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We consider the relationship between thermodynamics, fitness and
Darwinian selection in autocatalytic molecular replicators. We uncover a
thermodynamic bound that relates fitness, replication rate and thermody‑
namic affinity of replication. This bound applies to a broad range of systems,
including elementary and non‑elementary autocatalytic reactions, polymer‑
based replicators and certain kinds of autocatalytic sets. In addition, we
show that the critical selection coefficient (the minimal fitness difference
visible to selection) is bounded by a simple function of the affinity. Our
results imply fundamental thermodynamic bounds on selection strength in
molecular evolution, complementary to other bounds that arise from finite
population sizes and error thresholds. These bounds may be relevant for
understanding thermodynamic constraints faced by early replicators at the
origin of life. We illustrate our approach on several examples, including a
classic model of replicators in a chemostat.
This article is part of the theme issue ‘Origins of life: the possible and the

actual’.

1. Introduction
Recent work has uncovered fundamental bounds on the thermodynamic
costs of various biomolecular processes, including chemical sensing [1–
3], copying of polymer‑stored information [4–7] and growth and repli‑
cation [8–15]. These results are derived from general principles of non‑
equilibrium thermodynamics—such as flux–force relations and fluctuation the‑
orems [16–19]—that relate the dynamical and thermodynamic properties of
non‑equilibrium processes. Due to their generality, these bounds shed light
on universal thermodynamic constraints on lifelike systems, including modern
and protobiological organisms, synthetic life and even possible non‑terrestrial
lifeforms.

One of the most important properties of living systems is that they un‑
dergo Darwinian selection. Generally speaking, Darwinian selection refers to a
process in which high‑fitness replicators reliably outcompete low‑fitness repli‑
cators. Darwinian selection can be exhibited by chemical systems, such as in‑
dividual replicating molecules or networks of molecules [20–31]. Synthesizing
such systems has been a major focus of research on the origin of life, given that
the emergence of Darwinian selection is considered to be a crucial point in the
transition from non‑living to living matter [24,29,32–34].

Here, we consider the relationship between thermodynamics andDarwinian
selection in minimal chemical systems. This relationship may be particularly
relevant for understanding thermodynamic constraints on the origin of life
[34–36]. We consider a reactor containing autocatalytic replicators that copy
themselves either via elementary reactions, or via more complex multi‑step
mechanisms. We also consider certain types of collectively autocatalytic sets,
where replication involves a cycle of cross‑catalytic reactions. Our setup in‑
cludes many types of molecular replicators previously considered in the liter‑
ature, including self‑complementary and complementary templates, polymer‑
based replicators and autocatalytic smallmolecules [37–40]. It also encompasses

© 2025 The Author(s). Published by the Royal Society. All rights reserved.
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several classic models of molecular replicators, including the chemostat model [21,23] and Eigen’s quasispecies model [20].
Each replicator is associated with three quantities. The first is the affinity 𝜎 of the replication reaction, the thermodynamic driv‑

ing force of the reaction. The second is the replication rate 𝜌, the number of copies a replicator makes per unit time under actual
conditions. Lastly, in §4, we define the fitness f of a replicator as the maximum achievable replication rate, reached in the limit of
small concentrations. We show that fitness determines a replicator’s ability to invade a given population [41] and to survive a high
dilution rate. The introduction of an operational definition of fitness for molecular replicators is an important contribution of our
work.

In §5, we derive a thermodynamic bound that relates affinity 𝜎, replication rate 𝜌 and fitness f as

𝜎 ≥− ln (1 −
𝜌
f
) . (1.1)

As we discuss below, affinity is a fundamental thermodynamic cost that captures the dissipated Gibbs free energy (entropy pro‑
duction) in a single replication event. Equation (1.1) implies that a minimum affinity is required to sustain a given replication rate,
and that this minimum increases as the replication rate approaches its maximum possible value, the fitness. Conversely, equation
(1.1) implies that for a given affinity, there is a fundamental limit on how closely the replication rate can approach its maximum
value.

We also derive a thermodynamic bound on the strength of Darwinian selection. Observe that a higher fitness replicator is not
always able to outcompete a lower fitness one, as this depends on the fitness difference as well as various environmental and
demographic factors [42]. Selection strength can be quantified in terms of the smallest fitness difference that can affect evolution‑
ary outcomes in a given population and environment. This is the so‑called critical selection coefficient s, the ‘resolution limit’ below
which fitness differences are indiscernible.

To use a well‑known example, selection strength in finite populations is limited by the stochasticity of sampling, and a fitter
mutant will fixate with high probability only when s≫ 1∕Ne, where Ne is the effective population size [43]. As another example,
Eigen’s ‘error threshold’ implies that selection strength is limited by the mutation rate 𝜇, so that a fitter mutant can dominate the
population only when s> 𝜇 [20,44].

In §5, we use the inequality (1.1) to derive a thermodynamic bound on the critical selection coefficient. We suppose that selec‑
tion is sufficiently strong so that a replicator with fitness f is present in the steady state of a flow reactor, while another replicator
type with fitness f ′ < f is driven to extinction. We show that s= 1 − f ′∕f, the selection coefficient between the two replicators, must
obey

s≥ e−𝜎∗ , (1.2)

where 𝜎∗ is the affinity of the fitter replicator in steady state. This bound on the strength of selection applies even in the case of
infinite populations and error‑free replicators. It implies that selecting for a relative fitness difference of s must dissipate more
than − ln s of free energy, a quantity that diverges in the limit of vanishing fitness differences, s→ 0. We illustrate this result using
a classic model of replicators in a chemostat in §7.

In §8, we extend our results to autocatalytic sets, where replication involves a cycle of cross‑catalytic reactions. To do so, we
first generalize our notion of fitness to autocatalytic sets and then derive generalized versions of the inequalities (1.1) and (1.2). In
these generalizations, 𝜎 refers to the affinity of the average cross‑catalytic reaction in the cycle.

In principle, our results can also be applied to various real‑world molecular replicators, suggesting a route for experimental
validation. In figure 1, we use published thermodynamic data to illustrate the bound (1.2) on three real‑world replicators. The first
is a prion at low pH [51], where 𝜎∗ ≈ 3.5 (assuming equal concentrations of native andmisfolded form) [45]. The second is an RNA
molecule that copies itself using a single RNA ligation [39], with 𝜎∗ ≈ 5 under in vivo conditions [52,53]. The third is a peptide that
copies itself using ‘native chemical ligation’ [40,54], with 𝜎∗ ≈ 5.9 at published concentrations [40].

2. Setup
We consider a chemical reactor at constant temperature and pressure. The reactor contains an ideal well‑mixed solution of replica‑
torsX,X′,… and other chemical speciesA1,A2,… that may serve as substrates and side products. We study this system in terms of
deterministic concentrations, assuming that molecular counts are sufficiently large so that stochastic fluctuations can be ignored.
We use x to indicate the concentration of replicator X and a⃗= (a1, a2,… ) to indicate the concentrations of substrates/side products
(A1,A2,… ).

