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Abstract—We participated (as Team 9) in the Article Classification Task of the Biocreative II.5 Challenge: binary classification of full-

text documents relevant for protein-protein interaction. We used two distinct classifiers for the online and offline challenges: 1) the

lightweight Variable Trigonometric Threshold (VTT) linear classifier we successfully introduced in BioCreative 2 for binary classification

of abstracts and 2) a novel Naive Bayes classifier using features from the citation network of the relevant literature. We supplemented

the supplied training data with full-text documents from the MIPS database. The lightweight VTT classifier was very competitive in this

new full-text scenario: it was a top-performing submission in this task, taking into account the rank product of the Area Under the

interpolated precision and recall Curve, Accuracy, Balanced F-Score, and Matthew’s Correlation Coefficient performance measures.

The novel citation network classifier for the biomedical text mining domain, while not a top performing classifier in the challenge,

performed above the central tendency of all submissions, and therefore indicates a promising new avenue to investigate further in

bibliome informatics.

Index Terms—Text mining, literature mining, binary classification, protein-protein interaction, citation network.
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1 BACKGROUND AND DATA

BIOMEDICAL research is increasingly dependent on the
automatic analysis of databases and literature to deter-

mine correlations and interactions among biochemical
entities, functional roles, phenotypic traits, and disease states.
The biomedical literature is a large subset of all data available
for such inferences. Indeed, the last decade has witnessed an
exponential growth of metabolic, genomic, and proteomic
documents (articles) being published [1]. Pubmed [2]
encompasses a growing collection of more than 18 million
biomedical articles describing all aspects of our collective
knowledge about the biochemical and functional roles of
genes and proteins in organisms. Biomedical literature
mining is a field devoted to integrating the knowledge
currently distributed in the literature and a large collection of
domain-specific databases [3], [4]. It helps us tap into the
biomedical collective knowledge (the “bibliome”), and un-
cover new relationships and interactions induced from global
information but unreported in individual experiments [5].

The BioCreAtIvE (Critical Assessment of Information
Extraction Systems in Biology) challenge evaluation is an
effort to enable comparison of various approaches to

literature mining. Its greatest value, perhaps, is that it
consists of a community-wide effort, leading many different
groups to test their methods against a common set of specific
tasks, thus resulting in important benchmarks for future
research [6], [7].

In most literature or text mining projects in biomedicine,
one needs first to collect a set of relevant documents for a
given topic of interest, such as protein-protein interaction.
But manually classifying articles as relevant or irrelevant to
a given topic of interest is very time-consuming and
inefficient for curation of newly published articles [4] and
subsequent analysis and integration. The problem of
automatic binary classification of documents has been
explored in several domains such as Web Mining [8], Spam
Filtering [9], and Document Classification in general [10],
[11]. The machine learning field has offered many solutions
to this problem [12], [11], including methods devoted to the
biomedical domain [4]. However, in contrast to perfor-
mance in well-prepared theoretical scenarios, even the most
sophisticated solutions tend to underperform in more
realistic situations such as the BioCreative challenge (for
example, by overfitting in the presence of drift between
testing and training data).

We participated (as Team 9) in the online and offline parts
of the Article Classification Task (ACT) of the BioCreative II.5
Challenge, which consisted of the binary classification of full-
text documents as relevant or nonrelevant to the topic of
protein-protein interaction (PPI). In most text mining
projects in biomedicine, one needs first to collect a set of
relevant documents, typically from information in abstracts.
To advance the capability of the community in this essential
selection step, binary classification of abstracts was the focus
of one of the tasks of the previous Biocreative classification
challenge [13]. For this challenge, the objective was instead to
classify full-text documents, which allowed us to evaluate
the possible additional value of full-text information in this
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selection problem. The ACT subtask in BioCreative II.5, in
particular, aimed to evaluate classification performance
between relevant and irrelevant documents to PPI. Natu-
rally, tools developed for ACT have great potential to be
applied in many other literature mining contexts. For that
reason, we used two very general classifiers which could
easily be applied to other domains and ported to different
computer infrastructure: 1) the lightweight Variable Trigono-
metric Threshold (VTT) linear classifier we successfully
introduced in the abstract classification task of BioCreative 2
(BC2) [5] and 2) a Naive Bayes classifier using features
extracted from the citation network of the relevant literature.

We participated in the online submission with our own
annotation server implementing the VTT algorithm via the
BioCreative MetaServer platform. The Citation Network
Classifier (CNC) runs were submitted via the offline
component of the Challenge. We should note that VTT
does not require the use of specific databases or ontologies,
and so can be ported easily and applied to other domains.
In addition, since full-text data contains a wealth of citation
information, we developed and tested the novel CNC on its
own and integrated with VTT.

We were given 61 PPI-relevant and 558 PPI-irrelevant
full-text training documents. We supplemented this data by
collecting additional full-text documents appropriately
labeled in the previous BC2 training data [13] as well as
in the MIPS database [14]. For VTT training purposes, we
created two data sets: the first contained exactly 4� 558 ¼
2;232 documents, where the PPI-relevant set comprises
558 documents from BC2 plus 558 oversampled instances of
the 61 relevant documents from this challenge. The PPI-
irrelevant set comprises 558 documents from BC2 and the
558 irrelevant documents provided with this challenge. The
second training set contains 370 PPI-relevant documents
extracted from MIPS and 370 randomly sampled irrelevant
documents from BC2.

2 VARIABLE TRIGONOMETRIC THRESHOLD

CLASSIFICATION

2.1 Word Pair and Entity Features

Since classification had to be performed in real time for the
online part of this challenge, we used the lightweight VTT
method that we had previously developed [5] for Biocrea-
tive 2. This method, loosely inspired by the spam filtering
system SpamHunting [15], is based on computing a linear
decision surface (details below) from the probabilities of
word-pair features being associated with relevant and irrele-
vant documents in the training data [5]. A reason for the
lightweight nature of VTT is that such word-pair features can
be computed from a relatively small number of words. We
used only the top 1,000 wordsW obtained from the product of
the ranks of the TF.IDF measure [16] averaged over all
documents per word w, and a score SðwÞ ¼ jpTP ðwÞ �
pTNðwÞj that measures the difference between the probabil-
ities of occurrence in relevant ðpTP ðwÞÞ and irrelevant
ðpTNðwÞÞ training set documents (after removal of stop
words1 and Porter stemming [17]). All incoming full-text

documents were converted into ordered lists of these
1,000 words, w 2W , in the sequence of occurrence in the
text. The simplified vector representation and preprocessing
of incoming full-text documents makes this method light-
weight and appropriate for the online part of this challenge.

