,b

PYB|C(y, b|c)κA|B(a|b)u(a, y) ≤ max
κA|C

∑
y,a

PY|C(y|c)κA|C(a|c)u(a, y). (A18)

for all utility functions u(a, y) and all c ∈ C with PC(c) > 0.

Proof. Consider any c ∈ C with PC(c) > 0. By multiplying both sides of Equation (A18) by
PC(c) and rearranging, this inequality can be rewritten as

max
κA|B

∑
y,a,b

PY(y)PC|Y(c|y)PB|Y,C(b|y, c)κA|B(a|b)u(a, y)

≤ max
κA|C

∑
y,a

PY(y)PC|Y(c|y)κA|C(a|c)u(a, y). (A19)

Note that if Equation (A18) holds for a given c and all utility functions, then it must also
hold for the utility function u′(a, y) := PC|Y(c|y)u(a, y). Plugging into Equation (A19) gives

max
κA|B

∑
y,a,b

PY(y)PB|Y,C(b|y, c)κA|B(a|b)u′(a, y) ≤ max
κA|C

∑
y,a

PY(y)κA|C(a|c)u′(a, y). (A20)
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Now define two random variables: a constant random variable Ĉc with a single outcome
c and B̂c with the same outcomes as B but having the conditional distribution PB̂c |Y =
PB|Y,C=c. Then, Equation (A20) can be written in terms of these random variables as

max
κA|B

∑
y,a,b

PY(y)PB̂c |Y(b|y)κA|B(a|b)u′(a, y) ≤ max
κA|C

∑
y,a

PY(y)PĈc |Y(c|y)κA|C(a|c)u′(a, y). (A21)

Given Equations (25) and (26), Equation (A21) holds for all u′ iff B̂c ≺Y Ĉc. Since Ĉc has a
single outcome, it is independent of Y. That means B̂c must be also independent of Y and
so PB̂c |Y=y = PB|Y=y,C=c is the same for all y, implying that PB|Y=y,C=c = PB|C=c. Since this
holds for all c ∈ C, PB|YC = PB|C and therefore B− C−Y.

Given Theorem A2, IGH
∩ can be given the following operational interpretation. Imagine

two agents, Alice and Bob, who can acquire information about Y via different random
variables, and then use this information to maximize their expected utility. Suppose that
Alice has access to one of the sources Xi. Then, IGH

∩ is the maximum information that
Bob can have about Y without being able to do better than Alice on any utility function,
regardless of which source Xi Alice has access to, and even when conditioned on Xi having
any particular outcome xi.

Appendix G. Equivalence of I≺∪ and IBROJA
∪

The following proves that I≺∪ and IBROJA
∪ , as defined via the optimization problems in

Equations (28) and (31), are equivalent.

Theorem A3. I≺∪ (X1; . . . ; Xn �Y) = IBROJA
∪ (X1; . . . ; Xn �Y).

Proof. Let X̃1, . . . , X̃n be a set of random variables that achieve I(Y; X̃1, . . . , X̃n) = IBROJA
∪

(X1; . . . ; Xn � Y). Define the random variable Q := (X̃1, . . . , X̃n), and note that X̃i ≺Y Q
for all i. Since PX̃iY

= PXiY for all i, it must be that Xi ≺Y Q for all i. Thus Q satisfies the
constraints of the optimization problem in Equation (28), so

I≺∪ (X1; . . . ; Xn �Y) ≤ I(Y; Q) = IBROJA
∪ (X1; . . . ; Xn �Y). (A22)

Next, consider the optimization in Equation (28). For any ε > 0, let Q be a random variable
that satisfies Xi ≺Y Q and achieves

I(Y; Q) ≤ I≺∪ (X1; . . . ; Xn �Y) + ε. (A23)

For each i, let κXi |Q be a channel that obeys PXi |Y(xi|y) = ∑q κXi |Q(xi|q)PQ|Y(q|y) (such a
channel must exist since Xi ≺Y Q). Define the random variables X̃1, . . . , X̃n with the joint
distribution

PYQX̃1 ...X̃n
(y, q, x1, . . . , xn) = PY(y)PQ|Y(q|y)∏

i
κXi |Q(xi|q). (A24)

Note that the pairwise marginals obey PX̃iY
= PXiY. Thus, all of the X̃i satisfy the marginal

constraints in the right hand side of Equation (31), so

IBROJA
∪ (X1; . . . ; Xn �Y) ≤ I(Y; X̃1, . . . , X̃n). (A25)

