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Modularity and the spread of perturbations in complex dynamical systems
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We propose a method to decompose dynamical systems based on the idea that modules constrain the spread
of perturbations. We find partitions of system variables that maximize “perturbation modularity,” defined as the
autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular
from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the
“Markov stability” method of network community detection). Our approach captures variation of modular
organization across different system states, time scales, and in response to different kinds of perturbations:
aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative
to detecting communities in networks of statistical dependencies between system variables (e.g., “relevance
networks” or “functional networks”). Using coupled logistic maps, we demonstrate that the method uncovers
hierarchical modular organization planted in a system’s coupling matrix. Additionally, in homogeneously coupled
map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical
parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization
of complex dynamical systems.

DOI: 10.1103/PhysRevE.92.060801 PACS number(s): 89.75.Hc, 87.16.Yc, 87.18.−h, 89.75.Fb

Many complex systems are modular, in that their compo-
nents are organized in tightly integrated subsystems that are
weakly coupled to one another. Modularity has been argued
to play many important roles, including increasing robustness
[1–3], evolvability [1,4], and functional differentiation [5,6].
Thus, there is great interest in measures of modularity and
methods for decomposing complex systems into weakly
coupled modules.

This problem is here considered in the domain of multi-
variate dynamics, a common formalism for modeling complex
physical, biological, neural, and social systems. We propose
a method of identifying dynamical modules motivated by the
intuition that, in a modular system, the spread of perturbations
is characterized by two time scales: fast spreading within
modules and slow spreading between modules [1,7]. In our
treatment, the spreading process is coarse-grained relative
to a partition (a decomposition of system variables into
disjoint subsystems) by measuring the magnitude of the
perturbation’s effect within each subsystem over time. If a
partition reflects underlying modular structure, initially per-
turbed subsystems remain affected as dynamics unfold, while
initially unperturbed subsystems remain largely unaffected.
In this case, the partition’s coarse graining will capture
the slow component of perturbation spreading dynamics, an
effect quantified using a quality function called perturbation
modularity. Our perturbation-based approach is related to
many existing techniques for analyzing multivariate dynam-
ics, including Lyapunov-exponent-based methods [8–10] and
impulse response analysis [11].

As will be elaborated below, our methodology can identify
the dependence of optimal decompositions on initial states,
time scales, and kinds of perturbations applied. These factors
are all important aspects of modular organization in real-
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world dynamical systems. Dependence on the initial condition
reflects that dynamical systems can exhibit different modular
organizations in different regions of their state space; for
example, distributed regions of the brain can couple into
modular assemblies via oscillatory synchronization, with the
same region participating in different assemblies depending
on brain state [12,13]. The choice of time scale affects
optimal decompositions by determining the separation be-
tween intramodular and intermodular perturbation spreading;
in real-world complex systems, longer time scales have
often been argued to correspond to larger-scale modules
[1,14–17]. Finally, the dependence on the kinds of perturba-
tions reflects that a dynamical system may be robust to some
perturbations but highly sensitive to others [18]; for example,
in biological double-knockout experiments, cellular responses
to the simultaneous deactivation of two genes can differ
dramatically from responses to the individual deactivation of
either gene [19].

Our approach starts from a prespecified dynamical system
and thus differs fundamentally from existing treatments of
modularity based on network representations of a system. Such
methods are usually unable to capture the variation of modular
organization across state space or time scale, as well as other
important dynamical aspects of modularity.

For instance, one standard approach applies graph-based
community detection [20] to the structural network underlying
a dynamical process (e.g., the social network over which an
epidemic spreads). This treatment ignores the fact that the
same structural network can support many different dynam-
ical processes (for example, “complex contagion” epidemics
proceed differently from “simple contagion” epidemics [21]).
In contrast, our methodology is by definition sensitive to
dynamical differences.

