
entropy

Article

Nonlinear Information Bottleneck

Artemy Kolchinsky 1,* , Brendan D. Tracey 1,2 and David H. Wolpert 1,3,4

1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA; tracey.brendan@gmail.com (B.D.T.);
david.h.wolpert@gmail.com (D.H.W.)

2 Department of Aeronautics & Astronautics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

3 Complexity Science Hub, 1080 Vienna, Austria
4 Center for Bio-Social Complex Systems, Arizona State University, Tempe, AZ 85281, USA
* Correspondence: artemyk@gmail.com

Received: 16 October 2019; Accepted: 28 November 2019; Published: 30 November 2019

Abstract: Information bottleneck (IB) is a technique for extracting information in one random variable
X that is relevant for predicting another random variable Y. IB works by encoding X in a compressed
“bottleneck” random variable M from which Y can be accurately decoded. However, finding the
optimal bottleneck variable involves a difficult optimization problem, which until recently has been
considered for only two limited cases: discrete X and Y with small state spaces, and continuous X
and Y with a Gaussian joint distribution (in which case optimal encoding and decoding maps are
linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous
X and Y, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel
non-parametric upper bound for mutual information. We describe how to implement our method
using neural networks. We then show that it achieves better performance than the recently-proposed
“variational IB” method on several real-world datasets.

Keywords: information bottleneck; mutual information; representation learning; neural networks

1. Introduction

Imagine that one has two random variables, an “input” random variable X and an “output”
random variable Y, and that one wishes to use X to predict Y. In some situations, it is useful to extract
a compressed representation of X that is relevant for predicting Y. This problem is formally considered
by the information bottleneck (IB) method [1–3]. IB proposes to find a “bottleneck” variable M which
maximizes prediction, formulated in terms of the mutual information I(Y; M), given a constraint on
compression, formulated in terms of the mutual information I(X; M). Formally, this can be stated in
terms of the constrained optimization problem

arg max
M∈∆

I(Y; M) s.t. I(X; M) ≤ R , (1)

where ∆ is the set of random variables M that obey the Markov condition Y−X−M [4–6]. This Markov
condition states that M is conditionally independent of Y given X, and it guarantees that any
information that M has about Y is extracted from X. The maximal value of I(Y; M) for each possible
compression value R forms what is called the IB curve [1].

The following example illustrates how IB might be used. Suppose that a remote weather station
makes detailed recordings of meteorological data (X), which are then encoded and sent to a central
server (M) and used to predict weather conditions for the next day (Y). If the channel between the
weather station and server has low capacity, then the information transmitted from the weather station
to the server must be compressed. Minimizing the IB objective amounts to finding a compressed

Entropy 2019, 21, 1181; doi:10.3390/e21121181 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3518-9208
https://orcid.org/0000-0003-3105-2869
http://dx.doi.org/10.3390/e21121181
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 1181 2 of 15

representation of meteorological data which can be transmitted across a low capacity channel (have
low I(X; M)) and used to optimally predict future weather (have high I(Y; M)). The IB curve specifies
the trade-off between channel capacity and accurate prediction.

Numerous applications of IB exist in domains such as clustering [7,8], coding theory and
quantization [9–12], speech and image recognition [13–17], and cognitive science [18]. Several recent
papers have also drawn connections between IB and supervised learning, in particular, classification
using neural networks [19,20]. In this context, X typically represents input vectors, Y the output
classes, and M the intermediate representations used by the network, such as the activity of hidden
layer(s) [21]. Existing research has considered whether intermediate representations that are optimal in
the IB sense (i.e., close to the IB curve) may be better in terms of generalization error [21–23], robustness
to adversarial inputs [24], detection of out-of-distribution data [25], or provide more “interesting” or
“useful” intermediate representations of inputs [26]. Other related research has investigated whether
stochastic gradient descent (SGD) training dynamics may drive hidden layer representations towards
IB optimality [27,28].

In practice, optimal bottleneck variables are usually not found by solving the constrained
optimization problem of Equation (1), but rather by finding M that maximize the so-called IB
Lagrangian [1,6,22],

LIB(M) := I(Y; M)− βI(X; M). (2)

LIB is the Lagrangian relaxation [29] of the constrained optimization problem of Equation (1), and β

is a Lagrange multiplier that enforces the constraint I(X; M) ≤ R. In practice, β ∈ [0, 1] serves as a
parameter that controls the trade-off between compression and prediction. As β → 1, IB will favor
maximal compression of X; for β = 1 (or any β ≥ 1) the optimal M will satisfy I(X; M) = I(Y; M) = 0.
As β→ 0, IB will favor prediction of Y; for β = 0 (or any β ≤ 0), there is no penalty on I(X; M) and
the optimal M will satisfy I(Y; M) = I(X; Y), the maximum possible. It is typically easier to optimize
LIB than Equation (1), since the latter involves a complicated non-linear constraint. For this reason,
optimizing LIB has become standard in the IB literature [1,6,19,20,22,24,30,31].

However, in recent work [32] we showed that whenever Y is a deterministic function of X (or
close to being one), optimizing LIB is not longer equivalent to optimizing Equation (1). In fact, when Y
is a deterministic function of X, the same M will optimize LIB for all values of β, meaning that the IB
curve cannot be explored by optimizing LIB while sweeping β. This is a serious issue in supervised
learning scenarios (as well as some other domains), where it is very common for the output Y to be a
deterministic function of the input X. Nonetheless, the IB curve can still be explored by optimizing the
following simple modification of the IB Lagrangian, which we called the squared-IB Lagrangian [32],

LsqIB(M) := I(Y; M)− βI(X; M)2 (3)

where β ≥ 0 is again a parameter that controls the trade-off between compression and prediction.
Unlike the case for LIB, there is always a one-to-one correspondence between M that optimize LsqIB

and solutions to Equation (1), regardless of the relationship between X and Y. In the language of
optimization theory, the squared-IB Lagrangian is a “scalarization” of the multi-objective problem
{min I(X; M), max I(Y; M)} [33]. Importantly, unlike LIB, there can be non-trivial optimizers of LsqIB

even for β ≥ 1; the relationship between β and corresponding solutions on the IB curve has been
analyzed in [34]. In that work, it was also shown that the objective function of Equation (3) is part of
a general family of objectives I(Y; M)− βF(I(X; M)), where F is any monotonically-increasing and
strictly convex function, all of which can be used to explore the IB curve.