Each replicator X undergoes a reversible autocatalytic reaction of the form

X +
∑

i=1
𝛼iAi⇌X + X +

∑

i=1
𝛽iAi, (2.1)

where 𝛼i and 𝛽i are stoichiometric coefficients of substrate and side productsAi. A simple example of equation (2.1) is autocatalysis
from a single substrate, X + A⇌X + X, but many other schemes are also possible. The autocatalytic reaction may be elementary,
or it may proceed via multiple steps. Different types of replicators will generally have different stoichiometric coefficients 𝛼i, 𝛽i as
well as other thermodynamic and kinetic parameters (discussed below).
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Figure 1. Illustration of our thermodynamic bound (1.2) for three real-world molecular replicators: a prion [45], an RNA molecule that copies itself via a single ligation
[39] and a peptide that copies itself via ‘native chemical ligation’ [40,46]. Affinities were computed using equation (2.4) from the concentrations and standard Gibbs
energies−∆G◦ listed in the table (at room temperature). Note that there is some debate whether prion replication is first-order, like the replicators considered in this
article, or instead involves higher-order cooperative interactions [47–50].

We use 𝒥 to indicate the net flux across the autocatalytic reaction in equation (2.1). We define the replication rate 𝜌 of replicator
X as the net flux per replicator,

𝜌 ∶= 𝒥
x . (2.2)

The replicators may also flow out of the volume with dilution rate 𝜙≥ 0. Accounting for both replication and dilution, the
concentration of replicator X changes as

ẋ= 𝒥 − 𝜙x= (𝜌 − 𝜙)x. (2.3)

We usually leave dependence on time t implicit in our notation. We will use that in steady state, any non‑extinct replicator (x> 0)
must have 𝜌= 𝜙, meaning that dilution and replication balance.

In writing equation (2.3), we assume that different replicators do not interact directly by consuming each other as substrates or
producing each other as side products, although they may interact indirectly via shared substrates/side products Ai. For simplic‑
ity, we also ignore the spontaneous degradation of replicators. However, in the electronic supplementary material, §A, we show
that our results still hold in the presence of degradation reactions.

Equation (2.3) also assumes that the rate of spontaneous (i.e. non‑autocatalytic) formation of the replicator is negligible. This
assumption plays an important role in our analyses below, since replicators that can form spontaneously do not exhibit first‑order
growth, nor do they go completely extinct in steady‑state even at large dilution rates. An interesting direction for future work
would extend our analysis to replicators with non‑negligible rates of spontaneous formation.

As will be noted below, some of our results hold for closed reactors as well as open reactors that exchange matter with their
environment [55]. However, our thermodynamic bound on selection (1.2) applies specifically to a flow reactor in steady state.
Different types of flow reactors may be considered. One example is the continuous stirred‑tank reactor (CSTR) where the dilution
rate and inflow rates are constant, which is often used in chemical [56,57] and biological experiments [58–60], and which can also
arise naturally (e.g. in a pond fed by a nutrient‑rich stream). To avoid confusion, we note that the CSTR is called a chemostat in
the biological literature [61,62], although in non‑equilibrium thermodynamics, the term chemostat sometimes refers instead to an
external chemical reservoir [63]. Another possible flow reactor is one where the rates of dilution and inflow can vary as a func‑
tion of the chemical concentrations. An example is provided by Eigen’s quasispecies model, where the dilution rate is adjusted to
maintain the total concentration of replicators constant [20].

Our main thermodynamic quantity of interest is the affinity 𝜎 of the replication reaction (2.1). A reaction proceeds in the for‑
ward direction if and only if the affinity is positive, so affinity can be understood as the driving force of the chemical reaction.
Equivalently, the affinity is proportional to the Gibbs energy of reaction, the free energy dissipated in a single reaction event. This
dissipated free energy is a fundamental thermodynamic cost that represents lost work potential: a reaction with affinity 𝜎 can be
coupled to a thermodynamically disfavoured ‘uphill’ reaction and thereby perform up to 𝜎 of chemical work per reaction event.

For an ideal solution, we write the affinity in dimensionless units as

𝜎 =− ln x +
∑

i=1
(𝛼i − 𝛽i) ln ai − 𝛥G◦∕RT, (2.4)

where R is the gas constant, T is the temperature and −𝛥G◦ is the standard Gibbs energy (in units of joules per mole),

−𝛥G◦ =RT
[
ln xeq −

∑

i=1
(𝛼i − 𝛽i) ln a

eq
i

]
. (2.5)

Here, xeq and aeqi are equilibrium concentrations of X and Ai, as would be reached if the reactor was closed to exchange of matter
and allowed to relax completely. As usual, logarithms of concentrations, as in equations (2.4) and (2.5), should be considered
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Figure 2. Examples of non-elementary autocatalytic replication mechanisms. Left: autocatalysis with binding, conversion and unbinding steps. Right: templated repli-
cation of a self-complementary polymer (shown here using a dimer).

dimensionless after dividing by the standard concentration (e.g. dividing by c◦ = 1M if x and ai are expressed in units of molar
concentration).

We emphasize again that we express the affinity 𝜎 in dimensionless units. It can be understood in terms of energy units as the
number of kBT dissipated when making a single replicator copy, where kB is Boltzmann’s constant and kBT is the typical energy
(in joules) of a thermal fluctuation at temperature T. In the chemistry literature, 𝜎 is often written in units of joules per mole as
−𝛥G=RT𝜎.

3. Elementary and non-elementary replicators

(a) Elementary replicators
An elementary replicator refers to the case where equation (2.1) is an elementary reaction. Then, the net flux across the reaction has
the mass‑action form [19]

𝒥 = rx − r−x2, (3.1)

with forward and backward rate constants

r= 𝜅
∏

i
a𝛼ii , r− = 𝜅e𝛥G◦∕RT∏

i
a𝛽ii , (3.2)

and 𝜅 is a baseline rate constant. Note that r and r− may depend on the concentrations of substrates/side products a⃗ (technically,
they are ‘pseudo rate constants’). We leave this dependence implicit in our notation.

For elementary replicators, the log‑ratio of the forward and backward fluxes in equation (3.1) equals the affinity of the
replication reaction,

𝜎 = ln rx
r−x2

= ln r
r−x , (3.3)

as can be verified by comparing equations (3.2) and (2.4). Equation (3.3) is an instance of a general result, called the flux–force rela‑
tion or local detailed balance in the literature [64,65], which relates the affinity of an elementary reactionwith the forward and reverse
fluxes [19]. The flux–force relation is one of the most important results in non‑equilibrium thermodynamics, since it connects the
kinetic properties of a chemical reaction with its thermodynamic properties.