Words with the highest score S tend to be associated with
either positive or negative abstracts and are assumed to be
good features for classification. Since in this challenge we
were dealing with full-text documents, rather than abstracts
as in the previous BC2 challenge, in addition to the S score
we also used the TF.IDF rank to select the best word features.
Specifically, we used the rank product [18] of TF.IDF with the
S score, which resulted in better (k-fold) classification of the
training data than using either score alone. The top 15 words
were: immunoprecipit, 2gpi, lysat, transfect,

interact, domain, plasmid, vector, mutant, fu-

sion, bead, antibodi, pacrg, two-hybrid, yeast.
From word set W , we computed short-window (SP) and

long-window (LP) word-pair features ðwi; wjÞ. SP refers to word-
pair features comprising adjacent words in the ordered lists
that represent documents2; the order in which words occur is
preserved, and therefore, ðwi; wjÞ 6¼ ðwj; wiÞ. LP features
refer to word pairs composed of words that occur within
10 words of one another in the ordered lists; in this case, the
order in which words occur is not important, therefore
ðwi; wjÞ ¼ ðwj; wiÞ. We also computed the probability that
such word pairs appear in a positive or negative document:
pTP ðwi; wjÞ and pTNðwi; wjÞ, respectively. Fig. 1 depicts the
1,000 SP features with largest Sðwi; wjÞ ¼ jpTP ðwi; wjÞ �
pTNðwi; wjÞj plotted on a plane where the horizontal axis is
the value of the probability of occurrence in a relevant
document, pTP ðwi; wjÞ, and the vertical axis is the value of the
probability of occurrence in an irrelevant document
pTNðwi; wjÞ; we refer to this as the pTP=pTN plane. Table 1
lists the top 15 SP and LP word pairs for score Sðwi; wjÞ.
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Fig. 1. One thousand SP features with largest Sðwi; wjÞ on the pTP =pTN
plane. The size of the font is proportional to the value of Sðwi; wjÞ.

1. The list of stopwords removed: i, a, about, an, are, as, at, be, by, for,
from, how, in, is, it, of, on, or, that, the, this, to, was, what, when, where,
who, will, the, and, we, were. Notice that words “with” and “between”
were kept.

2. Notice that the ordered lists representing documents contain only
words in set W .



In our previous application of this method in the BC2
challenge [5], we used as an additional feature the number
of proteins mentioned in abstracts, as identified by the
entity recognition tool ABNER [19]. However, since in this
challenge we were dealing with full-text documents, it was
not clear if such relevant entity counts would help the
classifier’s performance as much as they did when classify-
ing abstracts in BC2—especially since ABNER itself is
trained only on abstracts. Therefore, we focused on
counting entity occurrences in specific portions of docu-
ments such as the abstract, the body, figure captions, table
captions, as well as combinations of these. In addition to
protein mentions recognized by ABNER, we tested many
other entities identified by ABNER and an ontology-based
annotator (which matched terms in text to PPI terms
extracted from the Gene Ontology, the Protein-Protein
Interaction Ontology, the Protein Ontology, and the Disease
Ontology). Since the additional ABNER and ontology-based
features did not lead to the identification of entity features
that seemed to distinguish PPI-relevant from irrelevant
documents (as discussed below), we do not describe the
process of extracting such features here.

The only entity feature that proved useful in discriminating
relevant and irrelevant documents in the training data was
the count of protein mentions in abstracts and figure captions
as recognized by ABNER. Fig. 2 depicts a comparison of the
counts of ABNER protein mentions in two specific portions
of all documents of the Biocreative II.5 training data: the
body, and the abstract plus figure captions. As can be seen,
the counts of protein mentions in the body of the full-text
documents in the training data does not discriminate
between relevant and irrelevant documents. In contrast, the
same counts restricted to abstracts and figure caption
passages are different for relevant and irrelevant documents.
We used this type of plot to identify which features and

which document portions behaved differently for relevant

and irrelevant documents; only the counts of ABNER protein

mentions in abstracts and figure captions were sufficiently

distinct between the two classes. Based on observations of

plots such as those depicted in Fig. 2, we decided not to test

those additional features on training data. It is not possible

for us to identify exactly why the entity count features we

tested failed to discriminate between documents labeled

relevant and irrelevant in the training data. Because we had

402 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 3, JULY-SEPTEMBER 2010

TABLE 1
Top 10 SP and LP Word-Pair Features Ranked by S Score

Fig. 2. Comparison of the counts of protein mentions as identified by
ABNER in distinct passages of documents in the training data.
(a) depicts the counts of ABNER protein mentions in the body section,
whereas (b) depicts the counts of ABNER protein mentions in figure
captions and abstracts. In these figures, the horizontal axis represents
the number of mentions x, and the vertical axis the probability pðxÞ of
documents with at least x mentions. The blue circles denote documents
labeled relevant, while the red squares denote documents labeled
irrelevant; the green triangles denote the difference between blue and
red lines.



no access to annotations of protein mentions on the full-text
corpus, we cannot compute the failure rates of the entity
recognition tools we used (i.e., ABNER).

2.2 Methods

The ideal word-pair features in the pTP=pTN plane are those
closest to either one of the axes. Any feature w is a vector on
this plane (see Fig. 3), and therefore feature relevance to each
of the classes can be measured with the traditional trigono-
metric measures of the angle (�) between this vector and the
pTP axis: cosð�Þ is a measure of how strongly features are
associated with positive/relevant documents, and sinð�Þ
with negative/irrelevant ones in the training data. Then, for
every document d, we compute the sum of all feature
contributions for a positive (P) and negative (N) decision:

P ðdÞ ¼
X
w2d

cosð�ðwÞÞ ¼
X
w2d

pTP ðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
TP ðwÞ þ p2

TNðwÞ
q ;

NðdÞ ¼
X
w2d

sinð�ðwÞÞ ¼
X
w2d

pTNðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
TP ðwÞ þ p2

TNðwÞ
q :

ð1Þ

The decision of whether document d is a member of the
PPI-relevant (TP) or irrelevant(TN) set of documents is then
computed as:

d 2 TP; if
P ðdÞ
NðdÞ � �0 þ

� �
P

k nkðdÞ
�

;

d 2 TN; otherwise;

8<
: ð2Þ

where �0 is a constant threshold for deciding whether a
document is positive/relevant or negative/irrelevant. This
threshold is subsequently adjusted for each document d
with the factor ð� �

P
k nkðdÞÞ=�, where � is another

constant, and
P

k nkðdÞ is a series of counts of topic-relevant
entities in document d. As discussed above, the only entity
that proved useful in discriminating between relevant and
irrelevant documents in the training data of the BC II.5
challenge was the ABNER-recognized count of protein
mentions in abstracts and figure captions. Therefore, in this
case,

P
k nkðdÞ becomes simply npðdÞ, which is the number

of protein mentions in the abstract and figure captions of d.
In (2), the classification threshold linearly decreases asP
k nkðdÞ increases. The assumption is that the more relevant

entities are recognized in a document, the higher the chances
that the document is relevant. In this case, this means that the

higher the number of ABNER-recognized protein mentions,
the easier it is to classify a document as PPI-relevant;
conversely, the lower the number of protein mentions, the
easier it is to classify a document as PPI-irrelevant. WhenP

k nkðdÞ ¼ �, the threshold is simply �0. We refer to this
classification method as Variable Trigonometric Threshold
(VTT). Examples of the decision surface for training data
are depicted in Figs. 4 and 5, and are explained in Section 2.3.

