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Entropy production given constraints on the energy functions
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We consider the problem of driving a finite-state classical system from some initial distribution p to some final
distribution p′ with vanishing entropy production (EP), under the constraint that the driving protocols can only
use some limited set of energy functions E . Assuming no other constraints on the driving protocol, we derive
a simple condition that guarantees that such a transformation can be carried out, which is stated in terms of
the smallest probabilities in {p, p′} and a graph-theoretic property defined in terms of E . Our results imply that
a surprisingly small amount of control over the energy function is sufficient (in particular, any transformation
p → p′ can be carried out as soon as one can control some one-dimensional parameter of the energy function,
e.g., the energy of a single state). We also derive a lower bound on the EP under more general constraints on the
transition rates, which is formulated in terms of a convex optimization problem.
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I. INTRODUCTION

Entropy production (EP) refers to the total increase of the
entropy of a system and its environment during a physical
process. EP is the fundamental measure of thermodynamic
inefficiency [1], and in particular, the amount of work that
can be extracted during a transformation between two ther-
modynamic states decreases as EP increases [2]. For this
reason, one of the central issues in thermodynamics involves
characterizing the minimal amount of EP needed to transform
a system between two thermodynamic states.

For concreteness, consider a system coupled to a work
reservoir and a single heat bath at inverse temperature β.
Suppose that one wishes to drive this system from some initial
distribution p at time t = 0 to some final distribution p′ at time
t = τ while minimizing EP. In general, this can be accom-
plished by driving the system along a continuous trajectory of
energy functions that sends

E (0) = −β−1 ln p → E (τ ) = −β−1 ln p′. (1)

In the quasistatic limit τ → ∞, this will carry out the trans-
formation p → p′ up to an arbitrary accuracy and for an
arbitrarily small amount of EP [3,4]. However, implementing
such a driving protocol may be impossible in many real-world
situations, where there are often strong limitations on the
ability to control the energy function.

Here we investigate which transformations can be carried
out without EP, assuming that one is constrained to use some
limited set of energy functions, but is otherwise free to use any
thermodynamically consistent driving protocol. We consider
a finite-state classical system which evolves according to a
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Markovian master equation over time t ∈ [0, τ ],

d

dt
pi(t ) =

∑
j( �=i)

[
Wi j (t )p j (t ) − Wji(t )pi(t )

]
, (2)

where pi(t ) is the probability of state i at time t and Wji(t ) is
the transition rate from state i to state j at time t . As standard
in stochastic thermodynamics [5], we assume that the rate
matrix obeys local detailed balance (LDB) at all times t , so
that the transition rates can be written in the following form
[6, Ch. 2]:

Wji(t ) = ψ ji(t )eβ[Ei (t )−Ej (t )]/2, (3)

where E (t ) is the energy function at time t and ψ ji(t ) =
ψi j (t ) � 0 is a symmetric positive function that controls the
overall timescale of transitions between states i and j, some-
times called the activity [6]. Equation (3) implies that the
rate matrix W (t ) has a Boltzmann equilibrium distribution,
πE (t ) = e−βE (t )/Z . We use the term (driving) protocol to refer
to a time-dependent trajectory of LDB-obeying rate matrices
and energy functions, � = {(E (t ),W (t )) : t ∈ [0, τ ]}. (The
inverse temperature β associated with the driving protocol is
left implicit in our notation.)

Suppose that there is some limited set of energy functions
E that one can impose on the system. Given some desired
transformation p → p′, we ask whether there is a driving
protocol that carries out this transformation for a vanishing
amount of EP, while obeying the constraint that E (t ) ∈ E at
all t ∈ [0, τ ].

Our first result, presented in Sec. IV, is a simple sufficient
condition that guarantees that there is such a protocol. This
sufficient condition is stated in terms of the minimum proba-
bility values in p and p′, as well as a simple graph-theoretic
property defined in terms of E .

As we show, this result implies that a surprisingly limited
amount of control over the energy function is sufficient to
carry out an arbitrary transformation p → p′ with vanish-
ing EP. In particular, it typically suffices to manipulate the
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energy along some arbitrary one-dimensional control parame-
ter (for example, the magnetic field applied to an Ising model,
or the energy assigned to some arbitrary single state). This
can be contrasted to the driving protocol in Eq. (1), which
requires access to energy functions that are tailored to both
p and p′, rather than being restricted to an arbitrary fixed
one-dimensional set.