In fact, our results do not require that the rate constants r and r− have themass action form of equation (3.2), only that equations
(3.1) and (3.3) hold. In principle, this could be used to study certain non‑ideal solutions that exhibit interactions between Ai [66].

(b) Non-elementary replicators
Most real‑world autocatalytic replicators cannot be treated as elementary reactions. For this reason, we also consider the case
where equation (2.1) represents a reaction mechanism that proceeds via a sequence of m steps,

Each Yk is an intermediate chemical species, and each intermediate step is an elementary reversible reaction with mass‑action
kinetics that may involve substrates/side products Ai with stoichiometric coefficients 𝛼k,i and 𝛽k,i. The stoichiometry of the overall
reaction is 𝛼i =

∑
k 𝛼k,i and 𝛽i =

∑
k 𝛽k,i. We assume that intermediate species are not shared between different types of replica‑

tors. For simplicity, we also assume that degradation reactions are negligible, although our results generalize to the presence of
degradation as shown in the electronic supplementary material, §A.

We term this kind of reaction mechanism a non‑elementary replicator, although it is also called an ‘autocatalytic cycle’ in the
literature [11,67,68]. A simple example of a non‑elementary replicator is a three‑step mechanism with binding, conversion and
unbinding steps (see figure 2, left). Another example is the step‑by‑step replication of a self‑complementary dimer, illustrated in
figure 2 (right), which has been studied in numerous origin‑of‑life experiments [37,38,69]. Yet other examples include the formose
cycle [38] and the autophosphorylation of protein kinase [13,70].
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In this subsection, we show that under reasonable assumptions, the production rate and affinity of non‑elementary replicators
can be expressed in a simple form, somewhat analogous to equations (3.2) and (3.3). Specifically, we will show that the production
of a non‑elementary replicator can be written in a mass‑action‑like form,

𝒥 = r(𝜌)x − r−(𝜌)x2, (3.5)

with effective rate constants r(𝜌) and r−(𝜌) that depend explicitly on the replication rate 𝜌 and implicitly on the dilution rate and
the rate constants of intermediate reactions. We will also show that the affinity of a non‑elementary replication reaction can be
expressed in a ‘flux–force‑like’ form,

𝜎 = ln
xr(0)

x2r−(0)
= ln

r(0)
xr−(0)

. (3.6)

Given equation (3.5), the numerator and denominator can be interpreted as the forward and backward fluxes in the case of 𝜌→ 0,
the limit when dilution is much slower than internal reactions. Wachtel et al. [64] previously derived this flux–force‑like relation
for the special case of steady‑state conditions.

The rest of this subsection is devoted to the derivation of equations (3.5) and (3.6). Readers not interested in this derivationmay
skip it without affecting their comprehension of the main message of the article.

Observe that each intermediate reaction k∈ {1,… ,m} has net flux

Jk = 𝜈kyk−1 − 𝜈−k yk. (3.7)

Here, yk is the concentration of intermediate species Yk for k∈ {1,… ,m − 1}, and we use the convention y0 = x, ym = x2. The terms
𝜈k and 𝜈−k refer to forward and backward (pseudo) rates constants of intermediate steps, typically defined in a manner analogous
to equation (3.2). We note that 𝜈k and 𝜈−k can depend on the concentrations a⃗, although we leave this implicit in our notation.

The rate of autocatalytic production of replicator X is

𝒥 = 2Jm − J1, (3.8)

since two copies are produced by the last step and one is consumed by the first. The production of intermediate species Yk
(k∈ {1,… ,m − 1}) due to the mechanism is Jk − Jk+1, since one Yk is produced by intermediate step k and one is consumed by
intermediate step k + 1. The rate of change of the concentration of the intermediate species, also accounting for dilution with rate
𝜙≥ 0, is

ẏk = Jk − Jk+1 − 𝜙yk. (3.9)

To derive equation (3.5), we introduce the assumption that the relative concentrations of intermediate species Yk and replicator X
is approximately constant,

d
dt

yk
x =

xẏk − ẋyk
x2

≈ 0. (3.10)

This assumption always holds in steady state (ẏk = ẋ= 0). It also holds under a separation of timescales where relative concentra‑
tions yk∕x relax to steady‑state values much faster than these steady‑state values change (e.g. as a result of changing dilution rate
and concentrations a⃗ ). This separation of timescales is valid during the exponential growth phase of an initially rare replicator,
when the absolute concentrations of x and yk are small and have a minimal effect on other variables.

Our assumption (3.10) of stationary relative concentrations is somewhat different from the quasi‑steady‑state (QSS) approxima‑
tion, as often employed in biochemistry [71] and recently considered in non‑equilibrium thermodynamics [64,72]. QSS assumes
that the absolute concentrations of intermediate species yk are approximately stationary, compared to the rate of change of the
replicator concentration x. This assumption can be violated in growing autocatalytic replicators, even if the relative concentrations
are nearly stationary (e.g. when the intermediate species and replicator grow quickly but at the same rate).

Plugging ẋ= (𝜌 − 𝜙)x and ẏk = Jk − Jk+1 − 𝜙yk into equation (3.10) and simplifying gives

Jk − Jk+1 = 𝜌yk. (3.11)

Using equation (3.7), we express the intermediate concentrations y⃗= (y1,… , ym−1) in terms of a linear system

[(M + 𝜌I)y⃗]k = 𝛿k,1𝜈1x + 𝛿k,m−1𝜈−mx2, (3.12)

whereM∈ℝ(m−1)×(m−1) is a matrix of intermediate rate constants,

M=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜈−1 + 𝜈2 −𝜈−2 0 0 …

−𝜈2 𝜈−2 + 𝜈3 −𝜈−3 0 …

0 … … … −𝜈−m−1
… 0 0 −𝜈m−1 𝜈−m−1 + 𝜈m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.13)

For any 𝜌≥ 0,M + 𝜌I is an ‘M‑matrix’, so it is invertible and all entries of its inverse are non‑negative [73,74].
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Finally, we solve equation (3.12) for y⃗ and combine with equations (3.8) and (3.7) to write the production rate in the form of
equation (3.5), 𝒥 = r(𝜌)x − r−(𝜌)x2. The effective rate constants are

r(𝜌) ∶= 𝜈1
(
𝜈−1 G11 + 2𝜈mGm−1,1 − 1

)

r−(𝜌) ∶= 𝜈−m
(
2 − 2𝜈mGm−1,m−1 − 𝜈−1 G1,m−1

)
,

(3.14)

where for convenience we defined the matrix

G ∶= (M + 𝜌I)−1. (3.15)

These effective rate constants can depend on concentrations a⃗ (since 𝜈k and 𝜈−k depend on them), althoughwe leave this dependence
implicit in our notation.