A measure of confidence in the classification decision for
ranking documents is naturally derived from (2): confi-
dence should be proportional to the value

�ðdÞ ¼ P ðdÞ
NðdÞ � T ðdÞ
����

����;

where T ðdÞ ¼ �0 þ
� �
P

k
nkðdÞ

� is the threshold point for
document d. Thus, the further away from the decision
surface a document is, the higher the confidence in the
decision. Therefore, �ðdÞ is a measure of distance from a
document’s ratio of feature weights ðP ðdÞ=NðdÞÞ to the
decision surface or threshold point for that document, T ðdÞ.
Since BC II.5 required a confidence value in [0, 1], we used
the following measure of confidence of the decision made
for a document d:

CðdÞ ¼ �ðdÞ
maxd �ðdÞð Þ ; ð3Þ

where maxd�ðdÞÞ is the maximum value of distance delta
found in the training data. If a test document dt results in a
�ðdtÞ that is larger than maxd�ðdÞ, CðdtÞ ¼ 1. In BC II.5, we
ranked positive documents by decreasing value of C,
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Fig. 3. Trigonometric measures of term relevance in the PTP =PTN plane;
PTP and PTN computed from labeled documents d in training data.

Fig. 4. VTT decision surface for �0 ¼ 1:625 and � ¼ 36 for the
documents in four- of the eightfolds of the first training data set, using
SP feature set (parameters used in Run 3). Horizontal axis corresponds
to the value of P ðdÞ=NðdÞ and vertical axis corresponds to the value of
npðdÞ, for each document d. Black (documents from BC II.5 challenge)
and gray (documents from BC2 challenge) circles represent positive
documents, whereas red (documents from BC II.5 challenge) and
orange (documents from BC2 challenge) circles represent negative
documents.



followed by negative documents ranked by increasing
value of C.

2.3 Training

Training of the VTT classifier consisted of exhaustively
searching the parameters �0 and � that define its linear
surface, while doing k-fold cross-validation (K ¼ 8) on both
of the training data sets described in Section 1: the first with
documents from the BC2 and BC II.5 challenges, and the
second with additional MIPS data. We swept the following
parameter range: �0 2 ½0; 10� and � 2 ½1; 100�, in steps of
�� ¼ 0:025 and �� ¼ 1. For each (�0; �) pair, we computed
the mean of the Balanced F-Score (F1) and Accuracy measures
for the eightfolds of each training data set.3

Given the two training data sets and two performance

measures, we chose VTT parameter sets to be those that

minimized the product of ranks obtained from computing

each performance measure on a specific training data set.

More specifically, we computed four ranks for each

classifier tested in the parameter search stage: rT1

F and

rT1

A rank according to the mean value of F-Score and

Accuracy in the eightfolds of the first training data set,

respectively; rT2

F and rT2

A rank according to the mean value

of F-Score and Accuracy in the eightfolds of the second

training data set, respectively. We then ranked all

classifiers tested according to the rank product of these

four ranks: R ¼ ðrT1

F � r
T1

A � r
T2

F � r
T2

A Þ
1=4 [18]. This procedure

was performed for the two distinct word-pair feature sets:

SP and LP. Our training strategy was based on a balanced

scenario with equal numbers of positive (PPI-relevant)

and negative documents. We then submitted five runs to

the online challenge:

1. Best parameter set for SP features, which was the top
performer in the first training data set (data from
BC2 and BC II.5) when using SP features.

2. Best parameter set for LP features, which was the top
performer in both training data sets when using LP
features.

3. Second-best parameter set for SP features, which
was the top performer in the second training data set
(data from MIPS) when using SP features.

4. Best parameter set for SP features without the
variable threshold computed from ABNER’s entity
recognition (npðdÞ ¼ �), and trained only on the first
training data set (no MIPS data).

5. Best parameter set for LP features without the
variable threshold computed from ABNER’s entity
recognition (npðdÞ ¼ �), and trained only on the first
training data set (no MIPS data).

The VTT parameter sets for these five runs are summar-
ized in Table 2. Figs. 4 and 5 depict the VTT decision
surfaces with some of the submitted parameters for the two
training data sets and word-pair features.

2.4 Results

During the online part of the challenge, two minor technical
issues arose. The first was an inconsistency in the Unicode
decoding of online-submitted documents that caused some
features not to be extracted correctly. The second was a
caching problem that caused miscalculation of ABNER
counts (entity feature, see Section 2.1) for many documents.
Despite these errors, all of the submitted runs performed very
well. The official scores of the five runs against the online test
set are provided in Table 3. After the challenge, we corrected
the Unicode and ABNER cache errors and computed new
performance measures for the same five classifier parameters
(see Table 2).4 The corrected scores are shown in Table 4.

Notice that the resubmitted runs did not entail retraining
the classifiers using information from the test data available
after the challenge. Indeed, we used the same VTT para-
meters in the original and resubmitted runs (Table 2), as
obtained by the reproducible training algorithm described in
Section 2.3. We present the corrected results to demonstrate
the merits of the method computed without errors, especially
because it is important to determine the benefits of using
entity recognition via ABNER, the algorithm component
which was most directly affected by the errors.
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TABLE 2
VTT Parameters for Online Runs

3. Accuracy ¼ TPþTN
TPþFPþTNþFN and F1 ¼ 2:TP

2TPþFPþFN , where TP , TN , FP ,

and FN refer to true positives, true negatives, false positives, and false

negatives, respectively.

4. We used the gold standard and evaluation script provided by the
competition organizers after the BC II.5 challenge; we added the calculation
of Precision, Recall, and Balanced F-Score.

Fig. 5. VTT decision surface for �0 ¼ 1:525 and � ¼ 72 for the
documents in one of the eightfolds of the second training data set,
using the LP feature set (parameters used in Run 2). Horizontal axis
corresponds to the value of P ðdÞ=NðdÞ and vertical axis corresponds to
the value of npðdÞ, for each document d. Black circles represent positive
documents (from MIPS), whereas red circles represent negative
documents (from the BC II.5 Challenge).