As a motivating example, consider a system composed
of two subsystems X × Y , and suppose that E only contains
decoupled energy functions such as

Ex,y = Ex + Ey. (4)

Imagine that one wants to bring the system from some initial
equilibrium distribution p = πE for some E ∈ E to some final
distribution p′. Suppose that the final distribution has correla-
tions between the two subsystems, such that the associated
mutual information obeys Ip′ (X ;Y ) > 0. For any decoupled
energy function as in Eq. (4), the equilibrium distribution is
product distribution, with zero mutual information. Intuitively,
it might seem impossible to introduce correlations between X
and Y , as one must do to bring the system to the desired ending
distribution p′, while driving the system using only decoupled
energy functions. As we show below, this intuition is wrong:
there is a driving protocol that increases correlations between
X and Y , incurs vanishing EP, and only uses decoupled energy
functions (in fact, it suffices to only manipulate the energy of
a single state of a single subsystem).

Conversely, imagine that one wants to use the same set of
decoupled energy functions E to bring the system from some
correlated initial distribution p, such that Ip(X ;Y ) > 0, to a
final equilibrium distribution p′ = πE for some E ∈ E . One
way to achieve this transformation would be to apply the en-
ergy function E to the system and then let it relax freely to the
final equilibrium distribution πE . However, under such a free
relaxation, any mutual information in the initial distribution
would be dissipated as EP [7]. Intuition might suggest that
for any protocol that uses decoupled energy functions, EP
can always be bounded in terms of the mutual information
Ip(X ;Y ). (In fact, such bounds have been previously derived
under related but different assumptions, involving constraints
not only on the energy functions but also some other param-
eters that determine the rate matrices [8–13].) It turns out,
however, that initial correlations do not have to be dissipated
as EP, even if only decoupled energy functions are available.
Rather, as we show below, there is a driving protocol that
carries out the transformation p → πE without EP while only
using decoupled energy functions.

It is important to emphasize that our first result is proved
by construction, in which we assume that there are no other
constraints on the protocol beyond that the energy function
must belong to E . In particular, we assume that one can
impose a separation of timescales and fix any subset of the
transition rates Wi j to zero (i.e., by setting the corresponding
activity parameters to zero). For this reason, our construction
can be seen as an illustration of the limits of what is allowed
by the laws of stochastic thermodynamics given constraints
on the energy functions (rather than an example of a protocol
that is easy to implement in practice).

Of course, in many real-world scenarios, there are also
other constraints on the rate matrices, and in particular it may

not be possible to set certain rates to zero. In our second result,
presented in Sec. V, we derive a lower bound on the minimal
EP that must be incurred when carrying out the transformation
p → p′ given more general constraints on the available rate
matrices. This bound is stated in terms of a convex optimiza-
tion problem, which can sometimes be solved using standard
numerical techniques.

For simplicity of presentation, we introduce our results in
the context of a system coupled to a single heat bath and
subject to conservative forces, as arising from some time-
dependent energy potential E (t ). However, our results can be
generalized to systems coupled to multiple reservoirs and/or
subject to nonconservative forces. In Appendix B, we present
a generalization of our first result for nonconservative forces,
including a simple sufficient condition that guarantees that a
given transformation p → p′ can be carried out for a vanish-
ing amount of EP, assuming that there are constraints on both
the energy functions and the nonconservative forces that can
be applied to a given system. In Appendix F, we present a
generalization of our second result, involving a bound on EP
under a general set of constraints on the rate matrices, for a
system coupled to any number of reservoirs.

II. PRIOR WORK

This paper extends our recent work [13], in which we de-
rived bounds on EP for systems that evolve under rate matrices
that have symmetrical, modular, or coarse-grained structure.

In other relevant literature, Ref. [14] analyzed EP in the
presence of constraints on the Hamiltonian for a quantum
system coupled to a finite-sized heat bath. That paper derived
bounds for special protocols that consist of sequences of uni-
tary transformations of the system+bath and total relaxations
of the system to an equilibrium state. In contrast, we analyze
a classical system coupled to an idealized (i.e., infinite) reser-
voir and consider a much broader set of protocols than just
sequences of the two kinds of operation considered in [14].

The derivation of our first main result, Theorem 1, is
based on decomposing a general transformation p → p′ into
a sequence of simpler transformations over two-state subsys-
tems. Similar constructions have been used to analyze allowed
transformations and work extraction in quantum systems
[15–17]. In classical systems, similar constructions have been
used to study how a logical input-output map can be imple-
mented using a continuous-time Markovian process [18–20].

Finally, at a broader level, our paper complements previous
analysis of optimal heat and EP generation under realistic con-
straints on the driving protocols, such as finite time [16,21–
30], stochastically fluctuating control [31], finite-sized work
reservoirs [32], and a limited set of “free operations” as con-
sidered in quantum resource theory of thermodynamics [33].

III. NOTATION AND PRELIMINARIES

We consider a system with n states which undergoes a
driving protocol. We use notation like p, p(t ), . . . ∈ Rn

+ to
refer to (possibly time-dependent) probability distributions
over states. Similarly, we use notation like E , E (t ), . . . ∈ Rn

to refer to (possibly time-dependent) energy functions over
the states. The probability of a particular state i is indicated

034129-2



ENTROPY PRODUCTION GIVEN CONSTRAINTS ON THE … PHYSICAL REVIEW E 104, 034129 (2021)

with subscript notation [pi, pi(t ), etc.], and similarly for the
energy level of a particular state [Ei, Ei(t ), etc.]. We use δi, j to
indicate the Kronecker delta function.