Below we will use that the first and second derivatives of the effective rate constants obey

𝜕𝜌r(𝜌)≤ 0, 𝜕2𝜌r(𝜌)≥ 0

𝜕𝜌r−(𝜌)≥ 0, 𝜕2𝜌r−(𝜌)≤ 0.
(3.16)

This follows from equation (3.14) by using matrix calculus and the fact that all entries of G are non‑negative.
For 𝜌= 0, the effective rate constants can be expressed in closed form,

r(0) =
⎡
⎢
⎢
⎣

m∑

k=1

∏k−1
l=1 𝜈

−
l

∏k
l=1 𝜈l

⎤
⎥
⎥
⎦

−1

r−(0) = r(0)
m∏

k=1

𝜈−k
𝜈k

(3.17)

as shown in the electronic supplementary material, §B. The 𝜌= 0 regime corresponds to the limit where the replication rate 𝜌 is
much slower than the rate of internal reactions, so that 𝜌 can be neglected when solving the linear system (3.12).

The effective reverse rate constant r−(𝜌) is always non‑negative, since r−(0)≥ 0 and 𝜕𝜌r−(𝜌)≥ 0 from equations (3.16) and (3.17).
On the other hand, formally, the effective forward rate constant r(𝜌) becomes negative for sufficiently large 𝜌, as can be seen from
equation (3.14) andG→ 0 as 𝜌→∞. However, in the following, we only consider the physically meaning range of 𝜌 for which r(𝜌)
is non‑negative, as discussed below in our definition of fitness (4.1).

We finish by discussing the thermodynamics of non‑elementary replicators. The affinity of intermediate reaction k in equation
(3.4) is

𝜎k = ln
yk−1
yk

+
∑

i=1
(𝛼k,i − 𝛽k,i) ln ai − 𝛥G◦

k∕RT, (3.18)

where y0 = x, ym = x2 (as above). Since intermediate reactions are elementary, the forward and backward fluxes in equation (3.7)
obey the flux–force relation,

𝜎k = ln
𝜈kyk−1
𝜈−k yk

, (3.19)

as can be shown explicitly when the rate constants 𝜈k and 𝜈−k have mass‑action kinetics similar to equation (3.2). The affinity of the
overall replication mechanism is the sum of the affinities of the individual steps [19],

𝜎 =
m∑

k=1
𝜎k = ln 1

x +
m∑

k=1
ln

𝜈k
𝜈−k

. (3.20)

We arrive at equation (3.6) by combining equations (3.17) and (3.20).
Observe that an elementary replicator is a special case of a non‑elementary replicator with a single reaction (m= 1) and no

intermediate species. In this case, the effective rate constants in equation (3.14) lose dependence on 𝜌 and reduce to equation (3.17)
which in turn reduces to equation (3.2). Themass‑action form of equation (3.5) reduces to equation (3.1), and the flux–force relation
(3.6) is equivalent to equation (3.3).

4. Fitness and selection coefficient
The concept of fitness can be defined differently in different evolutionary scenarios, and finding an appropriate definition is an im‑
portant area of research in biology and ecology [41,75–77]. Here, we propose a definition of fitness that is suitable for autocatalytic
molecular replicators, both elementary and non‑elementary.

Before proceeding, we note that one could simply define fitness as the replication rate 𝜌 at a given point in time. However,
this definition runs into problems. For instance, for a reactor in steady state, all non‑extinct replicators have the same replication
rate (the steady‑state dilution rate 𝜙), while all extinct replicators have an undefined replication rate. This makes it impossible
to ask important questions, like whether higher fitness replicators do better than lower fitness ones. At a more general level, the
replication rate 𝜌 is a statistic of actual performance. It does not specify how a replicator would perform in a new environment, as
usually desired from a fitness measure [41,75–77].
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Instead, we define the fitness f of replicator X via the implicit equation,

f= r(f)≥ 0, (4.1)

where r(⋅) is the forward rate constant defined in equation (3.14). As we discuss below, this definition of fitness is experimentally
measurable and operationallymeaningful. For an elementary replicator, r(𝜌) does not depend on 𝜌 and f is simply the rate constant
of the elementary reaction in equation (3.2). For a non‑elementary replicator, f is the non‑negative root of the algebraic expression
𝛼 − r(𝛼). This expression is strictly increasing in 𝛼, ranging from 0 − r(0)≤ 0 to r(0) − r(r(0))≥ 0, as can be deduced from equations
(3.17) and (3.16). There is a unique value of 0≤ f≤ r(0) that satisfies equation (4.1) and it can be found quickly using numerical
methods, such as bisection.

In operational terms, the fitness f can be understood as the initial growth rate at small concentrations. Imagine a reactor in
steady state that does not contain replicator X at time t< 0, and suppose that X is introduced at a small concentration x(0) at t= 0.
Suppose also that X is an elementary replicator or a non‑elementary replicator that obeys equation (3.10) (i.e. relative concen‑
trations of intermediates are approximately stationary). Assuming no dilution or degradation, the replicator’s concentration will
initially grow as

ẋ= 𝒥 = 𝜌x≈ r(𝜌)x,

as follows from equations (2.2) and (3.5), while dropping second‑order terms in x. This implies 𝜌= r(𝜌), which is uniquely satisfied
by 𝜌= f. Thus, the concentration will initially grow as

x(t) ≈ etfx(0). (4.2)

Moreover, an initially rare mutant with fitness fwill increase in concentration if f> 0 and decrease toward extinction if f< 0. In bi‑
ology, this type of fitness measure is called invasion fitness [41,77–79], and it has been argued to be a particularly general definition
of fitness [41,75]. The derivation above also holds for a flow reactor with dilution rate 𝜙, in which case it gives x(t) ≈ et(f−𝜙)x(0).

In principle, the initial growth rate is experimentally measurable. The initial concentration x(0) should be sufficiently small so
that one can neglect the reverse flux (second term in equation (3.5)) and any impact on the steady‑state values of a⃗ and 𝜙 over the
measurement timescale. At the same time, it should be sufficiently large so that stochastic fluctuations can be ignored.

There is also another interpretation of fitness as the critical dilution rate, a quantity that plays an important role in chemostat
studies [80,81]. Imagine a steady‑state flow reactor with concentrations a⃗ and steady‑state dilution rate 𝜙 > 0. Suppose that the
reactor contains replicator X at steady‑state concentration x∗. Using equation (3.5), we can express x∗ as

x∗ =
⎧

⎨
⎩

r(𝜙)−𝜙
r−(𝜙)

if r(𝜙)> 𝜙

0 otherwise
, (4.3)

where we used that 𝜌= 𝜙 in steady state. Now imagine slowly increasing the dilution rate 𝜙 while maintaining constant a⃗ (the
concentrations of substrates and waste products). The replicator will be pushed to extinction at the critical dilution rate 𝜙̂ where
𝜙̂= r(𝜙̂). Given equation (4.1), the critical dilution is equal to the fitness f. The critical dilution rate is experimentally accessible, as
long as it is possible to increase the dilution rate while keeping the concentrations a⃗ constant.