Another class of methods detects community structure in
network representations of dynamics, defined either in terms
of causal interactions or statistical dependencies between
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variables (e.g., relevance networks in systems biology [22]
and functional networks in neuroscience [23]). Unfortunately,
constructing such networks involves a conversion of the
dynamical system (defined in terms of transitions between
multidimensional states) into a graph (defined in terms
of nodes and edges). This conversion can affect modular
decompositions in opaque ways as well as invalidate presumed
graph-theoretic null models [24,25]; statistical dependency
networks, in particular, require a number of nontrivial deci-
sions regarding the choice of dependency measure (correlation,
transfer entropy, phase-locking measures, etc.), treatment of
positive versus negative interactions, and thresholding [23].
Furthermore, coupling between variables does not necessarily
give rise to large values of correlation or other dependency
measures [26] (also as shown in our first example below).
Finally, community detection on dependency networks opti-
mizes quality functions that are difficult to interpret in terms
of the original system dynamics. Perturbation modularity
does not require the construction of a network representation
of a dynamical system and is interpretable in terms of
the separation of slow and fast time scales of perturbation
spreading.

Because our approach is based on intrinsic system dynam-
ics, it also differs from methods that identify modules by
imposing a dynamical process onto a given network, such
as diffusion of random walkers [27,28] or coupled phase
oscillators [15,29]. However, as we discuss below, in certain
cases our approach has connections to such methods. In
particular, it can be seen as a generalization of the random-
walk-based approach of Markov stability [28,30] to a broad
class of dynamics.

To formally define perturbation modularity, consider a
dynamical system with an N -dimensional state space X and
evolution operator f t : X → X at time scale t (both state and
time can be continuous or discrete). Given a set E of possible
initial perturbations, ε ∈ E is applied to an initial condition
x ∈ X to produce a perturbed initial condition x + ε ∈ X .
After time t , the size of the perturbation in the whole system
is measured as the norm of the difference between the
perturbed and unperturbed trajectories: ‖f t (x + ε) − f t (x)‖.
The relative size of the perturbation within a subsystem S

(a subset of system variables) is

mt
S(x,ε) = ‖(f t (x + ε) − f t (x))S‖

‖f t (x + ε) − f t (x)‖ , (1)

where the subscript S on the right-hand side indicates a projec-
tion onto the dimensions indexed by S. For simplicity, we con-
sider only cases where the system’s perturbed and unperturbed
trajectories have not merged (‖f t (x + ε) − f t (x)‖ > 0) and
Eq. (1) is well defined.

Assume a partition of the system π = {S1, . . . ,SK} into K

disjoint subsystems. The coarse-grained perturbation vector
yt
π (x,ε) = 〈mt

S1
(x,ε), . . . ,mt

SK
(x,ε)〉 captures the relative

size of the perturbation in each subsystem. Due to the normal-
ization in Eq. (1), yt

π is invariant to the dynamical expansion
of the whole-system phase space, instead reflecting only the
relative effects of perturbations on different subsystems.

We now define perturbation modularity Qt (π,x) as the vec-
tor autocovariance of the coarse-grained perturbation vector:

Qt (π,x) = E
[

y0
π (x,ε) · yt

π (x,ε)
]

− E
[

y0
π (x,ε)

] · E
[

yt
π (x,ε)

]
(2)

where the expected values are taken over P (ε), a probability
distribution over perturbations (i.e., the elements of E). The
first term of Eq. (2) measures the degree to which perturbations
persist within a partition’s subsystems (i.e., initially perturbed
subsystems remain affected after time t , while initially unper-
turbed subsystems remain relatively unaffected). The second
term of Eq. (2) provides a baseline expectation of perturbation
effects that accounts for differences in subsystem sizes.

As stated, the spread of perturbations in a modular system
will be constrained by module boundaries. The optimal modu-
lar decomposition is the partition that maximizes perturbation
modularity: π� = arg maxπ Qt (π,x).