By elementary properties of mutual information, we have

I(Y; X̃1, . . . , X̃n) ≤ I(Y; Q, X̃1, . . . , X̃n) (A26)
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Given Equation (A24), the Markov condition Y−Q− X̃1, . . . , X̃n holds, so

I(Y; X̃1, . . . , X̃n) ≤ I(Y; Q) (A27)

by the data processing inequality. Combining Equations (A23) and (A25) to (A27) implies

IBROJA
∪ (X1; . . . ; Xn �Y) ≤ I(Y; Q) ≤ I≺∪ (X1; . . . ; Xn �Y) + ε.

Since this holds for all ε, we can take the limit ε → 0 to give IBROJA
∪ (X1; . . . ; Xn � Y) ≤

I≺∪ (X1; . . . ; Xn �Y). The result follows by combining with Equation (A22).

Appendix H. Relation between IWB
∩ and Our General Framework

Here we consider whether the redundancy measure IWB
∩ proposed by Williams and

Beer [11] can be put in the general form Equation (7). This measure is defined as

IWB
∩ (X1; . . . ; Xn �Y) := ∑

y
PY(y)min

i
I(Xi; Y = y), (A28)

where I(Xi; Y = y) is called the “specific information” between Xi and target outcome y,

I(Xi; Y = y) := DKL(PXi |Y=y‖PXi ) = ∑
xi

PXi |Y(xi|y) log
PXi |Y(xi|y)

PXi (xi)
,

and DKL is Kullback-Leibler (KL) divergence.
Specific information obeys I(X; Y) = ∑y PY(y)I(X; Y = y). Thus, Equation (A28)

looks similar to a mutual information expression, where each specific information term is
given by the smallest specific information that y carries about any of the sources. Motivated
by this interpretation, one might ask whether there exists a random variable Q whose
specific information terms are equal to I(Q; Y = y) = mini I(Xi; Y = y) for each y. If such
a random variable existed, then IWB

∩ could be written as

IWB
∩ (X1; . . . ; Xn �Y) ?

= max
Q

I(Q; Y) such that ∀i, y : I(Q; Y = y) ≤ I(Xi; Y = y), (A29)

which has the form of Equation (7), with the < order defined as

A < B iff I(A; Y = y) ≤ I(B; Y = y) for all y ∈ Y . (A30)

Here we provide a counterexample to demonstrate that such a variable does not exist
in general, and so therefore Equation (A29) is not generally valid. Suppose Y has three
outcomes Y = {0, 1, 2}with a uniform distribution, and consider two binary sources X1, X2
with the following conditional distributions,

PX1|Y(x1|y) =
{

δ(x1, y) if y ∈ {0, 1}
1
2 δ(x1, 0) + 1

2 δ(x1, 1) if y = 2

PX2|Y(x1|y) =
{

δ(x1, y) if y ∈ {0, 2}
1
2 δ(x1, 0) + 1

2 δ(x1, 2) if y = 1

In this case, a simple calculation shows that the specific information obeys (in bits)

I(X1; Y = 0) = 1 I(X2; Y = 0) = 1

I(X1; Y = 1) = 1 I(X2; Y = 1) = 0

I(X1; Y = 2) = 0 I(X2; Y = 2) = 1

Plugging into Equation (A28) gives IWB
∩ (X1; X2 �Y) = 1/3.
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Now consider the optimization problem in Equation (A29). Since I(X1; Y = 2) =
I(X2; Y = 1) = 0, any allowed Q must satisfy I(Q; Y = 1) = I(Q; Y = 2) = 0 and there-
fore PQ|Y=1 = PQ = PQ|Y=2. Combined with the marginalization identity PY(0)PQ|Y=0 +
PY(1)PQ|Y=1 + PY(2)PQ|Y=2 = PQ, this implies that PQ|Y=0 = PQ and therefore that
I(Q; Y = 0) = 0. Thus, any allowed Q obeys I(Q; Y) = 0 6= IWB

∩ . This means that
IWB
∩ cannot be expressed in the form of Equation (7) when < is defined as Equation (A30).