Most simply, our definition of fitness can be considered as the maximum replication rate that can be achieved by the replica‑
tor. That is, it is not difficult to show, for instance by using equation (3.5), that 𝜌≤ f always. Thus, f sets an upper bound on the
replication rate. This bound is approached with the limit of low concentrations and/or high dilution rates.

In addition to fitness, we also make use of the notion of the selection coefficient from evolutionary biology. The selection coef‑
ficient is a normalized measure of relative fitness difference that ranges from 0 (no difference) to 1 (maximum difference). Given
two replicators X and X′ with fitness values f≥ f ′, a common definition of the selection coefficient is [82]

s ∶= 1 −
f ′

f
. (4.4)

We finish by noting two important details. First, the fitness f depends on the concentrations of substrates and side products a⃗,
although this is left implicit in our notation. These concentrations may be considered as the replicator’s ecological environment.
Second, in real‑world experiments, it is often difficult to measure individual concentrations of replicator and intermediate species.
Often what is measured is a weighted sum of concentrations,

𝜔= cXx +
m−1∑

i=1
ciyi, (4.5)

given some non‑negative coefficients cX and ci. The interpretations of replication rate, fitness and critical dilution rate generalize
to this situation. That is, if the replicator and all intermediate species grow at the same rate 𝜌, then their weighted sum 𝜔 will also
grow at the same rate. Similarly, if the replicator and all intermediate species vanish at some critical dilution rate 𝜙̂, then 𝜔 will
also vanish at that dilution rate.
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5. Thermodynamic bounds
To derive our thermodynamic bounds, we consider a replicator X with a non‑negative growth rate 𝜌≥ 0. Our first bound relates
the affinity of replication 𝜎, the fitness f and the replication rate 𝜌 as

𝜎 ≥− ln (1 −
𝜌
f
) , (5.1)

which appeared as inequality (1.1) in the Introduction. For the special case of a flow reactor in steady state, this bound can be
written in terms of the steady‑state dilution rate 𝜙= 𝜌 as

𝜎∗ ≥− ln (1 −
𝜙
f
) , (5.2)

where 𝜎∗ is affinity of replication under steady‑state concentrations.
To derive this bound, we combine equations (2.2) and (3.5) to express the replicator’s concentration as x= (r(𝜌) − 𝜌)∕r−(𝜌).

Plugging into the expression of 𝜎 in equation (3.6) gives

𝜎 = ln (
r(0)
r−(0)

r−(𝜌)
r(𝜌) − 𝜌

) . (5.3)

Inequality (5.1) is then equivalent to r(0)
r−(0)

r−(𝜌)
r(𝜌)−𝜌

≥ f∕(f − 𝜌) for 0≤ 𝜌≤ f, which in turn is equivalent to the non‑negativity of the
function

h(𝜌) ∶=
r(0)
r−(0)

r−(𝜌)(f − 𝜌) − f(r(𝜌) − 𝜌) . (5.4)

Taking second derivatives and using equation (3.16) shows that 𝜕2𝜌h(𝜌)≤ 0, so h is concave. Inspection shows that h(𝜌) = 0 for 𝜌= 0
and 𝜌= f. Therefore, h(𝜌)≥ 0 over 0≤ 𝜌≤ f, proving the inequality (5.1).

Inequality (5.2) becomes tight for elementary replicators, where the rate constants r(𝜌) and r−(𝜌) do not depend on 𝜌, so h(𝜌) = 0
for all 𝜌. More generally, our bound tends to be tighter for ‘effectively’ elementary replicators with fast internal rates, so that
r(𝜌) and r−(𝜌) depend weakly on 𝜌. For general non‑elementary replicators, the bound tends to be tighter near 𝜌= 0 and 𝜌= f,
corresponding to equilibrium regime and absolutely irreversible regime, respectively.

We also derive a thermodynamic bound on the selection coefficient, which has implications for the strength of Darwinian se‑
lection. We consider a flow reactor in steady state with dilution rate 𝜙. Suppose that the reactor contains some replicator X with
fitness f> 𝜙, and that a second replicator X′ with fitness f ′ ≤ 𝜙 is pushed to extinction. Plugging into inequality (5.2) gives

𝜎∗ ≥− ln (1 −
f ′

f
)=− ln s, (5.5)

which appeared as inequality (1.2) in §1. This result is illustrated on a model of replicators in a chemostat in §7.
To build intuition regarding the bound (5.5), we may consider two extreme situations. The first is equilibrium steady state,

where the replication rate 𝜌 and the affinity 𝜎 vanish for all replicators. All replicators are present in positive equilibrium concen‑
trations that do not depend on fitness, reflecting the fact that Darwinian selection is impossible in equilibrium [20,32]. At the other
extreme is the irreversible regime, where each replicator copies itself at its maximum possible rate 𝜌= f and 𝜎 diverges. Typically,
steady states do not exist in this regime, since any replicator with f> 𝜙 grows without bound and any replicator with f< 𝜙 decays
to extinction. In the special case where a single fittest replicator satisfies f= 𝜙, there is a non‑zero steady state containing only that
replicator [67,83]. To summarize, all replicators coexist in equilibrium (𝜎 = 0), while only the fitness replicator can possibly exist
in steady state in the irreversible regime (𝜎→∞). Intermediate values of 𝜎 interpolate between these two extremes, permitting
steady‑state coexistence of some but not all replicators.

The inequalities (5.1) and (5.5) are remarkably general, being independent of most details of the chemical system. For instance,
they do not depend on the number of coexisting replicators, the substrates/side products involved in replication, whether the
replicators copy themselves via elementary or non‑elementary reactions, whether the steady state is near or far from equilibrium,
etc. They also do not depend on the dynamical mechanism that leads to a particular steady state. For example, they do not de‑
pend on whether replicators experience competitive interactions (e.g. different replicators rely on the same substrate) or not (e.g.
different replicators do not share substrates but differ in their kinetic parameters).

6. Example: Self-complementary dimer
To illustrate our results on a concrete example, we consider a non‑elementary replicator that copies itself via the mechanism

X is a self‑complementary dimer while A and B are substrates, while the reaction XAB⇌XX is a ligation that produces the bound
dimer XX. This type of systemwas studied in many early experiments on self‑replicating chemical systems [69,84–87]. It is shown
schematically in figure 2 (right).
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We parameterize the rate constants of the two binding reactions, X + A⇌XA and XA + B⇌XAB, as

𝜈1 = 𝜅a 𝜈−1 = 𝜅e𝛥G
◦
1∕RT

𝜈2 = 𝜅b 𝜈−2 = 𝜅e𝛥G
◦
2∕RT,

where a and b are concentrations of A and B. The rate constants for ligation XAB⇌XX are parameterized as

𝜈3 = 1 𝜈−3 = e𝛥G
◦
3∕RT,

and for dimerization XX⇌X + X as

𝜈4 = 𝜅e−𝛥G
◦
4∕RT 𝜈−4 = 𝜅.