Unfortunately, optimizing the IB Lagrangian and squared-IB Lagrangian remains a difficult
problem. First, both objectives are non-convex, so there is no guarantee that a global optimum can
be found. Second, finding even a local optimum requires evaluating the mutual information terms
I(X; M) and I(Y; M), which can involve intractable integrals. For this reason, until recently IB has
been mainly developed for two limited cases. The first case is where X and Y are discrete-valued and

Entropy 2019, 21, 1181 3 of 15

have a small number of possible outcomes [1]. There, one can explicitly represent the full encoding map
(the condition probability distribution of M given X) during optimization, and the relevant integrals
become tractable finite sums. The second case is when X and Y are continuous-valued and jointly
Gaussian. Here, the IB optimization problem can be solved analytically, and the resulting encoding
and decoding maps are linear [31].

In this work, we propose a method for performing IB in much more general settings, which
we call nonlinear information bottleneck, or nonlinear IB for short. Our method assumes that M is a
continuous-valued random variable, but X and Y can be either discrete-valued (possibly with many
states) or continuous-valued, and with any desired joint distribution. Furthermore, as suggested by
the term nonlinear IB, the encoding and decoding maps can be nonlinear.

To carry out nonlinear IB, we derive a lower bound on LIB (or, where appropriate, LsqIB) which
can be maximized using gradient-based methods. As we describe in the next section, our approach
makes use of the following techniques:

• We represent the distribution over X and Y using a finite number of data samples.
• We represent the encoding map p(m|x) and the decoding map p(y|m) as parameterized conditional

distributions.
• We use a variational lower bound for the prediction term I(Y; M), and non-parametric upper

bound for the compression term I(X; M), which we developed in earlier work [35].

Note that three recent papers have suggested other ways of optimizing the IB Lagrangian in
general settings [24,36,37]. These papers use variational upper bounds on the compression term
I(X; M), which is different from our non-parametric upper bound. A detailed comparison is provided
in Section 3. In that section, we also relate our approach to other work in machine learning.

In Section 4, we explain how to implement our approach using standard neural network techniques.
We demonstrate its performance on several real-world datasets, and compare it to the recently-proposed
variational IB method [24].

2. Proposed Approach

In the following, we use H(·) for Shannon entropy, I(·; ·) for mutual information [MI], DKL(·‖·)
for Kullback–Leibler [KL] divergence. All information-theoretic quantities are in units of bits, and all
logs are base-2. We use N (µ, Σ) to indicate the probability density function of a multivariate Gaussian
with mean µ and covariance matrix Σ. We use notation like EP(X)[f (X)] =

∫
P(x) f (x) dx to indicate

expectations, where f (x) is some function and P(x) some probability distribution. We use δ(·, ·) for
the Kronecker delta.

Let the input random variable X and the output random variable Y be distributed according to
some joint distribution Q(x, y), with marginals indicated by Q(y) and Q(x). We assume that we are
provided with a “training dataset” D = {(x1, y1), . . . , (xN , yN)}, which contains N input–output pairs
sampled IID from Q(x, y). Let M indicate the bottleneck random variable, with outcomes in Rd. In the
derivations in this section, we assume that X and Y are continuous-valued, but our approach extends
immediately to the discrete case (with some integrals replaced by sums).

Let the conditional probability Pθ(m|x) indicate a parameterized encoding map from input X to the
bottleneck variable M, where θ is a vector of parameters. Given an encoding map, one can compute
the MI between X and M, Iθ(X; M), using the joint distribution Qθ(x, m) := Pθ(m|x)Q(x). Similarly,
one can compute the MI between Y and M, Iθ(Y; M), using the joint distribution

Qθ(y, m) :=
∫

Pθ(m|x)Q(x, y) dx . (4)

We now consider the IB Lagrangian, Equation (2), as a function of the encoding map parameters,

LIB(θ) := Iθ(Y; M)− βIθ(X; M) . (5)

Entropy 2019, 21, 1181 4 of 15

In this parametric setting, we seek parameter values that maximizeLIB(θ). Unfortunately, this optimization
problem is usually intractable due to the difficulty of computing the integrals in Equation (4) and in
the MI terms of Equation (5). Nonetheless, it is possible to carry out an approximate form of IB by
maximizing a tractable lower bound on LIB, which we now derive.

First, consider any conditional probability Pφ(y|m) of outputs given bottleneck variable, where φ

is a vector of parameters, which we call the (variational) decoding map. Given Pφ(y|m), the non-negativity
of KL divergence leads to the following variational lower bound on the first MI term in Equation (5),

Iθ(Y; M) = H(Q(Y))− H(Qθ(Y|M))

≥ H(Q(Y))− H(Qθ(Y|M))− DKL(Qθ(Y|M)‖Pφ(Y|M))

= H(Q(Y)) +EQθ(Y,M)

[
log Pφ(Y|M)

]
, (6)

where in the last line we’ve used the following identity,

−EQθ(Y,M)

[
log Pφ(Y|M)

]
= DKL(Qθ(Y|M)‖Pφ(Y|M)) + H(Qθ(Y|M)). (7)

Note that the inequality of Equation (6) holds for any choice of Pφ(y|m), and becomes an equality when
Pφ(y|m) is equal to the “optimal” decoding map Qθ(y|m) (as would be computed from Equation (4)).
Moreover, the bound becomes tighter as the KL divergence between Pφ(y|m) and Qθ(y|m) gets smaller.
Below, we will maximize the RHS of Equation (6) with respect to φ, thereby bringing Pφ(y|m) closer to
Qθ(y|m).