We use the Kullback-Leibler (KL) divergence, an
information-theoretic non-negative measure of the difference
between distributions. The KL divergence from distribution p
to distribution q is defined as

D(p‖q) =
∑

i

pi ln
pi

qi
. (5)

Given a driving protocol � = {(E (t ),W (t )) : t ∈ [0, τ ]},
the incurred EP on initial distribution p is given by

�(p, �) =
∫ τ

0
�̇(p(t ),W (t )) dt, (6)

where p(t ) is the distribution at time t , as determined by
the master equation in Eq. (2) under the initial condition
p(0) = p, and �̇[p(t ),W (t )] is the instantaneous EP rate at
time t . In stochastic thermodynamics, the instantaneous EP
rate incurred by some rate matrix W and distribution p is given
by [34,35]

�̇(p,W ) = 1

2

∑
i, j

(piWji − p jWi j ) ln
piWji

p jWi j
� 0. (7)

IV. EP UNDER ENERGY CONSTRAINTS

Consider some driving protocol � = {(E (t ),W (t )) : t ∈
[0, τ ]} which obeys LDB, and suppose that only a restricted
set of energy functions is available, so that E (t ) ∈ E ⊆ Rn

at all times t ∈ [0, τ ]. Given this constraint, we investi-
gate whether a given transformation p → p′ can be carried
out while achieving an arbitrarily small amount of EP. We
make the weak assumption that the set E is closed and
path-connected, meaning that any two elements of E can be
connected by a continuous curve in E .

Before proceeding, we define the concept of the control-
lable energy gap, which will play a central role in our analysis.
The controllable energy gap between a pair of states i, j is

gi j (E ) = min
{

max
E∈E

(Ei − Ej ), max
E∈E

(Ej − Ei )
}
. (8)

In words, gi j (E ) quantifies how much the energy gap between
states i and j can be varied by choosing among different E ∈
E . As an illustration, if the set of available energy functions
is a line segment, E = {λE∅ : λ ∈ [−1, 1]} for some fixed
energy function E∅, then gi j (E ) = |E∅

j − E∅

i |.
We first consider the special case where going from p to

p′ only involves moving 
 probability from some state a to
some other state b, so that

p′
i = pi + 
(δb,i − δa,i ). (9)

We then show how to construct a special driving protocol
which carries out this transformation while incurring an ar-
bitrarily small amount of EP, and while only using energy
functions E ∈ E along with rate matrices that obey LDB.

To begin, recall that one can always set the transition rates
going both forward and backward between any two states i, j
to zero without violating LDB [i.e., by setting the correspond-
ing activity parameters ψi j (t ) = ψ ji(t ) = 0 in Eq. (3)]. This
allows us to construct a driving protocol such that at all t ,

only transitions between states a and b are allowed, because
Wji = 0 whenever i �∈ {a, b} or j �∈ {a, b}. In this case, only
the pair of states a, b contributes to the EP rate in Eq. (7),
allowing us to write the EP rate at time t as

�̇(p(t ),W (t )) = [pa(t )Wba(t ) − pb(t )Wab(t )]

×
[

ln
pa(t )

pb(t )
− β[Ea(t ) − Eb(t )]

]
, (10)

where we used Eq. (7) as well as LDB, Eq. (3). Now suppose
that the controllable energy gap between a and b obeys

gab(E ) > β−1 max

{∣∣∣∣ln pa

pb

∣∣∣∣,
∣∣∣∣ln p′

a

p′
b

∣∣∣∣
}
. (11)

Given the definition of gab(E ) in Eq. (8), as well as the
assumption that E is path-connected, there must be some
E ∈ E such that Ea − Eb is equal to any desired value between
β−1| ln(pa/pb)| and β−1| ln(p′

a/p′
b)|. Intuitively, this suggests

that at any time t , one can choose the energy function within
E (t ) ∈ E so that the bracketed term in Eq. (10) becomes
arbitrarily small. In fact, in the quasistatic limit of τ → ∞,
the energy function can be varied in such a way that the
total EP incurred over t ∈ [0, τ ] becomes arbitrarily small.
By formalizing this intuition, we derive the following result,
which is proved in Appendix A.

Proposition 1. If Eqs. (9) and (11) hold, then for any ε > 0,
there is a protocol � = {(E (t ),W (t )) : t ∈ [0, τ ]} that sends
p → p′ while obeying �(p, �) � ε and E (t ) ∈ E at all t .

We refer to the driving protocol constructed in the proof
of Proposition 1, which moves probability between two states
while incurring a vanishing amount of EP, as a transfer.