Where possible, we use parameter values from Rebek’s system, one of the first molecules that exhibited self‑replication in the lab
[84,88]. The binding and unbinding reactions are assumed to be essentially in equilibrium, so we use a fast rate constant 𝜅 = 109.
The standard Gibbs energies for the binding reactions are−𝛥G◦

1∕RT=−𝛥G◦
2∕RT= ln 60 (favouring binding), and for dimerization

it is−𝛥G◦
4∕RT=− ln 630 (favouring the bound dimer) [84]. The ligation step is assumed to be highly irreversible, so we use a large

standard Gibbs energy of −𝛥G◦
3∕RT= 10.

Following the experimental setup [88], we consider the weighted sum of concentrations

𝜔= x + yXA + yXAB + 2yXX, (6.1)

which is the total concentration of replicators and intermediates, with the bound dimer counting as two copies.
We first consider a closed reactor (𝜙= 0) which starts from non‑equilibrium initial concentrations of substrates a(0) =

b(0) = 8.2mM [84]. We choose x(0) = 0.1𝜇M for the initial replicator concentration. For these parameter values and substrate
concentrations, we can use equations (3.14) and (4.1) to compute the fitness as

f≈ 0.14.

Figure 3a shows the time‑dependent concentrations, along with predicted growth at small concentration (𝜔(0)etf, dashed line). We
see that fitness accurately captures the initial growth rate.

Next, we consider the same system, but now in steady state in a flow reactor. In figure 3b, we show steady‑state concentrations
across different dilution rates, with substrate concentrations maintained at a= b= 8.2mM. We see that fitness accurately captures
the critical dilution rate at which the replicator goes extinct.

Finally, we illustrate our thermodynamic bounds on the same system. Figure 3c shows the affinity of replication versus the
bound (5.1) for the system considered in figure 3a, where the replicator grows from a small initial concentration in a closed reac‑
tor. The bound is tightest in the regime of low concentrations, achieving an efficiency of − ln(1 − 𝜌∕f)∕𝜎 ≈ 0.5 around x≈ .1𝜇M. In
figure 3d, we show the affinity of replication versus our bound (5.2) for the steady‑state flow reactor. The bound is tightest near
the critical dilution rate, where it achieves an efficiency of − ln(1 − 𝜙∕f)∕𝜎∗ ≈ 0.65.

It should be noted that Rebek’s system, like many other self‑complementary dimers, is sometimes described as a ‘parabolic
replicator’with growth obeying a square‑root law, 𝜔̇∝𝜔1∕2. Square‑root growth results because the autocatalyst becomes bound in
the thermodynamically favoured dimerXX [88]. In general, however, the type of growth varies with replicator concentration [88].
At low concentrations, the concentration of the dimerized form is small and growth is first order, as seen in the semi‑logarithmic
plot figure 3a. Square‑root growth only appears at larger concentrations, once the concentration of the dimerized form (orange
curve in the figure) is sufficiently large.

7. Example: Darwinian selection in a chemostat
We now illustrate our thermodynamic bound on selection using a classic model of autocatalytic replicators in a chemostat
(continuous stirred‑tank flow reactor) [21].

The reactor may contain up to N replicator types, indicated as X1,… ,XN. Each Xi undergoes an autocatalytic reaction

Xi + A⇌Xi + Xi, (7.1)

from a shared substrate A. The substrate A is supplied at concentration 𝛾 and flow rate 𝜙. All species flow out with constant
dilution rate 𝜙.

For simplicity, we suppose that all replicators copy themselves via elementary autocatalytic reactions. The dynamics of
concentrations of replicators xi and substrate a are

ẋi = kixi
(
a − e∆G

◦
i ∕RTxi

)
− 𝜙xi

ȧ= 𝜙(𝛾 − a) −
∑

i
kixi

(
a − e∆G

◦
i ∕RTxi

)
,

(7.2)

where ki is a rate constant and−∆G◦
i ∕RT is the standard Gibbs energy of the reaction (7.1). As usual, we leave dependence on time

of x(t) and a(t) implicit.
Although the replicators do not interact directly, they experience an effective interaction due to competition for the shared

substrate A. This system is closely related to models of resource competition studied in mathematical ecology and evolutionary
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Figure 3. Fitness and thermodynamic bounds illustrated on Rebek’s self-complementary dimer [84] with four reactions, as in figure 2 (right). (a) Fitness recovers the
initial replication rate given a small starting concentration.We show time-dependent concentrations of replicator x, bound dimer yXX, andweighted sum𝜔 from equation
(6.1). (b) Fitness recovers the critical dilution rate in a flow reactor. (c) The bound (5.1) relates replication rate𝜌, fitness f and affinity of replication𝜎. It is shown on the
same system as in (a). (d) The bound (5.2) relates fitness, steady-state affinity𝜎∗ and dilution rate𝜙 in a steady-state flow reactor. It is shown on the same system as in
(b).

biology [58,59,61,62]. Moreover, this system can bemapped onto a competitive Lotka‑Volterra systemwith an effective interaction
(see electronic supplementary material, §C).

This type of dynamical system was considered by Schuster and Sigmund [21] (see also [23]). They showed that for any strictly
positive initial conditions, there is a unique steady state which governs the long‑term behaviour. This steady state is given by a
set of coupled equations,

a∗ = 𝛾 −
∑

i
x∗i , x∗i =max

{
0, e−∆G

◦
i ∕RT (a∗ − 𝜙∕ki)

}
. (7.3)

In the electronic supplementary material, §C, we show how to solve the coupled equations in equation (7.3) by evaluating at most
N closed‑form expressions.

The strength of selection grows with increasing dilution rate 𝜙 and/or decreasing substrate feed concentration 𝛾, causing the
replicators to be driven to extinction one‑by‑one in order of increasing ki. In the electronic supplementary material, §C, we show
that replicator Xi becomes extinct once

𝛾
𝜙
≤ k−1i +

∑

j∶kj≥ki
e−∆G

◦
j ∕RT

(
k−1i − k−1j

)
. (7.4)

Let us consider a concrete example of four replicatorswith rate constants (k1, k2, k3, k4) = (4, 3, 2, 1) and−∆G◦
i ∕RT values (1, 2, 3, 2.5).

Using equation (7.3), we calculate the steady‑state concentrations x∗i of the four replicators at different values of the dilution rate
𝜙, while substrate feed concentration is set to 𝛾 = 1. The steady‑state concentrations are shown in figure 4 (top). As the dilution
rate increases, the replicators go extinct one‑ by‑ one in order of increasing ki. The critical values of 𝜙 at which each replicator goes
extinct, as specified by equation (7.4), are indicated with dotted vertical lines.