Perturbation modularity [Eq. (2)], as well as optimal
modular decompositions, are state-dependent in that they are
defined relative to an initial condition x. Different criteria may
be used to determine the choice of this initial condition, such
as dynamical importance (e.g., an equilibrium state), particular
research interest, or random selection. Alternatively, the
modularity of entire state-space regions, rather than individual
states, can be measured as the expectation of perturbation
modularity over a distribution of initial conditions (e.g., by
averaging across the entire system state space). Similarly,
stochastic dynamical systems can be accommodated by taking
expectations over future state distributions. For simplicity,
however, these extensions are not considered in the present
work.

In addition to initial condition, perturbation modularity and
optimal decompositions also depend on the time scale t , which,
as mentioned, can act as a resolution parameter. When there is
not a time scale of a priori interest, optimal decompositions can
be identified at multiple resolutions by sweeping across a range
of time scales. Finally, the measure also depends on the kinds of
perturbations applied, as specified by E and P (ε). In practice,
perturbations can be selected according to domain knowledge
(e.g., typically encountered environmental perturbations) or
using “neutral” options (e.g., small increments to single
variables). In many cases, initial perturbations should be
localized to a small number of variables (i.e., the elements
of E are sparse) because the spread of perturbations is
more pronounced when only a few subsystems are initially
perturbed. As we will show, perturbations that simultaneously
affect many variables probe the system at larger scales and
uncover larger modules, providing another way to explore
decompositions at multiple resolutions.

Like other temporally localized methods [31], perturbation
modularity also depends on the norm used to measure perturba-
tion magnitude. Below, the �1 norm is used because it performs
well and permits connections to community detection methods
in graphs (see Supplemental Material [32] for definition of �p

norms).
Perturbation modularity is related to the Markov stability

method of community detection in graphs, which identifies
communities as subgraphs that trap random walkers [28,30].
Similarly to perturbation modularity, Markov stability sepa-
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rates diffusion dynamics into fast intracommunity and slow
intercommunity components. As shown in the Supplemen-
tal Material [32], perturbation modularity is equivalent to
Markov stability when the system of interest exhibits diffusion
dynamics, perturbations are homogenous increases to single
variables, and the �1 norm is used to measure perturbation
magnitude. More broadly, our approach can be seen as a
generalization of Markov stability to other dynamics.

In addition, �1 perturbation modularity on a dynamical sys-
tem is equivalent to directed weighted Newman’s modularity
[33,34] on a specially constructed graph (see Supplemental
Material [32]). In this graph, nodes correspond to system
variables and the edge from node i to node j has weight:

wij = E
[
m0

{i}(x,ε) mt
{j}(x,ε)

]
,

where the expectation is over P (ε) and the subscripts {i} and
{j} indicate single-variable subsystems. This mapping permits
perturbation modularity to be maximized using highly efficient
existing community detection algorithms (such as the Louvain
method [35,36] used for the examples below; code is available
online [37]).

Several criteria can be used to measure the quality of
identified decompositions. High-quality decompositions have
large perturbation modularity values (e.g., near 1 for �1 or �2

perturbation modularity; see Supplemental Material [32] for
derivation of bounds on perturbation modularity). Addition-
ally, high-quality decompositions are robust to small changes
in system and optimization parameters. This can be quantified
by measures of partition similarity like normalized mutual
information (NMI) [38], an information-theoretic measure that
ranges from 0 (maximally dissimilar partitions) to 1 (identical
partitions). In several of the examples below, we plot NMI
similarity between optimal decompositions identified at close
values of t ; high NMI values indicate modular organization
robust to small changes in time scale. Similar techniques are
used in the Markov stability literature to identify time scales
with robust decompositions [39].