We are now ready to prove our first main result, which
states that one can drive the system from any initial distri-
bution p to any final distribution p′ by chaining together an
appropriate sequence of transfers. Moreover, because each
transfer can be carried out quasistatically and thereby incur
an arbitrarily small amount of EP, the overall sequence of
transfers can also be made to incur an arbitrarily small amount
of EP.

There are many protocols that can carry out the transfor-
mation p → p′ using a sequence of transfers. One relatively
simple one involves a two stage process, illustrated in Fig. 1.
In the first stage, we pick one particular “buffer state” (without
loss of generality, this can be state 1) to accumulate probabil-
ity from states with excess probability (this accumulation is
done via a sequence of transfers). In the second stage, the
probability accumulated in the buffer state is distributed to
states that need probability (this distribution is again done
via a sequence of transfers). This procedure is outlined more
formally as follows.

(Stage 1) Consider in turn each state i such that pi > p′
i.

For each such i, we will move 
i = pi − p′
i of probability

from state i to state 1 (if i = 1, do nothing). To do so, select
some path (sequence of states) of length �i that starts on state
i and ends on state 1,

	x = (x1 = i → x2 → · · · → x�i−1 → x�i = 1),

and then run �i − 1 transfers, each of which moves 
i of prob-
ability from state xk to state xk+1 during a temporal interval of
length τ .
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FIG. 1. A two stage construction used to carry out a transformation p → p′ using a sequence of transfers. In stage 1, for all states i with
excess probability, pi > p′

i, pi − p′
i of probability is moved into a buffer state (state 1). In stage 2, p′

i − pi of probability from the buffer state
is moved to all states i with pi < p′

i. Each probability move (red and blue arrows) is done using a sequence of state-to-state transfers along a
path (box on right).

(Stage 2) Consider in turn each state i such that pi < p′
i.

For each such i, move 
i = p′
i − pi of probability from state

1 to state i (if i = 1, do nothing). To do so, select some path
of length �i that starts on state 1 and ends on state i,

	x = (x1 = 1 → x2 → · · · → x�i−1 → x�i = i),

and then run �i − 1 transfers, each of which moves 
i of prob-
ability from state xk to state xk+1 during a temporal interval of
length τ .

It is easy to see that this construction will transform p to
p′. In addition, as mentioned above, each individual transfer
can be made to have an arbitrarily small amount of EP by
taking τ (the time taken by each transfer) to be sufficiently
large. Finally, because the construction involves only a finite
number of transfers [36], the overall procedure can be made
to incur an arbitrarily small amount of EP.

The construction described above can be carried out as
long as the controllable energy gaps are large enough for
each transfer to be feasible—in other words, as long as the
inequality in Eq. (11) is satisfied for each transfer. We now
derive a simple sufficient condition that guarantees that this
inequality is satisfied for each transfer.

First, observe that at no step in the above construction
does the probability concentrated in any state i drop below
min{pi, p′

i}. This implies that for any time t at which a transfer
begins or ends, the probability concentrated in state i obeys

pi(t ) � min{pi, p′
i} � min

j
min{p j, p′

j}. (12)

Next, observe that in both stages of the above construction,
one has the freedom to choose the specific path to or from
state 1 and state i. In fact, one can choose paths optimally so
that the controllable energy gap gxkxk+1 (E ) across each transfer
is as large possible, since that increases the set of transforma-
tions allowed by Eq. (11). Let P (i, j) be the set of all paths
from state i to state j, and define the capacity of any such
path 	x = (x1 = 1, x2, . . . , xm = j) ∈ P (i, j) as the minimum
controllable energy gap in the path, c(	x) := mink gxkxk+1 (E ).
The capacity of the optimal path between the worst-case pair
of states is then given by

C(E ) := min
i �= j

max
	x∈P (i, j)

c(	x). (13)

In graph theory, C(E ) is known as the maximum capacity
of the undirected graph with n vertices the edge weights of

which are specified by gi j (E ) [37]. A classical result states
that if paths are chosen from a maximum spanning tree of the
graph, then no path will have capacity less than C(E ) [38].
This means that in practice C(E ) can be calculated as

C(E ) := min
(i, j)∈T

gi j (E ) (14)

where T is any maximum spanning tree.
To summarize, suppose that the two stage construction

described above chooses paths between state i and state 1 that
lie along a maximum spanning tree of the graph with edge
weights gi j (E ), as illustrated in Fig. 2. Then, by Eq. (14), the
controllable energy gap involved in any transfer will obey

gxkxk+1 (E ) � C(E ). (15)

Finally, suppose that the probabilities in pi and p′
i satisfy the

following condition:

min
i

min{pi, p′
i} > e−βC(E ). (16)

FIG. 2. Consider a weighted graph with n vertices, where each
vertex represents a state of the system and edge weights are given
by the controllable energy gaps gi j (E ). If the two stage construction
shown in Fig. 1 chooses paths to or from the buffer state (green node)
that lie within the maximum spanning tree of the graph (red edges),
then the controllable energy gap across each transfer will be lower
bounded by the maximum capacity of the graph, as stated in Eq. (15).
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FIG. 3. Suppose that the set of available energy functions E ⊆
Rn contains some fixed one-dimensional curve of energy functions
from E∅ to −E∅. Then any transformation p → p′ can be carried
out for vanishing EP, as long as p and p′ have full support and E∅

has a large enough gap between highest and lowest energy levels,
Eq. (17).