In figure 4 (bottom), we show the steady‑state affinity of each replicator,

𝜎∗i = ln
(
a∗∕x∗i

)
− 𝛥G◦

i ∕RT. (7.5)

The values of 𝜎∗i grow with increasing 𝜙, diverging to infinity as each replicator approaches extinction. We compare 𝜎1, the affin‑
ity of the fittest replicator X1, to the selection coefficient between X1 and Xi, si = 1 − fi∕f1. Each replicator’s fitness is fi = kia∗, so
si = 1 − ki∕k1. As predicted by our bound (5.5), replicator Xi becomes extinct once 𝜎∗1 crosses − ln si.
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Figure 4. Steady-state behaviour of a system of four elementary replicators, for varying values of the dilution rate𝜙. Top: steady-state concentrations of the four repli-
cators. As 𝜙 increases, the replicators are driven to extinction one- by- one (dashed vertical lines). Bottom: as predicted by the bound (5.5), replicator Xi are pushed to
extinction once the affinity of the fittest replicator (blue curve) crosses the selection coefficient− ln si =− ln(1 − fi∕f1).

Figure 5. Black curve shows 𝛴̇, the overall entropy production rate, equation (7.6), for the four-replicator model as a function of the dilution rate. Shaded regions indi-
cate contributions from different replicator populations, with colours as in figure 4. At the four extinction events (dotted lines), the entropy production rate is continuous
but not differentiable, corresponding to second-order non-equilibrium phase transitions.

We note that fitness values do not determine relative concentrations in steady state. For instance, near equilibrium (small dilu‑
tion rates), steady‑state concentrations are determined by the standard Gibbs energies −𝛥G◦

i rather than fitness values. This can
be seen in figure 4 (top): replicator X3 has the largest steady‑state concentration at small 𝜙 values, since it has the largest value of
−𝛥G◦

i .
We can also consider the entropy production rate due to replication, i.e. the overall rate of dissipation of Gibbs free energy. In

steady state, it is

𝛴̇ =
∑

i
𝒥i𝜎∗i = 𝜙

∑

i
x∗i
[
ln
(
a∗∕x∗i

)
− 𝛥G◦

i ∕RT
]
. (7.6)

Here, we used equation (7.5) and that the steady‑state flux across the autocatalytic reaction of replicator Xi is 𝒥i = 𝜙x∗i .
In figure 5, we plot 𝛴̇ for the four‑replicator system analysed above. Using shading, we also plot the contribution from each type

of replicator, 𝜙x∗i
[
ln
(
a∗∕x∗i

)
− 𝛥G◦

i ∕RT
]
. As before,we vary the dilution rate 𝜙while holding fixed the substrate feed concentration

at 𝛾 = 1. Extinction events are marked using vertical dotted lines. Recall from figure 4 that the affinity of replication 𝜎∗i diverges
when replicator Xi approaches extinction. However, the concentration x∗i vanishes sufficiently fast so that the product x∗i 𝜎

∗
i → 0 at

extinction. As we show in §C in the electronic supplementary material, 𝛴̇ is finite and continuous at the extinction events. Thus,
under a common classification scheme [89–93], extinction events are second‑order non‑equilibrium phase transitions.
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Figure 6. Examples of cross-catalytic cycles. Left: a three-element cycle. Right: templated replication of complementary polymers (shown here using dimers).

8. Cross-catalytic cycles
We finish by briefly discussing how our results generalize to certain types of autocatalytic sets [94]. For simplicity, we restrict our
attention to autocatalytic setswith a uniform and cyclic organization. A general treatment of the thermodynamics of cross‑catalytic
cycles with arbitrary topologies, kinetics and thermodynamic parameters is an important direction for future work.

We consider an autocatalytic set that contains n species (Z1,… ,Zn) and n reactions, where each species Zj−1 catalyses the
formation of Zj:

Zj−1 +
∑

i
𝛼(j)i Ai⇌Zj−1 + Zj +

∑

i
𝛽(j)i Ai. (8.1)

The indexes are taken as mod n, so Z0 =Zn, and 𝛼(j)i , 𝛽
(j)
i indicate stoichiometric coefficients of substrates/side products partici‑

pating in each reaction. Each catalytic reaction in the cycle may be elementary, or it may be a non‑elementary mechanism as in
equation (3.4) but with initial reactant X replaced by Zj−1 and final products X + X replaced by Zj−1 + Zj.

We term this kind of autocatalytic set a cross‑catalytic cycle. A schematic illustration of a three‑member cross‑catalytic cycle
is shown in figure 6 (left). Cross‑catalytic cycles have attracted much attention in work on the origin‑ of‑ life, both theoretical
[20,95,96] and experimental [26]. An important example of a two‑member cross‑catalytic cycle is the templated replication of com‑
plementary polymers, illustrated in figure 6 (right), which has been investigated in numerous experiments [38,39,97]. In biology,
a cross‑catalytic cycle called the ‘Hinshelwood cycle’ has been proposed as a general model of bacterial growth [98,99].

For simplicity, we assume that the cycle is uniform, in the sense that each cross‑catalytic reaction has the same kinetic, stoichio‑
metric and thermodynamic properties. Although this assumption seems restrictive, it suffices for studying many autocatalytic
sets of fundamental interest, such as complementary pairs with two kinetically and thermodynamically similar cross‑catalytic
reactions, as in figure 6 (right).

For an autocatalytic set with a uniform cyclic organization, the cycle members Zj approach equal concentrations zj ≈ zk after an
initial transient. In this regime, we can effectively treat each cycle member Zj as an independent replicator with autocatalytic flux

𝒥j = r(𝜌)zj − r−(𝜌)z2j . (8.2)

Here, 𝜌= 𝒥j∕zj is the growth rate and r(𝜌), r−(𝜌) are effective forward/backward rate constants, neither of which depend on j due
to the assumption of uniformity.

The derivation of equation (8.2) proceeds as follows. When cross‑catalytic reactions are elementary, equation (8.2) follows from
mass‑action kinetics, 𝒥j = rzj−1 − r−zjzj−1, and the assumption zj ≈ zj−1. For non‑elementary cross‑catalytic reactions with m ele‑
mentary steps, we consider the different steps that produce or consume Zj: them‑th step of cross‑catalytic reaction j produces one
Zj, the first step of cross‑catalytic reaction j + 1 consumes one Zj, and the m‑th step of cross‑catalytic reaction j + 1 produces one
Zj. The overall production of Zj due to the cross‑catalytic cycle is

𝒥j = J(j)m − J(j+1)1 + J(j+1)m , (8.3)

where J(j)m is the flux across the k‑th intermediate step in cross‑catalytic reaction j, defined similarly to equation (3.7). Assuming
uniformity of kinetics and concentrations, the intermediate fluxes are the same for all j, J(j)i = J(j+1)i ≡ Ji, therefore

𝒥j = 2Jm − J1, (8.4)

which recovers equation (3.8). We can then derive equation (8.2) using the same analysis we used for non‑elementary replicators
in §3b.