Because there are various ways to measure misclassifica-
tion (types I and II) errors given the confusion matrix of (the
number of) True Positives (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN), there is no
perfect way to characterize the performance of binary
classifiers [20]. Therefore, it is important to compute
performance using various measures [21]. One reasonable
way to obtain an overall ranking of performance of a binary
classifier c is to combine a few standard measures via the
rank product [18]:

RP ðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yk
m¼1

rc;m
k

vuut ; ð4Þ

where k is the number of measures considered and rc;m is
the rank of the performance of classifier c according to
measure m. The best classifiers are then those that minimize
overall RP .

To provide a well-rounded assessment of performance
using the rank product, well-established performance
measures with distinct characteristics are needed. The
Biocreative II.5 challenge evaluation relies on various
measures of performance; we center our discussion on four
of them: Area Under the interpolated precision and recall Curve
(AUC), Accuracy, Balanced F-Score (F1), and Matthew’s
Correlation Coefficient (MCC). AUC [22], [23] was the
preferred performance measure for this challenge as it is
robust and ideal for evaluating the quality of ranked results
for all recall percentages. Nonetheless, it does not account
directly for misclassification errors; for instance, the runs
submitted by team 135 labeled every document as positive,
yet had the sixth best AUC in the challenge (r13;AUC ¼ 6,
after runs from team 206 and our own team 9). Accuracy is
the proportion of true results, which is a standard measure
for assessing the performance of binary classification [20],
[21]. F1 is also a standard measure of classification
effectiveness [20]; it is a balanced measure of the proportion
of correct results from the returned results (precision) and
from those that should have been returned (recall). Because
F1, unlike Accuracy, does not depend on the number of true
negatives, it is important to take into account both
measures, especially in the unbalanced scenario of this
challenge where the abundance of negative (irrelevant)

articles leads to high values of the Accuracy measure for
classifiers biased for negative classifications [21]. The MCC
measure7 [24] is a well-regarded measure for binary
classification and very well suited for unbalanced class
scenarios such as this challenge [21].

These four measures assess distinct aspects of binary
classification, thus yielding a well-rounded view of perfor-
mance when combined via the rank product of (4). There is
no need to include other performance measures such as
sensitivity and specificity in the set of measures in our
performance rank product: sensitivity is the same as recall,8

already taken into account by the F-Score, and specificity (or
True Negative Rate) is of little utility when classes are
unbalanced with many more negative (irrelevant) docu-
ments, as in this challenge. Moreover, including these two
measures in our rank product does not change the rank of
the top two performing runs for the entire challenge (for
original or resubmitted runs).

All five of our submitted runs were well above the central
tendency of the runs submitted by all teams (in the collection
of online and offline submissions). Indeed, the performance
of all of our submitted runs is above the 95 percent
confidence interval of the mean of all submitted runs. Table 5
depicts the central tendency and variation of the perfor-
mance measures for the runs submitted to the challenge by
all participating groups. Table 6 shows the overall top five
original runs submitted to the ACT of the BC II.5 Challenge,
ranked in increasing value of the rank product of (4). Table 7
shows the overall top five runs after correction of the
Unicode and ABNER cache errors.

According to the rank product of the four measures
discussed above, our corrected, postchallenge Run 10 is the
top classifier, followed by the best run from team 20 and our
other four runs (50, 40, 20, 30, respectively). If we do not
consider our resubmitted runs, then the best run from team
20 is the top performer, followed by our submitted official
Runs 5, 4, and 1, followed by three runs from Team 31.9

Therefore, even without considering our resubmitted runs,
the VTT classifier was one of the top two performers overall.

Looking at the four measures of performance individu-
ally, of the original submissions, VTT Run 5 was the top
performer for MCC and F1, while VTT Run 4 was the top
performer for Accuracy and second-best for AUC—after
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TABLE 4
VTT Scores after Unicode and ABNER Cache Correction

TABLE 3
Official VTT Scores for Online Runs

5. Hongfang Liu’s team at Georgetown University.
6. Kyle Ambert and Aaron Cohen at Oregon Health & Science

University.

7. MCC ¼ ðTP:TN�FP:FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFP ÞðTPþFNÞðTNþFP ÞðTNþFNÞ
p .

8. TP
TPþFN .

9. The team of Yonggang Cao, of the University of Wisconsin-
Milwaukee.



team 20. When we consider the resubmitted runs, VTT
Run 10 was the top performer for Accuracy, MCC, and F1,
while VTT Run 40 achieved the best AUC score—which was
the preferred performance measure in the challenge.
However, when we consider the other performance
measures, this classifier was not our best performer. Using
the rank product measure, we conclude that the parameter
set used for Run 1, once properly computed in Run 10, leads
to the most well-rounded classifier and the top performer
for Accuracy, MCC, and F1, while at the same time
obtaining a quite good AUC score.

The presence of the entity (ABNER) counts feature
differentiates Runs 1 and 4. We observe that using this
feature led to the most well-rounded submission (Run 10), but
not using it led to the best AUC measurement (Run 40). We
also observe that the use of additional MIPS data for training
purposes did not lead to any improvement in this challenge,
as the parameter sets for Runs 1 and 4 were also the best
found for the first data set alone. Moreover, Run 3 (and 30),
which used the best parameter set for training on MIPS data,
was our worst performer. Finally, we do not observe a
distinct benefit of using one or the other type of word-pair
features: while the SP feature set was used in our best run (10),
the LP feature set was used in our second-best run (50). Figs. 6
and 7 depict in graphical form the performance of our
submissions for the four performance measures above, in
comparison with the other top performer (the classifier from
Team 20) in the ACT component of this challenge.

3 CITATION NETWORK CLASSIFIER

3.1 Method

We also developed the Citation Network Classifier (CNC) to
identify PPI-relevant articles using features extracted from
citations and additional information derived from the
citation network of the bibliome. We did not employ this
classifier in the online part of the challenge because citation
information was only available in the offline, XML version
of the test set. Its lightweight performance, however, makes
it suitable for real-time classification.

We implemented this method using a Naive Bayes
classifier on the following equally weighed citation features:
1) cited PubMed IDs (PMIDs), 2) citation authors, and
3) citation author/year pairs. We calculated pðClass ¼
PPIjFeature ¼ fÞ and pðClass ¼ non-PPIjFeature ¼ fÞ
for the features found in the documents in the training
set, smoothed the distributions using Laplace’s rule
(smoothing parameter of 0.01), and selected the top features
using their Chi-square rank (top 75,000 features in Runs 1, 2,
4, and 5, and the top 17,5000 in Run 3). Additionally, during
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TABLE 5
Central Tendency and Variation of Performance Measures for

All Submissions to the ACT of the BC II.5 Challenge

TABLE 6
Rank Product Performance of Top Five Original Submissions to

the ACT of the BC II.5 Challenge

Also shown are individual ranks for the four constituent performance
measures.