We demonstrate our method on several examples of coupled
logistic maps, nonlinear discrete-time dynamical systems that
have been used to explore spatially extended chaos and pattern
formation [40]. Assume a system of N variables, with xi(t)
indicating the state of variable i at time t , and the transition
function:

xi(t + 1) = (1 − γ )g(xi(t)) + γ
∑

j �=i

kji

di

g(xj (t)), (3)

where g(x) = 1 − αx2 is the logistic map, parameter α ∈
[1,2] controls the chaoticity, parameter γ ∈ [0,1] controls the
coupling strength, “coupling matrix” elements kji determine
the influence of variable j on variable i, and di = ∑

j �=i kji

normalizes the coupling strengths. When variables are homo-
geneously coupled to nearest neighbors on a one-dimensional
ring lattice, these systems are called coupled map lattices
(CMLs) [40]. Coupled logistic maps display a rich variety
of spatiotemporal patterns in different parameter regimes
due to the interplay between intervariable coupling (which
“homogenizes” variable states) and chaos (which injects
variation into variable states).

FIG. 1. (Color online) System of 80 coupled logistic maps (α =
2,γ = 0.04) (a) The coupling matrix exhibits hierarchical modularity
at three levels. (b) The system is chaotic and no strong correlations
between variables are observed over 10 000 time steps. (c) Pertur-
bation modularity of optimal decompositions (PM, solid black) at
different time scales t and NMI between optimal decompositions at
successive times (dashed blue). Three time scale regions are robust
(NMI = 1, gray), corresponding to the three hierarchical levels of the
coupling matrix (insets).

We consider several examples of coupled logistic maps.
Unless otherwise noted, perturbations consist of a uniform
distribution over small increases to single variables: E =
{0.0001 · ei : i = 1, . . . ,N}, where ei is the ith N -dimensional
standard basis vector. The �1 norm is used to measure
perturbation size.

In Example 1, we uncover modular organization that is
present in a system’s coupling matrix, though not apparent in
the correlation statistics. Consider an N = 80 variable system
with chaotic dynamics (α = 2,γ = 0.04) and a hierarchical
modular coupling matrix [Fig. 1(a)]. The system is composed
of eight tightly coupled low-level modules (kji = 1) with 10
variables each, pairs of which are nested within four midlevel
modules (kji = 0.01), pairs of which are in turn nested within
two weakly coupled high-level modules (kji = 0.0001). A
random state is used as the initial condition.

Because the system is strongly chaotic for these values
of α and γ , there is no obvious “order parameter” for
identifying modular organization from system trajectories
[15]; for instance, variable states are largely uncorrelated over
10 000 time steps [Fig. 1(b)]. However, because perturbations
first spread within low-level modules, then midlevel modules,
and finally high-level modules, our method easily uncovers
the hierarchical modular organization. Figure 1(c) shows the
perturbation modularity (black) and NMI (dashed blue) for
optimal decompositions at different time scales. There are
three robust time scale regions, corresponding to each of
the three hierarchical levels of the coupling matrix [insets in
Fig. 1(c)]. Beyond time scale ∼50, perturbations have spread
between the high-level modules; at this point, optimal decom-
positions reflect random fluctuations in initial conditions, and
perturbation modularity and NMI values are near 0.

In Example 2, we investigate a more interesting case
in which modularity emerges in a homogeneously coupled
CML. In some parameter regimes, spatial variation in initial
conditions breaks the lattice coupling symmetry and leads
to the emergence of modular domains (contiguous lattice
regions) that constrain the spread of perturbations [41]. Such a
“modular” regime is investigated using a CML with N = 100
variables and weak coupling strength (α = 1.7,γ = 0.1). The
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 2. (Color online) Two 100-variable CMLs are compared:
one “modular” (top row; α = 1.7,γ = 0.1) and one “diffusive”
(bottom row; α = 1.9,γ = 0.6). (a, d) Spacetime plots of the effect
of a single-variable perturbation. A pixel is colored black if the
absolute difference between perturbed and unperturbed trajectory at
a variable (vertical axis) exceeds 1% of the size of the system-wide
perturbation at a given time (horizontal axis). (b, e) Spacetime plots
of the optimal decompositions at different time scales; color indicates
each variable’s subsystem. (c, f) Perturbation modularity of optimal
decompositions (PM, solid black) at different time scales t and NMI
between optimal decompositions at successive times (dashed blue).
Stable decompositions are observed in the modular CML (top row).