Other results follow in a similar manner as for single replicators. For instance, the affinity of each cross‑catalytic reaction j is
𝜎(j) = ln[r(0)∕zjr−(0)], which can be shown using a similar derivation as equation (3.6). The fitness f of replicator Zj is defined via
the relation f= r(f). Using the same approach as in §4, it can be shown from equation (8.2) that this fitness determines both initial
growth rate and critical dilution rate.

Combining these results and using the derivation from §5 gives a bound on the affinity of each cross‑catalytic reaction j,

𝜎(j) ≥− ln (1 −
𝜌
f
) , (8.5)
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thereby recovering the analogue of inequality (5.1). In steady state with dilution rate 𝜙, this reduces to

𝜎∗(j) ≥− ln (1 −
𝜙
f
) , (8.6)

where 𝜎∗(j) is the affinity of replication under steady‑state concentrations.
Wemay derive a thermodynamic bound on the strength of selection for cross‑catalytic cycles, analogous to inequality (5.5). We

consider a flow reactor in steady state with dilution rate 𝜙 that contains a cross‑catalytic cycle with fitness f> 𝜙. Suppose there is
another replicator X′, which may be either a cross‑catalytic cycle or an individual autocatalytic reaction, that has fitness f ′ ≤ 𝜙 and
is therefore extinct in steady state. Plugging f ′ ≤ 𝜙 into inequality (8.6) gives

𝜎∗(j) ≥− ln (1 −
f ′

f
)=− ln s. (8.7)

This bounds the average affinity of a cross‑catalytic reaction in terms of the selection coefficient.
Importantly, these bounds are all stated in terms of the affinity of a single reaction in the cross‑catalytic cycle. For exam‑

ple, for a self‑replicating complementary polymer as in figure 6 (right), these inequalities bound the affinity of making a single
complementary copy, i.e. half of the overall cycle. The combined affinity of all n reactions in the cycle obeys

∑

j
𝜎(j) ≥−n ln (1 −

𝜌
f
) . (8.8)

Since affinity is equivalent to dissipated Gibbs free energy, equation (8.8) implies that, for a given replication rate and fitness, the
thermodynamic dissipation scales linearly with cycle size.

9. Discussion and future work
In this article, we uncovered a general relationship between thermodynamic affinity, fitness and selection strength in molecular
replicators. This relationshipwas derived from the principle of local detailed balance, which plays a central role in non‑equilibrium
thermodynamics. Our results complement other recent work on fundamental stoichiometric and thermodynamic constraints on
autocatalytic replication [14,100–104].

Our approach has similarities to work on competitive exclusion and coexistence theory in microbial ecology [59,62,105]. How‑
ever, our underlying question differs from the one typically posed in ecology: ecologists aim to explain howdiversity ismaintained
despite competition [105], while we aim to explain how selection (decrease of diversity) occurs despite the drive toward thermo‑
dynamic equilibrium. Nonetheless, our work contributes to the study of autocatalytic systems from the perspective of theoretical
ecology [22,26–28] and evolutionary theory [24,25,29–31].

Our first inequality (5.1)may be compared to a thermodynamic bound on self‑replicating systems derived by England [9]. How‑
ever, the two bounds make qualitatively different predictions. We refer the reader to Kolchinsky [106] for a critical perspective of
the validity of England’s bound in application to autocatalytic replicators.

Our thermodynamic bound on selection (1.2) is stated in terms of 𝜎∗, the affinity of replication in steady state. Equation (2.4)
implies that the steady‑state affinity increases with the standard Gibbs energy −𝛥G◦ as well as the driving provided by sub‑
strates/side products (via the term

∑
i(𝛼i − 𝛽i) ln a∗i ), and that it decreases with the replicator concentration (via the term − ln x∗).

Our results do not necessarily imply that selection strength increases with stronger external driving; for instance, it is not always
the case that selection becomes stronger if replication is coupled to highly dissipative side reactions. Although increased driving
will tend to increase the standard Gibbs energy and the contribution from substrates/side products, it may also decrease the affin‑
ity 𝜎 by increasing the steady‑state replicator concentration x∗. The precise relationship between external driving and 𝜎∗ depends
on the specifics of the chemical system, andmay be an interesting topic to explore in futurework.We also note that even if stronger
driving does lead to an increase in 𝜎∗, this may not lead to increased selection strength because the inequality (1.2) is not always
tight.

We mention some other limitations and directions for future work. First, like many other results derived using local detailed
balance, our bound is mostly meaningful for molecular replicators that are not ‘too irreversible’, meaning that 𝜎 is not too large.
For instance, the bound (5.1) can be rearranged as 𝜌≤ f(1 − e−𝜎), which reduces to the trivial result 𝜌≤ f once 𝜎 is large (e.g. for
𝜎 ≥ 20, roughly the dissipation produced by the hydrolysis of a single ATPmolecule). Our bound (1.2) on the selection coefficient,
s≥ e−𝜎∗ , also becomesweak for larger 𝜎∗. However, the bound (8.5) for cross‑catalytic cycles refers to the affinity of a single reaction
in the cycle. It may be applicable to highly dissipative systems that involve large cross‑catalytic cycles, as long as the individual
reactions in the cycle are not too irreversible.

Another limitation is that we only consider deterministic concentrations, which is justified when molecular counts are large
and stochastic fluctuations can be ignored. However, fluctuations cannot be ignored in small systems, nor near extinction events
when concentrations approach zero [90,107]. Future work may extend our analysis to the stochastic regime.

Third, we do not consider the effect of mutations. In general, mutations weaken the strength of selection [20]; therefore, we
expect that mutations should increase the thermodynamic costs of selection. Future work may verify this prediction and seek
stronger bounds on the thermodynamic cost of Darwinian evolution for replicators with mutations. The introduction of muta‑
tions leads to other interesting questions concerning the thermodynamic cost of evolution, such as the thermodynamic costs of
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finding new high‑fitness replicators, rather than merely selecting among existing replicators. In this way, one may investigate the
thermodynamics of ‘the arrival of the fittest’, rather than ‘the survival of the fittest’ [108,109].

Finally, our study of autocatalytic sets was restricted to the case where reactions are organized in a single uniform cycle. Fu‑
ture work may consider autocatalytic sets with more general topologies, kinetics and thermodynamics [104,110]. Similarly, our
analysis of multi‑step reaction mechanisms was restricted to linear sequences of reactions such as equation (3.4), which may be
generalized in future studies to more complex replication mechanisms.
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