TABLE 7
Rank Product Performance of Top Five Submissions to the ACT

of the BC II.5 Challenge, after Unicode and ABNER Cache
Correction

Also shown are individual ranks for the four constituent performance
measures.

Fig. 6. Accuracy and AUC performance of VTT runs in comparison with
the other top performing submission (group 20). The portion of the plane
shown is well above the 95 percent confidence interval of the mean for
all submissions to the ACT of the BC II.5 challenge. Blue diamonds
represent the official VTT online submissions, and the red squares
represent the same runs after fixing Unicode and ABNER cache errors.
The green triangle represents the other top performer in this challenge.

Fig. 7. MCC and F1 performance of VTT runs in comparison with the
other top-performing submission (group 20). The portion of the plane
shown is well above the 95 percent confidence interval of the mean for
all submissions to the ACT of the BC II.5 challenge. Blue diamonds
represent the official VTT online submissions, and the red squares
represent the same runs after fixing the Unicode and ABNER cache
errors. The green triangle represents the other top performer in this
challenge.



scoring we treated each document’s own authors as if they
were cited by that article three times; this allowed author-
ship information to be included and play a role in
improving classifier performance.

During classification, each document was assigned to the
class with the Maximum A Posteriori probability (MAP
decision rule) given that document’s features. An unin-
formative equiprobable class prior was used. Additionally,
IðClass;FeaturesÞ—the mutual information between a doc-
ument’s class and citation features—was used as a
classification confidence score. It was calculated as the
decrease in uncertainty (entropy) between the prior and
posterior class distributions:

IðClass;FeaturesÞ ¼ HðClassÞ �HðClassjFeaturesÞ:

Because the uncertainty present in the prior class distribu-
tion of a binary classifier is at most 1 bit, and because entropy
is always positive and does not increase under conditioning
[25], this quantity naturally falls in the unit interval.

One significant issue encountered during the implemen-
tation of this classifier was the lack of an easily accessible
database of biological citations, or a comprehensive
repository of parsable biological articles from which one
could easily be built. We created our own citation database
using a combination of scraping and parsing scripts.
Starting from a list of PMID from the training data for
which citation data were needed, we queried PubMed for
publication information and then attempted to locate and
download articles in PDF format from journal Websites.
When a PDF version of an article was retrieved, its raw
textual content was first obtained using the pdf2text

converter, then the parsCit parser [26] was used to extract
XML-formatted bibliographic references. Successfully
parsed reference data were converted into PMIDs using
the PubMed search API, which resulted in a list of cited
PMIDs for each initial PMID. Our scripts were initially run
on articles cited by documents in the BC II.5 training set;
further iterations then looked for articles cited by those
articles, and so on recursively. Using this method, we
acquired approximately 18,500 PDF files, from which
approximately 16,000 PMIDs, 31,6000 referenced PMIDs,
and 637,500 citations were extracted.

The set of cited articles and authors to be found in test
data is potentially enormous. Moreover, the training data
provides class information (P ðClassjFeatureÞ distributions)
for only a small number of citation features. Using
cocitations allowed this class information to diffuse over
the links of the harvested citation network. For this purpose,
we used a cocitation measure from feature A to feature B:

!ðA;BÞ ¼ # times feature A is cocited with feature B

# times feature A is cocited total
:

When a citation feature without class information was
found in a test article, its class distribution was approxi-
mated as a linear combination of the weights of the edges to
its neighbors in a cocitation network defined by the !ðA;BÞ
measure described above. This network was built using the
three types of citation features—PMIDs, authors, and
author/year pairs. Feature cocitations that occurred only
once were eliminated in all our runs. It should be noted that
the cocitation network is a directed weighted graph, since
the cocitation measure above is not symmetric. An
asymmetry would result if one article or author was usually
cited in combination with another, but the latter was also

cited in many cases where the former was not. In this
situation, the former would have a stronger ! weight to the
latter than vice versa.

Finally, we also integrated the CNC with the VTT
classifier, configured with the parameter values used in our
online submission 4. This was done in the following manner:
if the distance of a document to the decision surface of VTT,
as quantified by the �ðdÞ measure explained in Section 2.2,
was above a certain constant, the VTT result was used;
otherwise, class membership was decided by the classifier
with largest confidence (VTT or CNC). In that case, the
combined confidence was the sum (difference) of the
confidence values of the two classifiers when they agreed
(disagreed) in their class label assignment, divided by 2.

3.2 Results

The CNC was trained on the combination of the
Biocreative II.5 training set (595 documents10) and the
Biocreative 2 training set (5,495 documents). The 10 most
informative features found by CNC are listed in Table 8.
The PubMed IDs in this table refer to two highly cited
protein-related—but not PPI-related—articles ([27], [28]),
which were found frequently in the negative training data.
Among the other authors listed, Elledge SJ, Fields S,
and Cooper JA have all published important works in the
PPI domain, while the remaining have published exten-
sively in proteomics-related (but again, not PPI-related)
literature.

We submitted five runs to the offline challenge:

1. Naive Bayes classifier using the top 75,000 citation
features.

2. Same as (1) but where citation features are supple-
mented with the cocitation weight !.

3. Same as (2) but with top 175,000 citation features.
4. Same as (1) but in combination with VTT as

described above, using a VTT confidence cutoff
parameter of 0.35.

5. Same as (2) but in combination with VTT as
described above, using a VTT confidence cutoff
parameter of 0.35.

The parameter sets for these runs are listed in Table 9.
Table 10 shows the official performance for these five runs
submitted to the offline challenge.
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TABLE 8
Highest Scoring Features Found by the CNC Algorithm

10. While the initial training set released for BC II.5 contained 61þ 558 ¼
609 articles, a subsequent version of the training set contained only 61þ
534 ¼ 595 articles. We used the first set in the training of VTT for the online
challenge, but the more recent one in the training of CNC for the offline
challenge.



The performance of the offline CNC runs was lower than
what we obtained for VTT in the online part of the challenge.
Nonetheless, for most performance measurements, these
runs were still above the mean value for all submissions to the
BC II.5 challenge; all of F1 and most of the MCC measure-
ments were above the median value, and all measurements of
Accuracy were above the 95 percent confidence interval of the
mean. Runs 4 and 5, which combined CNC with VTT, lead to
measurements of AUC, Accuracy, MCC, and F1 above the
95 percent confidence interval of the mean, though still below
the online submissions with VTT alone. Interestingly, these
runs also lead to the top two measurements of Precision at Full
Recall (P at Full R) for the entire challenge, both well above the
99 percent confidence interval of the mean of all submissions.
While the P at Full R measure is not a measure of overall good
performance for binary classification, this result shows that
integrating CNC with VTT leads to an improvement in the
rate of misclassifications, if we want to guarantee full recall
(retrieval of every relevant document). Fig. 8 depicts in a
graphical form the performance of all our submissions for the
F1 and P at Full R measures.