Combining this inequality with Eqs. (12) and (15) and re-
arranging implies gxkxk+1 (E ) > −β−1 ln pi(t ) for any state i
and any time point t at which a transfer begins or ends.
Since pi(t ) ∈ [0, 1] for all i and t , this in turn implies that
Eq. (11) holds for each transfer. This leads to our first main
result, which is proved informally using the construction and
arguments outlined above.

Theorem 1. If Eq. (16) is satisfied, then for any ε > 0 there
is a protocol � = {(E (t ),W (t )) : t ∈ [0, τ ]} that carries out
p → p′ while obeying �(p, �) � ε and E (t ) ∈ E at all t .

The graph-theoretic quantity C(E ) measures the ability of
the set of available energy functions E to implement arbi-
trary transformations. As expected, this quantity is invariant
if any E ∈ E is shifted by a constant [since gi j (E ) is invariant
under shifts such as E → E + λ] and scales multiplicatively
with multiplicative scaling of the energy functions [C(E ) →
λC(E ) when E → λE for all E ∈ E].

Theorem 1 implies that many transformations can be car-
ried out with vanishing EP even if only a very restricted set
of energy functions is available. In particular, suppose that E
contains a continuous curve that connects some fixed energy
function E∅ and its negation −E∅, as shown in Fig. 3. This
curve might involve separately varying the energy level of an
individual state, or it might involve varying the entire energy
function along a one-dimensional manifold without being able
to vary the energy of individual states. In Appendix C, we
show that for any such E ,

C(E ) � min
i

max
j

|E∅

i − E∅

j | � maxi E∅

i − mini E∅

i

2
. (17)

We also show that the first inequality is tight whenever E
is a line segment (E = {λE∅ : λ ∈ [−1, 1]}). Equation (17)
implies that even a single dimension of control over the energy
function suffices to carry out any transformation, as long as
E∅ has a sufficiently large range of energy values. In particu-
lar, C(E ) → ∞ as the energetic gap between the highest and
lowest energy state increases (maxi E∅

i − mini E∅

i → ∞).

Thus, with a sufficiently large gap, any transformation p → p′
can be carried out (as long as p and p′ have full support).

Finally, as mentioned in the Introduction, one can general-
ize the results in the section to account for constraints on both
the energy functions and the nonconservative forces which can
be applied to a system. For details, see Appendix B.

A. Example

We now use Theorem 1 to analyze the examples men-
tioned in the introduction, which involve bringing a system
containing two subsystems X × Y from an initial correlated
distribution to a final uncorrelated product distribution, or vice
versa, while using decoupled energy functions as in Eq. (4).

Suppose that the available energy functions only allow the
manipulation of the energy of the up state of spin x from −10
to 10, while other states are at energy zero. Formally, this
corresponds to a line segment of energy functions,

E = {λE∅ : λ ∈ [−1, 1]} for E∅

x,y = 10 · δx,1,

which is a special case of Eq. (4). Plugging into Eq. (17) and
rearranging gives

C(E ) = 10 × min
x,y

max
x′,y′

|δx,1 − δx′,1|. (18)

For any x, y, we have maxx′,y′ |δx,1 − δx′,1| = |δx,1 − δ−x,1| =
1, so Eq. (18) implies that C(E ) = 10. Then, by Eq. (16)
and Theorem 1, any transformation where all initial and final
probability values are greater than e−10β is possible.

Imagine that one wanted to transform a correlated initial
distribution p to an uncorrelated final distribution p′. For
concreteness, assume that the inverse temperature is β = 1,
that the initial distribution is

px,y =
{

0.4 if (x, y) ∈ {(−1,−1), (1, 1)}
0.1 if (x, y) ∈ {(1,−1), (−1, 1)} , (19)

and that the final distribution is the uniform p′
x,y = 1/4.

Note that the initial and final mutual information terms obey
Ip(X ;Y ) ≈ 0.18 (in units of nats) and Ip′ (X ;Y ) = 0. It is also
straightforward to verify that the entries of p and p′ are greater
than e−10, so Eq. (16) is satisfied. Then, the transformation
p → p′ can be implemented using the following procedure.

(1) Choose state (−1,−1) as the “buffer state.” Then,
transfer 0.15 probability from state (1,1) to state (−1,−1)
over time t ∈ [0, τ ].