It remains to upper bound the Iθ(X; M) term in Equation (5). To proceed, we first approximate
the joint distribution of X and Y with the empirical distribution in the training dataset,

Q(x, y) ≈ 1
N ∑

i
δ(xi, x)δ(yi, y). (8)

We then assume that the encoding map is the sum of a deterministic function fθ(x) plus
Gaussian noise,

M = fθ(X) + Z, (9)

where (Z|X = x) ∼ N (fθ(x), Σθ(x)). Note that the noise covariance Σθ(x) can depend both on the
parameters θ and the outcome of X (i.e., the noise can be heteroscedastic). Combining Equation (8)
and Equation (9) implies that the bottleneck variable M will be distributed as a mixture of N equally-
weighted Gaussian components, with component i having distribution N (fθ(xi), Σθ(xi)). We can then
employ the following non-parametric upper bound on MI, which was derived in a recent paper [35]:

Iθ(X; M) ≤ Îθ(X; M) := − 1
N ∑

i
log

1
N ∑

j
e−DKL

[
N (fθ(xi),Σθ(xi))

∥∥N (fθ(xj),Σθ(xj))
]
. (10)

(Note that the published version of [35] contains some typos which are corrected in the latest arXiv
version at arxiv.org/abs/1706.02419.)

Equation (10) bounds the MI in terms of the pairwise KL divergences between the Gaussian
components of the mixture distribution of M. It is useful because the KL divergence between two
d-dimensional Gaussians has a closed-form expression,

DKL
[
N (µ′, Σ′)

∥∥N (µ, Σ)
]
=

1
2

[
ln

det Σ
det Σ′

+ (µ′ − µ)Σ−1(µ′ − µ) + tr(Σ−1Σ′)− d
]

. (11)

http://arxiv.org/abs/1706.02419

Entropy 2019, 21, 1181 5 of 15

Furthermore, in the special case when all components have the same covariance and can be grouped
into well-separated clusters, the upper bound of Equation (10) becomes tight [35]. As we will see below,
this special case is a commonly encountered solution to the optimization problem considered here.

Combining Equation (6) and Equation (10) provides the following tractable lower bound for the
IB Lagrangian,

LIB(θ) ≥ L̂IB(θ, φ) := EQθ(Y,M)

[
log Pφ(Y|M)

]
− β Îθ(X; M) (12)

where we dropped the additive constant H(Q(Y)) (which does not depend on the parameter values
and is therefore irrelevant for optimization). We refer to Equation (12) as the nonlinear IB objective.

As mentioned in the introduction, in cases where Y is a deterministic function of X (or close to
being one), it is no longer possible to explore the IB curve by optimizing the IB Lagrangian for different
values of β [19,32,34]. Nonetheless, it is always possible to explore the IB curve by instead optimizing
the squared-IB Lagrangian, Equation (3). The above derivations also lead to the following tractable
lower bound for the squared-IB Lagrangian,

LsqIB(θ) ≥ L̂sqIB(θ, φ) := EQθ(Y,M)

[
log Pφ(Y|M)

]
− β

[
Îθ(X; M)

]2. (13)

Note that maximizing the expectation term EQθ(Y,M)

[
log Pφ(Y|M)

]
is equivalent to minimizing

the usual cross-entropy loss in supervised learning. (Note that mean squared error, the typical loss
function used for training regression models, can also be interpreted as a cross-entropy term [38] (pp.
132–134).) From this point of view, Equation (12) and Equation (13) can be interpreted as adding an
information-theoretic regularization term to the regular objective of supervised learning.

For optimization purposes, the compression term Îθ(X; M) can be computed from data using
Equations (10) and (11), while the expectation term EQθ(Y,M)

[
log Pφ(Y|M)

]
can be estimated as

EQθ(Y,M)

[
log Pφ(Y|M)

]
≈ 1

N ∑i log Pφ(yi|mi), where mi indicates samples from Pθ(m|xi). Assuming
that fθ is differentiable with respect to θ and Pφ is differentiable with respect to φ, the optimal θ and
φ can be selected by using gradient-based methods to maximize Equation (12) or Equation (13), as
desired. In practice, this optimization will typically be done using stochastic gradient descent (SGD),
i.e., by computing the gradient using randomly sampled mini-batches rather than the whole training
dataset. In fact, mini-batching becomes necessary for large datasets, since evaluating Îθ(X; M) involves
O(n2) operations, where n is the number of data points in the batch used to compute the gradient,
which becomes prohibitively slow for very large n. At the same time, Îθ(X; M) is closely related
to kernel-density estimators [35], and it is known that the number of samples required for accurate
kernel-density estimates grows rapidly as dimensionality increases [39]. Thus, mini-batches should
not be too small when d (the dimensionality of the bottleneck variable) is large. In some cases, it
may be useful to estimate the gradient of EQθ(Y,M)

[
log Pφ(Y|M)

]
and the gradient of Îθ(X; M) using

mini-batches of different sizes. More implementation details are discussed below in Section 4.1.
Note that the approach described here is somewhat different (and simpler) than in previous

versions of this manuscript [40,41]. In previous versions, we represented the marginal distribution
Q(x) with a mixture of Gaussians, rather than with the empirical distribution in the training data.
However, we found that this increased complexity but was not necessary for good performance.
Furthermore, we previously focused only on optimizing a bound on the IB Lagrangian, Equation (12).
In subsequent work [32], we showed that the IB Lagrangian is inadequate for many supervised learning
scenarios, including some of those explored in Section 4.2, and that the squared-IB Lagrangian should
be used instead. In this work, we report performance when optimizing Equation (13), a bound on the
squared-IB Lagrangian.

3. Relation to Prior Work

In this section, we relate our proposed method to prior work in machine learning.

Entropy 2019, 21, 1181 6 of 15

3.1. Variational IB

Recently, there have been three other proposals for performing IB for continuous and possibly
non-Gaussian random variables using neural networks [24,36,37], the most popular of which is called
variational IB (VIB) [24]. As in our approach, these methods propose tractable lower bounds on the
LIB objective. They employ the same variational bound for the prediction MI term I(Y; M) as our
Equation (6). These methods differ from ours, however, in how they bound the compression term,
Iθ(X; M). In particular, they all use some form of the following variational upper bound,

Iθ(X; M) = DKL(Pθ(M|X)‖R(M))− DKL(Pθ(M)‖R(M)) ≤ DKL(Pθ(M|X)‖R(M)) , (14)

where R is some surrogate marginal distribution over the bottleneck variable M. Combining with
Equation (6) leads to the following variational lower bound for LIB,

LIB(M) ≥ EQθ(Y,M)

[
log Pφ(Y|M)

]
− βDKL(Pθ(M|X)‖R(M)) + const . (15)

The three aforementioned papers differ in how they define the surrogate marginal distribution R.
In [24], R is a standard multivariate normal distribution, N (0, I). In [36], R is a product of Student’s
t-distributions. The scale and shape parameters of each t-distribution are optimized during training,
in this way tightening the bound in Equation (14). In [37], two surrogate distributions are considered,
the improper log-uniform and the log-normal, with the appropriate choice depending on the particular
activation function (non-linearity) used in the neural network.