initial condition is set by iterating a random state for 10 000
time steps. Figure 2(a) shows the spacetime plot of the effect
of a single-variable perturbation to this initial condition: the
perturbation spreads to several nearby variables until t ∼ 50
but then remains confined within its domain. When computed
over a uniform distribution of single-variable perturbations,
our method uncovers robust modular organization for a large
range of time scales [Fig. 2(b)], with optimal decompositions
exhibiting high values of perturbation modularity and NMI
[Fig. 2(c)].

The above system can be compared to a CML in a
“diffusive” regime (α = 1.9,γ = 0.6). For these parameters,
the effects of perturbations spread freely across the lattice,
as shown in the spacetime plot of Fig. 2(d) (initial condition
is the same random state as in the modular CML iterated
for 10 000 time steps). This system does not exhibit robust
modular organization: optimal decompositions are not stable
[Fig. 2(e)], and optimal perturbation modularity and NMI
values are low [Fig. 2(f)]. Once the effects of perturbations
spread completely around the ring lattice at t ∼ 100, both
optimal perturbation modularity and NMI values are near 0.

In Example 3, we demonstrate state-dependent modularity
by tracking the gradual emergence of modular organization
over the course of a CML trajectory. The modular CML of
Example 2 (α = 1.7,γ = 0.1) was started from a random
state and iterated over a 12 000-step trajectory. The state
encountered after 10 000 time steps was previously used as the
initial condition in Example 2. Here we find optimal decom-
positions (time scale t = 300) when different states along the
aforementioned trajectory are used as initial conditions. Over
the course of the trajectory, optimal perturbation modularity
grows through a series of plateaus [Fig. 3(a)], indicating
the appearance of modular structures. Figure 3(b) shows
the optimal decompositions identified at different trajectory
steps. Variables ∼1−40 quickly form modular structures (by
trajectory step ∼2000), while variables ∼40−100 need almost

(a) (b)

FIG. 3. (Color online) State dependence in the modular CML.
For a 12 000-step trajectory starting from a random state, optimal
decompositions (time scale t = 300) are identified using states
along this trajectory as initial conditions. (a) Optimal perturbation
modularity (PM, solid black) grows with increasing trajectory
steps (horizontal axis), indicating the emergence of robust modular
structures. Trajectory step 10 000 (dotted green line) is the initial
condition in Examples 2 and 5. (b) Optimal decompositions identified
at different trajectory steps; color indicates the subsystem of each
variable (vertical axis).

7000 steps to do so. This provides an example of self-organized
modularity, or modular organization that emerges during a
system’s dynamical evolution.

Previously we showed that perturbation modularity cap-
tures the presence of stable modular structures in differ-
ent CML parameter regimes (Example 2) and that it can
uncover modular organization in a state-dependent manner
(Example 3). In Example 4, we use perturbation modularity to
characterize regions in the CML parameter space with respect
to the onset of modularity.

Specifically, we construct 100-variable CMLs with differ-
ent values of chaoticity (α) and coupling (γ ) parameters.
For these different parameter values, Fig. 4 shows optimal
perturbation modularity computed at three time scales (t =
100, t = 200, and t = 300) and two different classes of initial
conditions: random states [Figs. 4(a)–4(c)] and random states
iterated for 10 000 time steps [Figs. 4(d)–4(f)]. In all cases,
optimal perturbation modularity values were averaged across
10 random samples of initial conditions.