(2) Move 0.15 probability from state (−1,−1) to state
(−1, 1) via two transfers: first from state (−1,−1) to state
(1,−1) over time t ∈ [τ, 2τ ], then from state (1,−1) to state
(−1, 1) over time t ∈ [2τ, 3τ ].

(3) Transfer 0.15 probability from state (−1,−1) to state
(1,−1) over time t ∈ [3τ, 4τ ].

After running this procedure on the initial distribution p,
the system will be left in the uniform distribution p′. More-
over, by taking τ large enough and using the construction
that appears in Appendix A, each transfer can be done for an
arbitrarily small amount of EP.

Conversely, imagine that one wanted to increase mutual
information by transforming an uncorrelated uniform initial
distribution p to a correlated final distribution p′. Suppose
again that β = 1, that p is the uniform distribution, and that
p′ is given by the right hand side of Eq. (19). Then, this
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transformation can be accomplished by running the same se-
quence of transfers as described above, but now in reverse:
first transfer 0.15 probability (1,−1) → (−1,−1), then move
0.15 probability using two transfers (−1, 1) → (1,−1) and
(1,−1) → (−1,−1), and finally transfer 0.15 probability
(−1,−1) → (1, 1).

It is important to note that each of the above transfers
involves a pair of states which differ in the state of spin X ,
and therefore have a controllable energy gap equal to 10. On
the other hand, it is impossible to use a transfer to move
probability between a pair of states which only differ in the
state of spin Y , since the corresponding controllable energy
gap will be zero and Eq. (11) cannot be satisfied.

B. Physical assumptions behind Theorem 1

We briefly discuss three important physical assumptions
that underlie the results described above.

First, we assume that one has access to arbitrarily long
driving protocols, i.e., the quasistatic limit. This assumption
is required for any protocol that transforms some initial dis-
tribution p to a different final distribution p′ while achieving
arbitrarily small EP (as known from research on finite-
time thermodynamics [23,29]). Interestingly, if one does not
require that EP is arbitrarily small, then arbitrarily long
timescales are not necessary for carrying out the transforma-
tion p → p′ with complete accuracy while using a limited set
of energy functions. Instead, as can be seen from the proof
of Proposition 1 in Appendix A, as long as Eqs. (9) and (11)
hold, then there is a protocol � = {(E (t ),W (t )) : t ∈ [0, τ ]}
with a finite τ that carries out the transfer p → p′ exactly,
while obeying E (t ) ∈ E at all t .

Second, we assume that one can impose a separation of
timescales in which the transition rates between all states
are set to zero, except for a given pair of states involved
in a transfer. To understand the physical meaning of this
assumption, note that setting a transition rate Wji to zero is
equivalent to setting the corresponding activity parameter ψ ji

in Eq. (3) to zero. Furthermore, in statistical physics, discrete-
state master equations are typically (though often implicitly)
derived by coarse-graining a stochastic dynamical system over
a microscopic continuous phase space, as might be described
by Fokker-Planck dynamics [39–41]. Under this scheme, each
coarse-grained state i represents a free energy well in the
underlying phase space, the corresponding energy level Ei

reflects the depth of the free energy well, and the activity
parameters ψ ji reflect the height of the free energy barriers
separating wells i and j. For instance, transition rates are
often expressed using the Arrhenius form Wji = e−β[Bji−Ei]

[40,42,43], where Bji is the absolute height of the free en-
ergy barrier separating coarse-grained states i and j. This
expression can be put in the form of Eq. (3) by defining
ψ ji = eβ[(Ei+Ej )/2−Bji], so that the activity parameter ψ ji is
determined by the relative height of the barrier separating
coarse-grained states i and j. From this point of view, our
second assumption means that one can impose infinite-sized
barriers between all pairs of coarse-grained states, except for
a given pair of states involved in a transfer.

Because we allow certain transition rates to be set to zero,
the rate matrices W (t ) involved in our driving protocols (as

constructed in Appendix A) will generally be reducible. For
this reason, these rate matrices will have multiple equilibrium
distributions (i.e., multiple distributions which are stationary
and incur zero EP rate), beyond the unique Boltzmann equi-
librium distribution prescribed by the energy function E (t ). In
fact, by using such reducible rate matrices, our construction
carries out a transformation p → p′ while keeping the system
(arbitrary close to) equilibrium throughout, even though those
equilibria may be outside the set of the Boltzmann equilibrium
distributions that correspond to the energy functions in E .