In addition, the encoding map Pθ(m|x) in [36] and [24] is a deterministic function plus Gaussian
noise, same as in Equation (9). In [37], the encoding map consists of a deterministic function with
multiplicative, rather than additive, noise.

These alternative methods have potential advantages and disadvantages compared to our
approach. On one hand, they are more computationally efficient: Our non-parametric estimator
of Îθ(X; M) requires O(n2) operations per mini-batch (where n is the size of the mini-batch), while the
variational bound of Equation (14) requires O(n) operations. On the other hand, our non-parametric
estimator is expected to give a better estimate of the true MI I(X; M) [35]. We provide a comparison
between our approach and variational IB [25] in Section 4.2.

3.2. Neural Networks and Kernel Density Entropy Estimates

A key component of our approach is using a differentiable upper bound on MI, Îθ(X; M).
As discussed in [35], this bound is related to non-parametric kernel-density estimators of MI. See [42–46]
for related work on using neural networks to optimize non-parametric estimates of information-theoretic
functions. This technique can also be related to kernel-based estimation of the likelihood of held-out
data for neural networks (e.g., [47]). In these later approaches, however, the likelihood of held-out data
is estimated only once, as a diagnostic measure once learning is complete. We instead propose to train
the network by directly incorporating our non-parametric estimator Îθ(X; M) in the objective function.

3.3. Auto-Encoders

Auto-encoders are unsupervised learning architectures that learn to reconstruct a copy of the
input X, while using some intermediate representations (such as a hidden layer in a neural network).
Auto-encoders have some conceptual relationships to IB, in that the intermediate representations are
sometimes restricted in terms of dimensionality, or with information-theoretic penalties on hidden
layer coding length [48,49]. Similar penalties have also been explored in a supervised learning scenario
in [50]. In that work, however, hidden layer states were treated as discrete-valued, limiting the
flexibility and information capacity of hidden representations.

More recently, denoising auto-encoders [51] have attracted attention. Denoising auto-encoders
constrain the amount of information passing from input to hidden layers by injecting noise into the

Entropy 2019, 21, 1181 7 of 15

hidden layer activity, similarly to our noisy mapping from the input to the bottleneck layer. Previous
work on auto-encoders has considered either penalizing hidden layer coding length or injecting noise
into the map, rather than combing the two as we do here. Moreover, denoising auto-encoders do not
have a notion of an “optimal” noise level, since less noise will always improve prediction error on the
training data. Thus, they cannot directly adapt the noise level (as done in our method).

Finally, variational auto-encoders [52] [VAEs] are recently-proposed architectures which learn
generative models from unsupervised data (i.e., after training, they can be used to generate new
samples that resemble training data). Interestingly, the objective optimized in VAE training, called
“ELBO”, contains both a prediction term and a compression term and can be seen as a special case of
the variational IB objective [24,37,53,54]. In principle, it may be fruitful to replace the compression
term in the ELBO with our MI estimator Îθ(X; M). Given our reported performance below, this may
result in better compression, though it might also complicate sampling from the latent variable space.
We leave this line of research for future work.

4. Experiments

In this section, we first explain how to implement nonlinear IB using neural network techniques.
We then evaluate its on several datasets, and compare it to the variational IB (VIB) method. We
demonstrate that, compared to VIB, nonlinear IB achieves better performance and uncovers different
kinds of representations.

4.1. Implementation

Any implementation of nonlinear IB requires a way to compute the encoding map Pθ(m|x) and
decoding map Pφ(y|m), as well as a way to choose the parameters of these maps so as to maximize the
nonlinear IB objective. Here we explain how this can be done using standard neural network methods.

The encoding map Pθ(m|x), Equation (9), is implemented in the following way: First, several
neural network layers with parameters θ implement the (possibly nonlinear) deterministic function
fθ(x). The output of these layers is then added to zero-centered Gaussian noise with covariance Σθ(x),
which becomes the state of the bottleneck layer. This is typically done via the “reparameterization
trick” [52], in which samples of Gaussian noise are passed through several deterministic layers (whose
parameters are also indicated by θ) and then added to fθ(x). Note that due to the presence of noise,
the neural network is stochastic: even with parameters held constant, different states of the bottleneck
layer are sampled during different NN evaluations. This stochasticity guarantees that the mutual
information I(X; M) is finite [26,28].

In all of the experiments described below, the encoding map consists of two layers with 128
ReLU neurons each, following by a layer of 5 linear neurons. In addition, for simplicity we use a
simple homoscedastic noise model: Σθ(x) = σ2I, where σ2 is a parameter the sets the scale of the
noise variance. This noise model permits us to rewrite the MI bound of Equation (10) in terms of the
following simple expression,

Îθ(X; M) = − 1
N ∑

i
log

1
N ∑

j
e−

1
2σ2 ‖ fθ(xi)− fθ(xj)‖2

2 . (16)

For purposes of comparison, we use this same homoscedastic noise model for both nonlinear IB and
for VIB (note that the original VIB paper [24] used a heteroscedastic noise model; investigating the
performance of nonlinear IB with heteroscedastic noise remains for future work).

In our runs, the noise parameter σ2 was one of the trainable parameters in θ. The initial value of
σ2 should be chosen with some care. If the initial σ2 is too small, the Gaussian components that make
up the mixture distribution of M will be many standard deviations away from each other and Îθ(X; M)

(as well as I(X; M)) will be exponentially close to the constant log N [35]. In this case, the gradient of
the compression term Îθ(X; M) with respect to θ will also be exponentially small, and the optimizer

Entropy 2019, 21, 1181 8 of 15

will not be able to learn to compress. On the other hand, when σ2 is too large, the resulting noise can
swamp gradient information arising from the accuracy (cross-entropy) term, cause the optimizer to
collapse to a “trivial” maximally-compressed model in which I(X; M) ≈ I(Y; M) ≈ 0. Nonetheless,
the optimization is robust to several orders of magnitude of variation of the initial value of σ2. In the
experiments below, we uses the initial value σ2 = 1, which works sufficiently well in practice. (Note
that the scale of the noise can also be trained by changing the parameters of the 5-neuron linear layer;
thus, in our neural network architecture, having a trainable σ2 is not strictly necessary.)