Several regimes of spatial organization can be identified
in the parameter phase maps. For α � 1.44, spatial domains,
which form even when the system is started from random
initial conditions, constrain the spread of perturbations over
long time scales; we call this the modular regime. For other
parameter values [e.g., 1.6 � α � 1.95,γ ∼ 0.1, the yellow
“tongue” in Figs. 4(d)–4(f)], modular domains only appear
when random states are iterated for many steps before being
used as initial conditions. This regime, which includes the
case studied in Example 3, we call self-organized modular.
Finally, for parameter values corresponding to the blue regions
in Fig. 4, which we call the diffuse regime, modular domains
are not present and perturbations spread freely. Here different
parameter values give rise to different diffusion speeds [41]: for
example, α = 1.9,γ = 0.7 exhibits no modular organization
at time scale t = 100; on the other hand, α = 1.9,γ = 0.2
maintains some modularity at t = 100, but this organization
disintegrates by t = 200.

Finally, in Example 5 we explore modularity’s dependence
on the kinds of perturbations applied. We again consider
the modular CML (α = 1.7,γ = 0.1) and initial condition of
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(a) (d)

(b) (e)

(c) (f)

FIG. 4. (Color online) Parameter phase map of CML. Perturba-
tion modularity (color) for optimal decompositions of 100-variable
CMLs with different values of chaoticity (α; horizontal axes) and
coupling strength (γ ; vertical axes). Perturbation modularity is
computed at three time scales for two different classes of initial
conditions: random states [(a) t = 100, (b) t = 200, and (c) t = 300]
as well as random states iterated for 10 000 time steps [(d) t = 100,
(e) t = 200, and (f) t = 300].

Example 2. Instead of perturbing single variables, we now
simultaneously perturb multiple variables in lattice-contiguous
“windows” of different sizes (variables simultaneously incre-
mented by 0.0001; all N windows are perturbed with uniform
probability); for illustration, Fig. 5(a) shows the effect of a
perturbation to a window of 20 variables. Figure 5(b) shows
that optimal decompositions (time scale t = 300) depend on
perturbation size. As more variables are perturbed, smaller
subsystems merge into larger subsystems in a hierarchical
manner.

Future work can pursue several extensions to our approach.
First, estimating perturbation modularity from real-world
datasets is of great practical interest; this can be investigated
by applying the method to fitted dynamical models (e.g.,
vector autoregressive or dynamical causal modeling [42])
or using nonparametric approaches. Second, it is possible
to explore other measures of decomposition quality beyond

(a) (b)

FIG. 5. (Color online) Perturbation dependence in the modular
CML. (a) Spacetime plot of the effect of a perturbation to a 20-
variable window (red arrows), as in Figs. 2(a) and 2(d). (b) Optimal
decompositions (time scale t = 300) for different perturbation sizes
(horizontal axis).

robustness to time scale, including robustness to changes in
initial conditions and kinds of perturbations; alternatively,
decomposition quality may be evaluated by testing the sta-
tistical significance of optimal perturbation modularity against
null-model ensembles of nonmodular dynamical systems [24].
Third, it is of interest to identify possible limitations of our
method, such as whether it is susceptible to the kinds of
resolution limits [43] and detectability thresholds [44] encoun-
tered by graph-based community detection methods. Finally,
future research can investigate other measures of perturbation
magnitude (e.g., different norms or divergence functions),
kinds of decompositions (e.g., overlapping subsystems), and
cost functions (beyond vector autocovariance). For example,
cost functions that capture the invertibility or sparsity of
coarse-grained dynamics could be used to decompose a system
into a mesoscopic “control diagram,” in which each subsystem
controls a small number of others.

To summarize, we identify modular decompositions of
multivariate dynamical systems based on the idea that modules
constrain the spread of perturbations. We propose a quality
function, called perturbation modularity, which can be used
to identify optimal coarse grainings that capture the slow
component of perturbation spreading dynamics. The method
generalizes graph-based community detection to a broad class
of nonlinear dynamical systems and provides a principled
alternative to detecting communities in network representa-
tions of dynamics. The method captures variation in modular
organization across different time scales, initial conditions, and
kinds of perturbations and offers a powerful tool for exploring
modularity in complex systems.
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