Our third assumption is that any pair of states can be
connected by a nonzero transition rate even while the other
rates are set to zero (which is a kind of “converse” of our
second assumption). If, as described above, the discrete-state
master equation is derived by coarse-graining a microscopic
continuous phase space, then (as above) the validity of this
assumption depends on one’s ability to manipulate free en-
ergy barriers at the microscopic level. In addition, it also
depends on the geometric properties of the embedding of the
coarse-grained states within the microscopic space (e.g., if the
underlying microscopic continuous space is one-dimensional,
then not all patterns of connectivity between states can be
achieved by manipulating free energy barriers). It is possible
to generalize our treatment to account for constraints on which
states can or cannot be connected via nonzero transition rates
[e.g., by defining gi j (E ) = 0 for any pair of states i, j that
cannot be connected by a nonzero transition rate], though for
simplicity we do not consider this generalization in the current
paper.

V. EP UNDER BOTH CONSTRAINTS ON ENERGY
FUNCTIONS AND RATE MATRICES

In real-world scenarios, there are often additional restric-
tions on the transition rates, not only on the energy function,
which can preclude the use of the protocols constructed in the
previous section. For instance, such restrictions might arise
because there are constraints on how the heights of the free
energy barriers between coarse-grained states can be manipu-
lated, meaning that some transition rates cannot be set to zero.
Accordingly, in this section we derive our second main result,
which is a bound on the EP that arises under more general
constraints on the rate matrices.

As before, we consider a system coupled to a single heat
bath at inverse temperature β. Suppose that one drives the
system from some initial distribution p to some final distribu-
tion p′, while only using energy functions in some restricted
set E and rate matrices in some restricted set W . We assume
that there exists some driving protocol � = {(E (t ),W (t )) :
t ∈ [0, τ ]} that implements the desired transformation p →
p′, while obeying E (t ) ∈ E and W (t ) ∈ W at all t . We then
analyze the minimal EP that must be incurred by this protocol
in terms of the properties of E and W . Note that in this section,
we do not assume that either E or W is path-connected (in fact,
we will sometimes assume that both E and W are finite sets).

Before presenting our result, we introduce the notion of a
“KL projection” of a distribution p onto the set of available
equilibrium distributions, which we indicate as (p) [44].
The KL projection of p refers to the Boltzmann equilibrium
distribution that is closest to p in terms of KL divergence, as
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defined in Eq. (5), among the set of all Boltzmann distribu-
tions allowed by the available energy functions:

(p) := arg minE∈ED(p‖πE ). (20)

(As above, we use the notation πE = e−βE/Z to indicate the
Boltzmann distribution corresponding to energy function E .)
Note that if p is a Boltzmann distribution for some E ∈ E ,
then (p) = p.

Next, suppose that there is some number η ∈ [0, 1] such
that

�̇(p,W ) � −η
∑
i, j

piWji ln
p j

[(p)] j
∀p,W ∈ W, (21)

where �̇(p,W ) is the rate of EP incurred by rate matrix W
on distribution p, as defined in Eq. (7). This is an implicit
inequality that bounds η in terms of the set of allowed rate
matrices W as well as the KL projection (p), which in turn
is a function of the allowed energy functions E . This inequal-
ity is always satisfied for η = 0, since it is then equivalent
to the statement that the EP rate is non-negative. However,
we will also consider sets E and W where Eq. (21) holds for
some η > 0. Importantly, as long as the set of allowed rate
matrices W is finite, it is possible to find the largest value
of η that satisfies Eq. (21) via numerical convex optimization
techniques. The procedure for doing this is described in detail
in Appendix E, and code is provided in [45]. The right hand
side of Eq. (21) is η times the rate at which the distribution
p approaches the closest equilibrium distribution (p) under
the dynamics generated by W [see Eq. (D1) in Appendix D].
Thus, the multiplier η bounds how much faster any distribu-
tion p can approach the closest equilibrium (p), relative to
the rate at which that distribution incurs EP. Note also that
η is independent of the overall timescale of the rate matrices
W ∈ W: if Eq. (21) holds for some η, some distribution p,
and some rate matrix W , then it will also hold when that rate
matrix is rescaled as W → λW (since this is equivalent to
multiplying both sides by λ).

Now consider the total EP incurred by the protocol � on
initial distribution p, as defined in Eq. (6). Using Eq. (21) and
some simple rearrangement, the EP rate at time t can be bound
in terms of the time derivative of the KL divergence between
p(t ) (the distribution at time t) and its KL projection (p(t )):

�̇(p(t ),W (t )) � −η
d

dt
D[p(t )‖(p(t ))]. (22)

(See Appendix D for details.) This leads to our second main
result, which follows from integrating both sides of Eq. (22)
and using the fundamental theorem of calculus.

Theorem 2. Let � = {(E (t ),W (t )) : t ∈ [0, τ ]} be a proto-
col such that E (t ) ∈ E and W (t ) ∈ W at all t . Then,

�(p, �) � η{D[p‖(p)] − D[p′‖(p′)]}
for any η ∈ [0, 1] where Eq. (21) holds, and (·) as in
Eq. (20).