To implement the decoding map Pφ(y|m), the bottleneck layer states are passed through
several deterministic neural network layers with parameters φ. In the experiments described below,
the decoding map is implemented with a single layer with 128 ReLU neurons, followed by a linear
output layer. The log decoding probability (log Pφ(y|m)) is then evaluated using the network output
and an appropriately-chosen cost function: cross-entropy loss of the softmax of the output for
classification, and mean squared error (MSE) of the output for regression.

In the experiments below, we use nonlinear IB to optimize the bound on the “squared-IB
Lagrangian”, Equation (13), rather than the bound on the IB Lagrangian, Equation (12). For comparison
purposes, we also optimize the following “squared” version of the VIB objective, Equation (15),

Lsq-VIB := EQθ(Y,M)

[
log Pφ(Y|M)

]
− β

[
DKL(Pθ(M|X)‖R(M))

]2. (17)

As in the original VIB paper, we take R(m) to be the standard Gaussian N (0, I). We found that
optimizing the squared-IB bounds, Equation (13) and Equation (17), produced quantitatively similar
results to optimizing Equation (12) and Equation (15), but was more numerically robust when exploring
the full range of the IB curve. For an explanation of why this occurs, see the discussion and analysis
in [32]. We report performance of nonlinear IB and VIB when optimizing bounds on the IB Lagrangian,
Equation (12) and Equation (15), in the Supplementary Material.

We use the Adam [55] optimizer with standard TensorFlow settings and mini-batches of size
256. To avoid over-fitting, we use early stopping: we split the training data into 80% actual training
data and 20% validation data; training is stopped once the objective on the validation dataset did not
improve for 50 epochs.

A TensorFlow implementation of our approach is provided at https://github.com/artemyk/
nonlinearIB. An independent PyTorch implementation is available at https://github.com/burklight/
nonlinear-IB-PyTorch.

4.2. Results

We report the performance of nonlinear IB on two different classification datasets (MNIST and
FashionMNIST) and one regression dataset (California housing prices). We also compare it with
the recently-proposed variational IB (VIB) method [24]. Here we focus purely on the ability of
these methods to optimize the IB objective on training and testing data. We leave for future work
comparisons of these methods in terms of adversarial robustness [24], detection of out-of-distribution
data [25], and other desirable characteristics that may emerge from IB training.

We optimize both the nonlinear IB (Equation (13)) and the VIB (Equation (17)) objectives for
different values of β, producing a series of models that explore the trade-off between compression and
prediction. We vary β ∈ [10−3, 2] for classification tasks and β ∈ [10−5, 2] for the regression task. These
ranges were chosen empirically so that the resulting models fully explore the IB curve.

To report our results, we use information plane (info-plane) diagrams [27], which visualize the
performance of different models in terms of the compression term (I(X; M), the x-axis) and the
prediction term (I(Y; M), the y-axis) both on training and testing data. For the info-plane diagrams,
we use Monte Carlo sampling to get an accurate estimate of I(X; M) terms. To estimate the I(Y; M) =

H(Y)− H(Y|M) term, we use two different approaches. For classification datasets, we approximate
H(Y) using the empirical entropy of the class labels in the dataset, and approximate the conditional

https://github.com/artemyk/nonlinearIB
https://github.com/artemyk/nonlinearIB
https://github.com/burklight/nonlinear-IB-PyTorch
https://github.com/burklight/nonlinear-IB-PyTorch

Entropy 2019, 21, 1181 9 of 15

entropy with the cross-entropy loss, H(Y|M) ≈ −EQθ(Y,M)

[
log Pφ(Y|M)

]
. Note that the resulting

MI estimate is an additive constant away from the cross-entropy loss. For the regression dataset, we
approximate H(Y) via the entropy of a Gaussian with variance Var(Y), and approximate H(Y|M) via
the entropy of a Gaussian with variance equal to the mean-squared-error. This results in the estimate
I(Y; M) ≈ 1

2 log(Var(Y)/MSE). Finally, we also use scatter plots to visualize the activity of the hidden
layer for models trained with different objectives.

We first consider the MNIST dataset of hand-drawn digits, which contains 60,000 training images
and 10,000 testing images. Each image is 28-by-28 pixels (784 total pixels, so X ∈ R784), and is classified
into 1 of 10 classes corresponding to the digit identity (Y ∈ {1, . . . , 10}).

The top row of Figure 1 shows I(Y; M) and I(X; M) values achieved by nonlinear IB and VIB on
the MNIST dataset. As can be seen, nonlinear IB achieves better prediction values at the same level of
compression than VIB, both on training and testing data. The difference is especially marked near the
“corner point” I(X; M) = I(Y; M) ≈ log 10 (which corresponds to maximal compression, given perfect
prediction), where nonlinear IB achieved ≈ 0.1 bits better prediction at the same compression level
(see also Table 1).

0 1 2 3 4 5 6
I(X; M) (bits)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

I(Y
;M

) (
bi

ts)

MNIST - Training

nonlinear IB
VIB
CE only

0 1 2 3 4 5 6
I(X; M) (bits)

MNIST - Testing

nonlinear IB
VIB
CE only

Figure 1. Top row: Info-plane diagrams for nonlinear IB and variational IB (VIB) on the MNIST
training (left) and testing (right) data. The solid lines indicate means across five runs, shaded region
indicates the standard error of the mean. The black dashed line is the data-processing inequality bound
I(Y; M) ≤ I(X; M), the black dotted line indicates the value of I(Y; M) achieved by a baseline model
trained only to optimize cross-entropy. Bottom row: Principal component analysis (PCA) projection
of bottleneck layer activity (on testing data, no noise) for models trained with regular cross-entropy
loss (left), VIB (middle), and nonlinear IB (right) objectives. The location of the nonlinear IB and VIB
models shown in the bottom row is indicated with the green vertical line in the top right panel.