Appendix I. Miscellaneous Derivations

Proof of Lemma 1. We use a modified version of the example in [39,68]. Consider a set of
n ≥ 3 sources. The inclusion-exclusion principle states that

I∪(X1; . . . ; Xn �Y) = ∑
J⊆{1,...,n}\{∅}

(−1)|J|−1 I∩(XJ1 ; . . . ; XJ|J|�Y). (A31)

Now, let X1, . . . , Xn−1 be uniformly distributed and statistically independent binary random
variables, and take Xn = X1 XOR X2 and Y = (X1, X2, Xn). Note that I(Y; Xi) = 1 bit
for i ∈ {1, 2, n} and I(Y; Xi) = 0 for i ∈ {3, . . . , n− 1}, and that I(Y; X1, . . . , Xn) = 2 bit.
Thus, I∩(Xi; Xj �Y) = 0 whenever i ∈ {3, . . . , n− 1} or j ∈ {3, . . . , n− 1}, as follows from
Symmetry, Self-redundancy, and Monotonicity. Note also that the outcomes of Y are simply a
relabelling of (X1, X2), and similarly for (X1, Xn) and (X2, Xn). Then, since by Independent
identity property, I∩(Xi; Xj �Y) = 0 for i 6= j where i, j ∈ {1, 2, n}. Thus, I∩(Xi; Xj �Y) = 0
for all pairs i 6= j. By Monotonicity, redundancy is 0 for any set of 2 or more sources.

Plugging this into Equation (A31) gives

I∪(X1; . . . ; Xn �Y) = ∑
i

I∩(Xi �Y) = ∑
i

I(Xi �Y) = 3 bit

Note that this exceeds the total amount of information about the target provided jointly by
all sources, which is only 2 bits, so I∪(X1; . . . ; Xn �Y) 6≤ I(Y; X1, . . . , Xn).

Proof of Theorem 3. Without loss of generality, let i = 1. We will use that U≺(X1 �
Y|X1; . . . ; Xn) = 0 is equivalent to

I≺∩ (X1; . . . ; Xn �Y) = I(X1; Y). (A32)

We will use that by monotonicity of mutual information with respect to≺Y (see Section 4.1),

I(X1; Y) ≥ I≺∩ (X1; . . . ; Xn �Y). (A33)

We first prove the “if” direction. Since Q = X1 is in the feasible set of Equation (27),
I≺∩ (X1; . . . ; Xn �Y) ≥ I(X1; Y). Combining with Equation (A33) gives Equation (A32).

We now prove the “only if” direction. As described in Appendix C, I≺∩ can be expressed
as an optimization over a finite dimensional, closed, and bounded region, so the supremum
in Equation (27) is achieved. Thus, there is some Q such that Q ≺Y Xi for all i and

I(Y; Q) = I≺∩ (X1; . . . ; Xn �Y). (A34)

Since Q ≺Y X1, there is a conditional probability distribution κQ|X1
such that PQ|Y(q|y) =

∑x1
κQ|X1

(q|x1)PX1|Y(x1|y). Define a random variable Q̃ with the joint distribution

PYX1Q̃(y, x1, q) = κQ|X1
(q|x1)PYX1(y, x1).

We will use that PQY = PQ̃Y. Then, the chain rule for mutual information gives

I(Y; X1, Q̃) = I(Y; Q̃) + I(Y; X1|Q̃) = I(Y; X1) + I(Y; Q̃|X1) = I(Y; X1),
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where we used the Markov condition Y− X1 − Q̃. Combining and rearranging gives

I(Y; Q̃) = I(Y; X1)− I(Y; X1|Q̃). (A35)

Now assume that Equation (A32) holds. Combining with Equation (A34) and PQY = PQ̃Y
gives I(Y; X1) = I(Y; Q) = I(Y; Q̃). Combining with Equation (A35) gives I(Y; X1|Q̃) = 0,
meaning that the Markov condition Y − Q̃ − X1 holds and therefore X1 ≺Y Q̃. Since
Q ≺Y Xi for all i and PQY = PQ̃Y, it also the case that Q̃ ≺Y Xi for all i. Finally, since ≺Y is
transitive, X1 ≺Y Xi for all i, which is the desired result.

Proof of Theorem 4. Without loss of generality, let i = 1. We will use that E≺(X1 �
Y|X1; . . . ; Xn) = 0 is equivalent to

I≺∪ (X1; . . . ; Xn �Y) = I(X1; Y). (A36)

We will use that by monotonicity of mutual information with respect to≺Y (see Section 4.1),

I(X1; Y) ≤ I≺∪ (X1; . . . ; Xn �Y). (A37)

We first prove the “if” direction. Since Q = X1 is in the feasible set of Equation (28),
I≺∪ (X1; . . . ; Xn �Y) ≤ I(X1; Y). Combining with Equation (A37) gives Equation (A36).