Unfortunately, after the challenge, we discovered several
issues that affected the performance of our CNC submissions
in the offline ACT challenge. First, some improperly parsed
data needed to be removed from the citation network
database. More importantly, the classifier’s AUC scores
were diminished because the original CNC confidence score
was not properly normalized; the mutual-information-based
confidence score calculation was only corrected postchal-
lenge. In addition, two parameters were added in order to
increase cocitation algorithm speed and decrease the spread
of spurious correlations: for features lacking class distribu-
tions, one parameter limited potential cocitation neighbors to
only a given number of top trained features (as ranked by
Chi-squared score), while the other parameter limited
cocitation links to cases where ! was above a certain
threshold. The settings of these parameters—800 top features
and an ! threshold of 0.3—were chosen by picking

parameter values that maximized F1 scores when tested on
the BC II.5 training set after training on the BC2 training set.

Revised scores for the CNC are shown in Table 11, where
we can see that the performance obtained for the four most
important measures improved. Though the performance of P
at Full R slightly declined, it still remained well above the
performance of all other submissions to the challenge. From
the difference between Run 10 and Run 20, as well as Run 40

and Run 50, we also observe that including cocitation data
reduced the number of false positives, resulting in an
improvement in Accuracy and AUC. However, in terms of
the rank product measure of performance (4), this improve-
ment is marginal: RP ðCNCRun50 Þ ¼ 14:8; RP ðCNCRun40 Þ ¼
14:9; RP ðCNCRun20 Þ ¼ 18:7; RP ðCNCRun10 Þ ¼ 20:7, w h e r e
these runs ranked 13th, 14th, 18th, and 19th, respectively,
out of 37 total runs submitted to the ACT of the BC II.5
challenge. Interestingly, even with the postchallenge
changes, combining CNC with the VTT algorithm using a
VTT confidence cutoff parameter of 0.35 improved CNC
performance but could not outperform VTT by itself. This
was the case even in trials when CNC was mixed with VTT
scores at a very low confidence level (not shown).
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TABLE 9
CNC Parameters for Offline Runs

TABLE 10
Official CNC Scores for Offline Runs

Fig. 8. F1 and P at Full R performance of offline CNC runs in comparison
with the other top performing submission (group 20). Also shown as an
orange rectangle is the 95 percent confidence interval of the mean for all
submissions to the ACT of the BC II.5 challenge, for these two
performance measures. The black cross denotes the mean value, and
the gray star the median. Blue diamonds represent the official VTT
online submissions, and the red squares represent the same runs after
fixing the Unicode and ABNER cache errors. Blue circles represent the
CNC runs; we can see that Runs 4 and 5 are clearly top according to the
P at Full R performance measure. The green triangle represents the
other top performer in this challenge.

TABLE 11
CNC Scores after Algorithm Corrections



4 DISCUSSION AND CONCLUSION

From our previous work [5], we knew that the lightweight
VTT method performed well in the classification of PPI-
relevant abstracts. Given our results in the ACT of the BC II.5
challenge, we can now conclude that it also performs very
well in a full-text scenario. Indeed, the VTT classifier, when
corrected for the minor errors discussed in Section 2.4, was
able to outperform every other submission to this challenge
according to the rank product of the four main performance
measures (Table 7). Even when considering the official VTT
submissions (with Unicode and ABNER cache errors), the
best VTT run was the second-best submission of the entire
challenge according to the same measure (Table 6); see
Section 2.4 for details. Interestingly, VTT uses only a small
number of words extracted from the text (1,000), minimal
entity recognition (protein mentions via the off-the-shelf
ABNER [19]), and a linear decision surface. Yet, this method
was very competitive against more sophisticated systems in
both the Biocreative 2 [5] and Biocreative II.5 challenges.

Perhaps, the key to the success of this lightweight method
in this challenge is the “real-world” nature of the BioCreative
data sets. Because the testing and training data are obtained
in realistic annotation and publication scenarios, rather than
sampled from prepared corpora with statistically-identical
feature distributions, more sophisticated machine learning
classifiers tend to overfit the training data without general-
izing as well the “concept”of protein-protein interaction
from the bibliome. The drift between training and testing
data was a real issue in BC2 [5], and we have evidence that
the same may have occurred in the BC II.5 challenge.

We trained a classical classifier to distinguish between the
training and testing corpora. Specifically, we used fourfold
cross-validation to train on subsets of articles from the BC II.5
training and testing sets, now labeled according to member-
ship in the training or testing sets rather than PPI-relevance
or irrelevance. Classifier features were selected, after Porter-
stemming and stop-word-removal, as the top 1,000 single
words ranked according to their information-gain score [29].
Document vectors, with those same information-gain scores
for term weights, were used to train a Support Vector
Machine (SVM) classifier (we used the SVM-light package
[30] with a linear kernel and default parameters). According
to F-Score and AUC measures, the two corpora can be
classified and are therefore sufficiently distinct, exhibiting a
significant amount of drift. When we used only PPI-relevant
articles from the training and testing data, the SVM classifier
obtained: F1 ¼ 0:63 and AUC ¼ 0:76. When we used only
PPI-irrelevant articles, the SVM classifier obtained: F1 ¼ 0:54
and AUC ¼ 0:78. When we considered both PPI-relevant
and irrelevant articles, the SVM classifier obtained: F1 ¼ 0:63
and AUC ¼ 0:79. All scores were averaged over eight
fourfold runs. If the training and testing data were indis-
tinguishable (drawn from the same statistical distribution),
AUC and F-Score would be near 0.5. Clearly, this is not the
case with this data, nor should it be expected from the real-
world scenario of BC II.5. We also see that drift occurs for
both PPI-relevant and irrelevant articles.

Figs. 4 and 5 show how the positive and negative
documents in the training data, using our word-pair
features, can be easily separated by a linear surface. If we
were to use a more sophisticated decision surface, it is quite

possible that they would obtain much better class separation
on the training data. Indeed, we already observed in BC2 that
SVM and Singular Value Decomposition classifiers obtained
higher performance in the training data than VTT (as
measured by accuracy and F-Score), but lower in the testing
data [5]. Since VTT had already been compared to traditional
classifiers such as SVM [5], in this challenge, we did not
submit runs with those kinds of classifiers and instead chose
to test more parameters of the VTT and the novel CNC.
Therefore, to decide if algorithms submitted to the challenge
with more sophisticated decision surfaces suffered from the
drift between training and testing, we would need access to
their performance on the training data, not just the available
results on testing data. Given the overall performance of
VTT, we can at least say that this method was highly
competitive in dealing with the measurable drift between
training and testing data. Fig. 9 depicts the decision surfaces
of the VTT method for four (corrected) submissions on the
final test data. While better surfaces clearly exist to classify
the test data, the linear surface of the VTT method avoided
overfitting, and was very good at generalizing the “concept”
of protein-protein interaction from the bibliome in the not
fully statistically ideal, real-world scenario of BC II.5—while
remaining lightweight computationally.