Further insight is provided by considering the bottleneck representations found when training with
nonlinear IB versus VIB versus regular cross-entropy loss. To visualize these bottleneck representations,

Entropy 2019, 21, 1181 10 of 15

we selected three models: a baseline model trained only to optimize cross-entropy loss, a model trained
with nonlinear IB, and a model trained with VIB (the latter two models were chosen to both have
I(X; M) ≈ log 10). We then measured the activity of their 5-neuron bottleneck hidden layer on the
testing dataset, projected down to two dimensions using principal component analysis (PCA). Figure
1 visualizes these two-dimensional projections for these three models, with colors indicating class
label (digit identity). Training with VIB and nonlinear IB objectives causes inputs corresponding to
different digits to fall into well-separated clusters, unlike training with cross-entropy loss. Moreover,
the clustering is particularly tight for nonlinear IB, meaning that the bottleneck states carry almost
no information about input vectors beyond class identity. Note that in this regime, where Gaussian
components are grouped into tightly separate clusters, our MI upper bound Îθ(X; M) becomes exact [35].

Table 1. Amount of prediction I(Y; M) achieved at compression level I(X; M) = log 10 for both
nonlinear IB and VIB.

Dataset Nonlinear IB VIB

MNIST Training 3.22 3.09
Testing 2.99 2.88

FashionMNIST Training 2.85 2.67
Testing 2.58 2.46

California housing Training 1.37 1.26
Testing 1.13 1.07

In the next experiment, we considered the recently-proposed FashionMNIST dataset. FashionMNIST
has the same structure as the MNIST dataset (28× 28 images grouped into 10 classes, with 60,000
training and 10,000 testing images). Instead of hand-written digits, however, FashionMNIST includes
images of clothes labeled with classes such as “Dress”, “Coat”, and “Sneaker”. This dataset was
designed as a drop-in replacement for MNIST which addresses the problem that MNIST is too easy
for modern machine learning (e.g., it is fairly straightforward to achieve ≈99% test accuracy on
MNIST) [56]. FashionMNIST is a more difficult dataset, with typical test accuracies of ≈90%–95%.

The top row Figure 2 shows I(Y; M) and I(X; M) values achieved by nonlinear IB and VIB on
the FashionMNIST dataset. Compared to VIB, nonlinear IB again achieves better prediction values at
the same level of compression, both on training and testing data. The difficulty of FashionMNIST is
evident in the fact that neither method gets very close to the corner point I(X; M) = I(Y; M) ≈ log 10.
Nonetheless, nonlinear IB performed better than VIB at a range of compression values, often extracting
≈ 0.15 additional bits of prediction at the same compression level (see also Table 1).

As for MNIST, we consider the bottleneck representations uncovered when training on
FashionMNIST with cross-entropy loss only versus nonlinear IB versus VIB (the latter two models
were chosen to have I(X; M) ≈ log 10). We measured the activity of the 5-neuron bottleneck layer
on the testing dataset, projected down to two dimensions using PCA. The bottom row of Figure 2
visualizes these two-dimensional projections for these three models, with colors indicating class label
(digit identity). It can again be seen that models trained with VIB and nonlinear IB map inputs into
separated clusters, but that the clusters are significantly tighter for nonlinear IB.

Entropy 2019, 21, 1181 11 of 15

0 1 2 3 4 5 6
I(X; M) (bits)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I(Y
;M

) (
bi

ts)
FashionMNIST - Training

nonlinear IB
VIB
CE only

0 1 2 3 4 5 6
I(X; M) (bits)

FashionMNIST - Testing

nonlinear IB
VIB
CE only

Figure 2. Top row: Info-plane diagrams for nonlinear IB and VIB on the FashionMNIST dataset. Bottom
row: PCA projection of bottleneck layer activations for models trained only to optimize cross-entropy
(left), VIB (middle), and nonlinear IB (right) objectives. See caption of Figure 1 for details.

In our final experiment, we considered the California housing prices dataset. This is a regression
dataset based on the 1990 California census, originally published in [57] (we use the version distributed
with the scikit-learn package [58]). It consists of N = 20, 640 total samples, with one dependent
variable (the house price) and 8 independent variables (such as “longitude”, “latitude”, and “number
of rooms”). We used the log-transformed house price as the dependent variable Y (this made the
distribution of Y closer to a Gaussian). To prepare the training and testing data, we first dropped
992 samples in which the house price was equal to or greater than $500,000 (prices were clipped at
this upper value in the dataset, which distorted the distribution of the dependent variable). We then
randomly split the remaining samples into an 80% training and 20% testing dataset (the training
dataset was then further split into the actual training dataset and a validation dataset, see above).

The top row of Figure 3 shows I(Y; M) and I(X; M) values achieved by nonlinear IB and VIB
on the California housing prices dataset. Nonlinear IB achieves better prediction values at the same
level of compression than VIB, both on training and testing data (see also Table 1). As for the other
datasets, we also show the bottleneck representations uncovered when training on California housing
prices dataset with MSE loss only versus nonlinear IB versus VIB (the latter two models were chosen to
have I(X; M) ≈ log 10). The bottom row of Figure 3 visualizes the two-dimensional PCA projections
of bottleneck layer activity for these three models, with colors indicating the dependent variable
(log housing price). The bottleneck representations uncovered when training with MSE loss only
and when training with VIB were somewhat similar. Nonlinear IB, however, finds a different and
almost perfectly one-dimensional bottleneck representation. In fact, for the nonlinear IB model, the

Entropy 2019, 21, 1181 12 of 15

first principal component explains 99.8% of the variance in bottleneck layer activity on testing data.
For the models trained with MSE loss and VIB, the first principal component explains only 76.6%
and 69% of the variance, respectively. The one-dimensional representation uncovered by nonlinear
IB compresses away all information about the input vectors which is not relevant for predicting the
dependent variable.

0 1 2 3 4 5
I(X; M) (bits)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

I(Y
;M

) (
bi

ts)

Housing - Training

nonlinear IB
VIB
MSE only

0 1 2 3 4 5
I(X; M) (bits)

Housing - Testing

nonlinear IB
VIB
MSE only

Figure 3. Top row: Information plane diagrams for nonlinear IB and VIB on the California housing
prices dataset. Bottom row: PCA projection of bottleneck layer activations for models trained only
to optimize mean squared error (MSE) (left), VIB (middle), and nonlinear IB (right) objectives. See
caption of Figure 1 for details.