We now prove the “only if” direction. As we show in Appendix G, I≺∪ is equivalent to
IBROJA
∪ , which is defined as an optimization over a finite dimensional, closed, and bounded

region. Thus the infimum in Equation (28) is always achieved, so there is some Q such that
Xi ≺Y Q for all i and

I(Y; Q) = I≺∪ (X1; . . . ; Xn �Y). (A38)

Moreover, since X1 ≺Y Q, there is a conditional probability distribution κX1|Q such that
PX1|Y(x1|y) = ∑q κX1|Q(x1|q)PQ|Y(q|y). Define a random variable X̃1 with the joint distri-
bution

PYX̃1Q(y, x1, q) = κX1|Q(x1|q)PQY(q, y).

We will use that PX1Y = PX̃1Y. Then, using the chain rule for mutual information,

I(Y; X̃1, Q) = I(Y; X̃1) + I(Y; Q|X̃1) = I(Y; Q) + I(Y; X̃1|Q) = I(Y; Q),

where we used the Markov condition Y−Q− X̃1. Combining and rearranging gives

I(Y; X̃1) = I(Y; Q)− I(Y; Q|X̃1). (A39)

Now assume that Equation (A36) holds. Combining with Equation (A38) and PX1Y = PX̃1Y
gives I(Y; X1) = I(Y; X̃1) = I(Y; Q). Combining with Equation (A39) gives I(Y; Q|X̃1) = 0,
meaning that the Markov condition Y − X̃1 − Q holds and therefore Q ≺Y X̃1. Since
PX1Y = PX̃1Y, it is also the case that Q ≺Y X1. Finally, since Xi ≺Y Q for all i and ≺Y is
transitive, Xi ≺Y X1 for all i, which is the desired result.

Proof of Theorem 6. Consider any random variable Q which achieves the maximum in
Equation (27). This implies there are channels κQ|X1

and κQ|X2
such that for any q ∈ Q and

(x1, x2) ∈ X1 ×X2 with pX1X2(x1, x2) > 0,

PQ|X1X2
(q|x1, x2) = ∑

x′1

κQ|X1
(q|x′1)PX1|X1X2

(x′1|x1, x2)

PQ|X1X2
(q|x1, x2) = ∑

x′2

κQ|X2
(q|x′2)PX2|X1X2

(x′2|x1, x2).
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We now equate the above two expressions, while using that PX1|X1X2
(x′1|x1, x2) = δ(x′1, x1)

and PX2|X1X2
(x′2|x1, x2) = δ(x′2, x2) (where δ(·, ·) is the Kronecker delta). This gives

κQ|X1
(q|x1) = κQ|X2

(q|x2) (A40)

for all q and any (x1, x2) where pX1X2(x1, x2) > 0.
Now consider a bipartite graph with vertex set X1 ∪ X2 and an edge between vertex

x1 and vertex x2 if PX1X2(x1, x2) > 0. Define Π to be the set of connected components
of this bipartite graph, and let f1 : X1 → Π be a function that maps each x1 to its corre-
sponding connected component (for any x1 with PX1(x1) = 0, f1(x1) can be any value).
Equation (A40) implies that if x1 and x′1 both belong to the same connected component,
then the constraint Equation (A40) will “propagate” from x1 to x′1, so that κQ|X1

(q|x1) =
κQ|X1

(q|x′1). Said differently, this means that κQ|X1
(q|x1) = κQ|X1

(q| f1(x1)) and that the
Markov condition (X1, X2)− X1 − f1(X1)−Q holds. This gives

I(X1, X2; Q) ≤ I(X1, X2; f1(X1)) = H( f1(X1)), (A41)

where the first inequality uses the data processing inequality, and the second equality uses
that f1(X1) is a deterministic function of (X1, X2). The upper bound in Equation (A41) is
achieved when Q = f1(X1), thus Q C X1. A similar argument shows that Q C X2.

We have shown that the constraints in Equation (27) can be replaced by Q C X1, Q C
X2. It is also clear that any Q which is a deterministic function of either X1 or X2 must also
be a deterministic function of the target Y = (X1, X2), hence I(Y; Q) = H(Q). Combining
these results shows that Equation (27) is equivalent to Equation (32) for the COPY gate.
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