We also conclude that training with additional data from
MIPS, which contains articles from various publication
sources rather than a single journal, was not very advanta-
geous. This seems to argue against the ability of the VTT
method to generalize the real-world concept of protein-
protein interaction. However, the “real-world” in this task
is the scenario of FEBS Letters curators attempting to
identify PPI-relevant documents among the articles sub-
mitted to this journal—all systems were ultimately only
tested on the FEBS Letters test set, and not in determining
PPI relevance at large. As for using features extracted using
entity recognition, we can say that counting protein
mentions via ABNER in abstracts and figure captions was
moderately advantageous (though not using it led to a
higher AUC score). We also observed during training that
using other entities from ABNER and relevant ontologies
(see Section 2.1) was not advantageous. Therefore, while
using ABNER protein counts did not lead to a large
improvement in classification, it was the only entity we
were able to identify which led to a moderate improvement
in classification using the VTT method.

The performance of the newly introduced CNC algorithm
in the ACT task was not competitive with the best content-
based classifiers, but was still above-average and provides a
proof-of-concept demonstration of the applicability of the
citation network method to the biomedical document
classification domain. Our implementation points to several
approaches that could be investigated in the search for high-
performance citation-network-based classification.

First, we did not use counts of how many times each
reference was cited in a document, though use of such
“weighted” features could indicate the citations that are most
informative about a given article’s class label. Additionally,
including the title of the citing document section in the
citation features could lead to better performance. Different
sections may reference articles for different reasons; citations
from the Methodology section, for example, may be particu-
larly useful in identifying documents relevant to a specific
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biomedical subfield, as in the ACT task. Finally, another way
to capture citation styles relevant to domain-specific classi-
fication would involve combining citation features with
statistically-significant tokens from citing sentences, which
are known as citances and have already received some
attention in the biomedical text mining field [31].

Performance of the CNC depends not only on the
algorithm and training data, but also on the underlying
citation database from which ! weights are computed. We
observed (see Section 3.2) that including cocitation data
reduced the number of false positives, but ultimately led to
a marginal overall performance improvement. The citation
network used in our work, however, is extremely limited in
coverage and subject to parsing errors. An accessible, high-
quality repository of biomedical citation data would go a
long way toward advancing citation-network-based classi-
fiers in the field. Indeed, literature domains where such
repositories exist, such as the publicity-available US patents
database, have seen wider application of cocitation-based
algorithms (see, for example, [32], [33]).

In summary, we have shown that our VTT classifier,
previously applied to abstracts only, is also very competitive
in the classification of PPI-relevant documents in a real-
world, full-text scenario such as the one provided by BC II.5.
Moreover, the novel CNC is the first application of a citation-
based classifier to the PPI domain and is thus a promising
new avenue for further investigation in bibliome informatics.

5 AUTHORS CONTRIBUTIONS

Artemy Kolchinsky developed and implemented the CNC
method, helped set up the online server, participated in
various experimental and validation computations, and
helped write the manuscript. Alaa Abi-Haidar helped
develop the VTT method, produced the code necessary
for preprocessing abstracts and computing training data
partitions, participated in various experimental and valida-
tion computations, and helped with producing figures for
the manuscript. Jasleen Kaur helped set up the online server
as well as with data preprocessing. Ahmed Abdeen Hamed
conducted feature extraction experiments from various
ontologies. Luis M. Rocha was responsible for integrating
the team and designing the experimental setup, as well as
developing the VTT method.

ACKNOWLEDGMENTS

The authors are very thankful to the editors and reviewers of
this paper for the very detailed and useful reviews provided.
They would like to acknowledge the help of Predrag
Radivojac and Nils Schimmelmann, who provided the
additional MIPS data used by our team. They would also
like to thank the FLAD Computational Biology Collabor-
atorium at the Instituto Gulbenkian de Ciencia in Oeiras,
Portugal, for hosting and providing facilities used to conduct
part of this research.

REFERENCES

[1] L. Hunter and K. Cohen, “Biomedical Language Processing:
What’s Beyond Pubmed?” Molecular Cell, vol. 21, no. 5, pp. 589-
594, 2006.

[2] Pubmed, http://www.pubmed.com, 2010.
[3] H. Shatkay and R. Feldman, “Mining the Biomedical Literature in

the Genomic Era: An Overview,” J. Computational Biology, vol. 10,
no. 6, pp. 821-856, 2003.

[4] L.J. Jensen, J. Saric, and P. Bork, “Literature Mining for the
Biologist: From Information Retrieval to Biological Discovery,”
Nature Rev. Genetics, vol. 7, no. 2, pp. 119-129, Feb. 2006.

[5] A. Abi-Haidar, J. Kaur1, A. Maguitman, P. Radivojac, A.
Retchsteiner, K. Verspoor, Z. Wang, and L.M. Rocha, “Uncovering
Protein Interaction in Abstracts and Text Using a Novel Linear
Model and Word Proximity Networks,” Genome Biology, vol. 9,
suppl. 2: S11.1-19, 2008.

[6] L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia, “Overview of
Biocreative: Critical Assessment of Information Extraction for
Biology,” BMC Bioinformatics, vol. 6, suppl. 1: S1, 2005.

[7] Proc. Second BioCreative Challenge Evaluation Workshop, 2007.
[8] S. Chakrabarti, Mining the Web: Analysis of Hypertext and Semi

Structured Data. Morgan Kaufmann, 2002.
[9] I. Androutsopoulos, J. Koutsias, K.V. Chandrinos, and C.D.

Spyropoulos, “An Experimental Comparison of Naive Bayesian
and Keyword-Based Anti-Spam Filtering with Personal E-Mail
Messages,” Proc. Ann. ACM Conf. Research and Development in
Information Retrieval, pp. 160-167, 2000.

[10] T. Joachims, Learning to Classify Text Using Support Vector
Machines: Methods, Theory, and Algorithms. Kluwer Academic
Publishers, 2002.

[11] R. Feldman and J. Sanger, The Text Mining Handbook: Advanced
Approaches in Analyzing Unstructured Data. Cambridge Univ. Press,
2006.

[12] F. Sebastiani, “Machine Learning in Automated Text Categoriza-
tion,” ACM Computing Surveys vol. 34, no. 1, pp. 1-47, 2002.