We finish by presenting some of our numerical results in Table 1. In particular, we quantify the
amount of prediction, I(Y; M), achieved when training with nonlinear IB and VIB at the compression
level I(X; M) = log 10, for training and testing datasets of the three datasets considered above.
Nonlinear IB consistently achieves better prediction at a fixed level of compression.

5. Conclusions

We propose “nonlinear IB”, a method for exploring the information bottleneck [IB] trade-off curve
in a general setting. We allow the input and output variables to be discrete or continuous (though
we assume a continuous bottleneck variable). We also allow for arbitrary (e.g., non-Gaussian) joint
distributions over inputs and outputs and for non-linear encoding and decoding maps. We gain this
generality by exploiting a new tractable and differentiable bound on the IB objective.

We describe how to implement our method using off-the-shelf neural network software, and
apply it to several standard classification and regression problems. We find that nonlinear IB is able to

Entropy 2019, 21, 1181 13 of 15

effectively discover the tradeoff curve, and find solutions that are superior compared with competing
methods. We also find that the intermediate representations discovered by nonlinear IB have visibly
tighter clusters in the classification problems. In the regression problem, nonlinear IB discovers a
one-dimensional intermediate representation.

We have successfully demonstrated the ability of nonlinear IB to explore the IB curve. It is possible
that increased compression may lead to other benefits in supervised learning, such as improved
generalization performance or increased robustness to adversarial inputs. Exploring its efficacy in
these domains remains for future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/12/1181/
s1: Figure S1: Performance of nonlinear IB and VIB when optimizing bounds on regular IB objective.

Author Contributions: Conceptualization, A.K.; Funding acquisition, D.H.W.; Software, A.K. and B.D.T.;
Visualization, A.K.; Writing—original draft, A.K.; Writing—review & editing, A.K., B.D.T. and D.H.W.

Funding: This research was funded by National Science Foundation: CHE-1648973; Foundational Questions
Institute: FQXi-RFP-1622; Air Force Office of Scientific Research: A9550-15-1-0038.

Acknowledgments: We thank Steven Van Kuyk and Borja Rodríguez Gálvez for helpful comments. We would
also like to thank the Santa Fe Institute for helping to support this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tishby, N.; Pereira, F.; Bialek, W. The information bottleneck method. In Proceedings of the 37th Annual Allerton
Conference on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999.

2. Dimitrov, A.G.; Miller, J.P. Neural coding and decoding: Communication channels and quantization. Netw.
Comput. Neural Syst. 2001, 12, 441–472. [CrossRef]

3. Samengo, I. Information loss in an optimal maximum likelihood decoding. Neural Comput. 2002, 14, 771–779.
[CrossRef]

4. Witsenhausen, H.; Wyner, A. A conditional entropy bound for a pair of discrete random variables. IEEE
Trans. Inf. Theory 1975, 21, 493–501. [CrossRef]

5. Ahlswede, R.; Körner, J. Source Coding with Side Information and a Converse for Degraded Broadcast
Channels. IEEE Trans. Inf. Theory 1975, 21, 629–637. [CrossRef]

6. Gilad-Bachrach, R.; Navot, A.; Tishby, N. An Information Theoretic Tradeoff between Complexity and
Accuracy. In Learning Theory and Kernel Machines; Goos, G., Hartmanis, J., van Leeuwen, J., Schölkopf, B.,
Warmuth, M.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2777, pp. 595–609.

7. Slonim, N.; Tishby, N. Document clustering using word clusters via the information bottleneck method. In
Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Athens, Greece, 24–28 July 2000; pp. 208–215.

8. Tishby, N.; Slonim, N. Data clustering by markovian relaxation and the information bottleneck method.
In Advances in Neural Information Processing Systems 13 (NIPS 2000); MIT Press: Cambridge, MA, USA, 2001;
pp. 640–646.

9. Cardinal, J. Compression of side information. In Proceedings of the 2003 International Conference on
Multimedia and Expo, Baltimore, MD, USA, 6–9 July 2003; pp. 569–572.

10. Zeitler, G.; Koetter, R.; Bauch, G.; Widmer, J. Design of network coding functions in multihop relay networks.
In Proceedings of the 2008 5th International Symposium on Turbo Codes and Related Topics, Lausanne,
Switzerland, 1–5 September 2008; pp. 249–254.

11. Courtade, T.A.; Wesel, R.D. Multiterminal source coding with an entropy-based distortion measure.
In Proceedings of the 2011 IEEE International Symposium on Information Theory, St. Petersburg, Russia, 31
July–5 August 2011; pp. 2040–2044.

12. Lazebnik, S.; Raginsky, M. Supervised learning of quantizer codebooks by information loss minimization.
IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 1294–1309. [CrossRef] [PubMed]

13. Winn, J.; Criminisi, A.; Minka, T. Object categorization by learned universal visual dictionary. In Proceedings
of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, 17–21
October 2005; Volume 2, pp. 1800–1807.

http://www.mdpi.com/1099-4300/21/12/1181/s1
http://www.mdpi.com/1099-4300/21/12/1181/s1
http://dx.doi.org/10.1080/net.12.4.441.472
http://dx.doi.org/10.1162/089976602317318947
http://dx.doi.org/10.1109/TIT.1975.1055437
http://dx.doi.org/10.1109/TIT.1975.1055469
http://dx.doi.org/10.1109/TPAMI.2008.138
http://www.ncbi.nlm.nih.gov/pubmed/19443926

Entropy 2019, 21, 1181 14 of 15

14. Hecht, R.M.; Noor, E.; Tishby, N. Speaker recognition by Gaussian information bottleneck. In Proceedings of
the 10th Annual Conference of the International Speech Communication Association, Brighton, UK, 6–10
September 2009.

15. Yaman, S.; Pelecanos, J.; Sarikaya, R. Bottleneck features for speaker recognition. In Proceedings of the
Speaker and Language Recognition Workshop, Singapore, 25–28 June 2012.

16. Van Kuyk, S.; Kleijn, W.B.; Hendriks, R.C. On the information rate of speech communication. In Proceedings
of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New
Orleans, LA, USA, 5–9 March 2017; pp. 5625–5629.

17. Van Kuyk, S. Speech Communication from an Information Theoretical Perspective. Ph.D. Thesis, Victoria
University of Wellington, Wellington, New Zealand, 2019.

18. Zaslavsky, N.; Kemp, C.; Regier, T.; Tishby, N. Efficient compression in color naming and its evolution.
Proc. Natl. Acad. Sci. USA 2018, 115, 7937–7942. [CrossRef] [PubMed]

19. Rodríguez Gálvez, B. The Information Bottleneck: Connections to Other Problems, Learning and Exploration
of the IB Curve. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, June 2019.

20. Hafez-Kolahi, H.; Kasaei, S. Information Bottleneck and its Applications in Deep Learning. arXiv 2019,
arXiv:1904.03743.

21. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015
IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.

22. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the information bottleneck. Theor. Comput.
Sci. 2010, 411, 2696–2711. [CrossRef]

23. Vera, M.; Piantanida, P.; Vega, L.R. The Role of the Information Bottleneck in Representation Learning.
In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA,
17–22 June 2018; pp. 1580–1584.

24. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of
the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

25. Alemi, A.A.; Fischer, I.; Dillon, J.V. Uncertainty in the variational information bottleneck. arXiv 2018,
arXiv:1807.00906.

26. Amjad, R.A.; Geiger, B.C. Learning Representations for Neural Network-Based Classification Using the
Information Bottleneck Principle. arXiv 2018, arXiv:1802.09766.

27. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017,
arXiv:1703.00810.

28. Saxe, A.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.; Cox, D. On the information bottleneck
theory of deep learning. In Proceedings of the 6th International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

29. Lemaréchal, C. Lagrangian relaxation. In Computational Combinatorial Optimization; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 112–156.

30. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
31. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information bottleneck for Gaussian variables. J. Mach.

Learn. Res. 2005, 6, 165–188.
32. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios.

In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada,
30 April–3 May 2018.

33. Miettinen, K. Nonlinear Multiobjective Optimization; Springer: Boston, MA, USA, 1998. [CrossRef]
34. Rodríguez Gálvez, B.; Thobaben, R.; Skoglund, M. The Convex Information Bottleneck Lagrangian. arXiv

2019, arXiv:1911.11000.
35. Kolchinsky, A.; Tracey, B.D. Estimating Mixture Entropy with Pairwise Distances. Entropy 2017, 19, 361.

[CrossRef]
36. Chalk, M.; Marre, O.; Tkacik, G. Relevant sparse codes with variational information bottleneck. In Proceedings

of the 2016 Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10
December 2016; pp. 1957–1965.

37. Achille, A.; Soatto, S. Information Dropout: Learning optimal representations through noise. arXiv 2016,
arXiv:1611.01353.

38. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

http://dx.doi.org/10.1073/pnas.1800521115
http://www.ncbi.nlm.nih.gov/pubmed/30021851
http://dx.doi.org/10.1016/j.tcs.2010.04.006
http://dx.doi.org/10.1007/978-1-4615-5563-6
http://dx.doi.org/10.3390/e19070361

Entropy 2019, 21, 1181 15 of 15

39. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: New York, NY, USA, 2018.
40. Kolchinsky, A.; Wolpert, D.H. Supervised learning with information penalties. In Proceedings of the 2016

Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016.
41. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear Information Bottleneck. Entropy 2019, 21, 1181.

[CrossRef]
42. Schraudolph, N.N. Optimization of entropy with neural networks. Ph.D. Thesis, University of California,

San Diego, CA, USA, 1995.
43. Schraudolph, N.N. Gradient-based manipulation of nonparametric entropy estimates. IEEE Trans. Neural

Netw. 2004, 15, 828–837. [CrossRef]
44. Shwartz, S.; Zibulevsky, M.; Schechner, Y.Y. Fast kernel entropy estimation and optimization. Signal Process.

2005, 85, 1045–1058. [CrossRef]
45. Torkkola, K. Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res.

2003, 3, 1415–1438.
46. Hlavávcková-Schindler, K.; Palus, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on

information-theoretic approaches in time series analysis. Phys. Rep. 2007, 441, 1–46. [CrossRef]
47. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio,

Y. Generative adversarial nets. In Proceedings of the 2014 Conference on Neural Information Processing
Systems (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

48. Hinton, G.E.; Zemel, R.S. Autoencoders, minimum description length, and Helmholtz free energy. In Advances
in Neural Information Processing Systems 7 (NIPS 1994); MIT Press: Cambridge, MA, USA, 1994; p 3.

49. Hinton, G.E.; Zemel, R.S. Minimizing Description Length in an Unsupervised Neural Network. Available
online: https://www.cs.toronto.edu/~fritz/absps/mdlnn.pdf (accessed on 30 November 2019).

50. Deco, G.; Finnoff, W.; Zimmermann, H.G. Elimination of Overtraining by a Mutual Information Network.
In ICANN’93; Gielen, S., Kappen, B., Eds.; Springer: London, UK, 1993; pp. 744–749. [CrossRef]

51. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5–9 July 2008; pp. 1096–1103.

52. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. In Proceedings of the International Conference
on Learning Representations (ICLR 2014), Banff, AB, Canada, 14–16 April 2014.

53. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A.
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In Proceedings
of the International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

54. Alemi, A.; Poole, B.; Fischer, I.; Dillon, J.; Saurous, R.A.; Murphy, K. Fixing a Broken ELBO. In Proceedings of
the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 159–168.

55. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference for Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

56. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning
algorithms. arXiv 2017, arXiv:1708.07747.

57. Pace, R.K.; Barry, R. Sparse spatial autoregressions. Stat. Probab. Lett. 1997, 33, 291–297. [CrossRef]
58. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e21121181
http://dx.doi.org/10.1109/TNN.2004.828766
http://dx.doi.org/10.1016/j.sigpro.2004.11.022
http://dx.doi.org/10.1016/j.physrep.2006.12.004
https://www.cs.toronto.edu/~fritz/absps/mdlnn.pdf
http://dx.doi.org/10.1007/978-1-4471-2063-6_208
http://dx.doi.org/10.1016/S0167-7152(96)00140-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Approach
	Relation to Prior Work
	Variational IB
	Neural Networks and Kernel Density Entropy Estimates
	Auto-Encoders

	Experiments
	Implementation
	Results

	Conclusions
	References