[13] M. Krallinger and A. Valencia, “Evaluating the Detection and
Ranking of Protein Interaction Relevant Articles: The Biocreative
Challenge Interaction Article Sub-Task (ias),” Proc. Second Biocrea-
tive Challenge Evaluation Workshop, pp. 29-39, 2007.

410 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 3, JULY-SEPTEMBER 2010

Fig. 9. VTT decision surface for the best four of five VTT submissions
(after correction of Unicode and ABNER Cache errors). Horizontal axis
corresponds to the value of P ðdÞ=NðdÞ and vertical axis corresponds to
the value of npðdÞ, for each document d. Black pluses represent positive
documents, and red circles represent negative documents.



[14] H.W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Guldener, G.
Mannhaupt, M. Munsterkotter, P. Pagel, N. Strack, V. Stumpflen,
J. Warfsmann, and A. Ruepp, “Mips: Analysis Annotation of
Proteins from Whole Genomes,” Nucleic Acids Research, vol. 32,
Database issue, pp. D41-D44, Jan. 2004.

[15] F. Fdez-Riverola, E. Iglesias, F. Diaz, J. Mendez, and J. Corchado,
“Spamhunting: An Instance-Based Reasoning System for Spam
Labelling Filtering,” Decision Support Systems, vol. 43, no. 3,
pp. 722-736, 2007.

[16] G. Salton and C. Buckley, “Term-Weighting Approaches in
Automatic Text Retrieval,” Information Processing and Man-
agement, vol. 24, no. 5, pp. 513-523, 1988.

[17] M. Porter, “An Algorithm for Suffix Stripping,” Program, vol. 13,
no. 3, pp. 130-137, 1980.

[18] R. Breitling, P. Armengaud, A. Amtmann, and P. Herzyk, “Rank
Products: A Simple yet Powerful and New Method to Detect
Differentially Regulated Genes in Replicated Microarray Experi-
ments,” FEBS Letters, vol. 573, nos. 1-3, pp. 83-92, Aug. 2004.

[19] B. Settles, “Abner: An Open Source Tool for Automatically
Tagging Genes, Proteins and Other Entity Names in Text,”
Bioinformatics, vol. 21, no. 14, pp. 3191-3192, 2005.

[20] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley Longman, 1999.

[21] P. Baldi, “Assessing the Accuracy of Prediction Algorithms for
Classification: An Overview,” Bioinformatics, vol. 16, no. 5, pp. 412-
424, May 2000.

[22] L.E. Dodd and M.S. Pepe, “Partial AUC Estimation Regression,”
Biometrics, vol. 59, no. 3, pp. 614-623, 2003.

[23] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recogni-
tion Letters, vol. 27, no. 8, pp. 861-874, 2006.

[24] B.W. Matthews, “Comparison of the Predicted and Observed
Secondary Structure of t4 Phage Lysozyme,” Biochimica Biophysica
Acta, vol. 405, no. 2, pp. 442-451, Oct. 1975.

[25] T. Cover and J. Thomas, Elements of Information Theory. John Wiley
and Sons, 2006.

[26] I. Councill, C. Giles, and M. Kan, “Parscit: An Open-Source CRF
Reference String Parsing Package,” Proc. Int’l Conf. Language
Resources and Evaluation (LREC), 2008.

[27] U. Laemmli et al., “Cleavage of Structural Proteins During the
Assembly of the Head of Bacteriophage t4,” Nature, vol. 227,
no. 5259, pp. 680-685, 1970.

[28] D. Perkins et al., “Probability-Based Protein Identification by
Searching Sequence Databases Using Mass Spectrometry Data,”
Electrophoresis, vol. 20, no. 18, pp. 3551-3567, 1999.

[29] Y. Yang and J.O. Pedersen, “A Comparative Study on Feature
Selection in Text Categorization,” Proc. 14th Int’l Conf. Machine
Learning, pp. 412-420, 1997.

[30] T. Joachims, “Making Large-Scale Support Vector Machine
Learning Practical,” Advances in Kernel Methods: Support Vector
Learning, MIT Press, 1999.

[31] P. Nakov, A. Schwartz, and M. Hearst, “Citances: Citation
Sentences for Semantic Analysis of Bioscience Text,” Proc. SIGIR04
Workshop Search and Discovery in Bioinformatics, 2004.

[32] K. Lai and S. Wu, “Using the Patent Co-Citation Approach to
Establish a New Patent Classification System,” Information
Processing and Management, vol. 41, no. 2, pp. 313-330, 2005.

[33] X. Li, H. Chen, Z. Zhang, and J. Li, “Automatic Patent
Classification Using Citation Network Information: An Experi-
mental Study in Nanotechnology,” Proc. Seventh ACM/IEEE
Computer Soc. Joint Conf. Digital Libraries, pp. 419-427, 2007.

Artemy Kolchinsky is working toward the PhD
degree in the complex systems track of the
School of Informatics and Computing, Indiana
University, Bloomington. He is also a visiting
graduate student at the FLAD Computational
Biology Collaboratorium at the Instituto Gulben-
kian de Ciencia, Portugal.

Alaa Abi-Haidar received the MS degree in
computer science from Indiana University. He is
currently working toward the PhD degree at the
School of Informatics and Computing in Indiana
University. His current research interests include
text mining, classification, bioinspired comput-
ing, and artificial immune systems.

Jasleen Kaur received the MS degree in
bioinformatics from Indiana University, Bloo-
mington, in 2007. She is currently working
toward the PhD degree in informatics in the
complex systems track of the School of Infor-
matics and Computing, Indiana University, Bloo-
mington. Her research interests include text
mining, literature mining, bioinformatics, and
social networks mining.

Ahmed Abdeen Hamed received the MS
degree in computer science from Indiana Uni-
versity and is a part-time PhD student in
computer science at the University of Vermont.
His research interests include text mining, Web
mining, and scientific workflows. He is con-
cerned with ecosystems monitoring and devel-
oping scientific workflows that can produce
alerts for conservationists and decision makers.

Luis M. Rocha received the PhD degree in
systems science in 1997 from the State Uni-
versity of New York at Binghamton. He is
currently an associate professor at the School
of Informatics and Computing at Indiana Uni-
versity, Bloomington, where he has directed the
PhD program on complex systems and is also a
member of the Center for Complex Networks
and Systems and core faculty of the Cognitive
Science Program. He is also the director of the

FLAD Computational Biology Collaboratorium and is also associated
with the PhD program in computational biology at the Instituto
Gulbenkian da Ciencia, Portugal, where the central goal is interdisci-
plinary research involving life sciences. His research is on complex
systems, computational biology, artificial life, embodied cognition, and
bioinspired computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KOLCHINSKY ET AL.: CLASSIFICATION OF PROTEIN-PROTEIN INTERACTION FULL-TEXT DOCUMENTS USING TEXT AND CITATION... 411