The EP bound in Theorem 2 is the product of two terms: the
drop of the KL divergence D[p‖(p)] and a “multiplier” η.
The drop of KL divergence reflects the contribution to EP aris-
ing from constraints on the energy functions, as determined
by the set E . In particular, if all energy functions are avail-
able, then (p) = p and this KL divergence term vanishes,

FIG. 4. A discrete-state system with 16 states arranged in a 4 × 4
lattice, with only nearest-neighbor transitions allowed. W contains
16 rate matrices, each one corresponding to an equilibrium distribu-
tion in which the energy of a particular state is increased.

leading to a trivial bound � � 0. The multiplier η reflects the
contribution to the EP bound that arises from constraints on
the rate matrices, as determined both by E and W . Note that
Theorem 2 only gives nontrivial bounds on EP when the final
distribution is closer to the set of equilibrium distributions
than the initial one, so that D[p‖(p)] > D[p′‖(p′)].

Interestingly, our result holds not only when (p) is
defined as the KL projection to the set of equilibrium distribu-
tions, as in Eq. (20), but more generally when (p) is defined
as the KL projection to any arbitrary set of distributions �.
In other words, if one defines (p) = arg minq∈�D(p‖q) for
any � and then finds a corresponding η ∈ [0, 1] such that
Eq. (21) holds, then Theorem 2 will still apply. Each set of
distributions � will have its own maximal value of η which
satisfies Eq. (21) and will therefore induce its bound on EP. It
may be possible to derive tighter bounds on EP in Theorem 2
by varying the choice of the distributions � in the definition
of (p), though we leave exploration of this choice for future
work.

In fact, by exploiting the freedom in how the KL projection
(p) can be defined, it is possible to generalize Theorem 2 to
derive bounds on EP in the presence of nonconservative forces
and multiple thermodynamic reservoirs (rather than a single
heat bath as considered above). Details of this generalization
are discussed in Appendix F.

Example

We demonstrate Theorem 2 with a discretized model of
a Brownian particle on a two-dimensional lattice, where we
imagine that one can only increase the energy of a single lat-
tice site at any one time. Assume that the system is coupled to
a heat bath at inverse temperature β, and that each system state
i is identified with a location on a two-dimensional N × N lat-
tice, as in Fig. 4. Suppose that there are N2 rate matrices in W
and N2 energy functions in E , one for each location. The en-
ergy function corresponding to location i assigns energy 1 to
state i and energy zero to all other states, E (i)

j = δi, j . The rate
matrix corresponding to state i allows only nearest-neighbor

transitions: the off-diagonal entries obey W (i)
k j = eβE (i)

j when
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states j and k are nearest neighbors on the two-dimensional
lattice, and otherwise W (i)

k j = 0.
We now use Theorem 2 to derive a bound on EP for this

system. For concreteness, we take β = 1 and N = 4. Using
the convex optimization technique described in Appendix E,
we find that the tightest bound in Eq. (21) is given by η ≈ 0.6.
Thus, for any transformation p → p′,

� � 0.6{D[p‖(p)] − D[p′‖(p′)]}. (23)

Given the structure of the available energy functions, the
KL divergence to any equilibrium distribution πE (i) = e−E (i)

/Z
can be written as

D(p‖πE (i)
) = pi + ln Z − S(p),

where Z = ∑
j e−δi, j = (N2 − 1) + e−1 is a normalization

constant. Thus, the KL divergence to the closest equilibrium
distribution can be written as D[p‖(p)] = mini pi + ln Z −
S(p). Plugged into Eq. (23), this gives the bound

� � 0.6[S(p′) − S(p) + (min
i

pi − min
i

p′
i )].

In words, for this set of constrained driving protocols, at least
0.6 of the increase in the entropy of the system, plus the drop
in the minimum probability value in going from p to p′, must
be dissipated as EP.

VI. DISCUSSION AND FUTURE WORK

In this paper, we considered a finite-state classical sys-
tem that undergoes a driving protocol, represented as a
time-dependent master equation. We derived two results con-
cerning the feasibility of transforming such a system from
some initial distribution p to a final distribution p′ given
constraints on the driving protocol, and the associated EP.

Our first result, presented in Sec. IV, concerned the case
where the driving protocol can only access a restricted set of
energy functions E , but can otherwise make use of arbitrary
rate matrices (as long as they obey local detailed balance).
We showed that any given transformation p → p′ can be
implemented for a vanishing amount of EP, so long as the
probabilities in p and p′ are bounded away from zero by an
amount which depends on E . We also demonstrated that this
condition is quite weak, since even a limited amount of control
over the energy function (such as the ability to manipulate the
energy of a single state) suffices to implement an arbitrary
transformation with vanishing EP. This result is derived under
the assumption that one can control all other aspects of the rate
matrices beyond the energy function, including the ability to
set arbitrary transition rates to zero or nonzero values.

In our second result, presented in Sec. V, we derived a
lower bound on the EP involved in carrying out some trans-
formation p → p′ in the presence of constraints on both the
energy functions and the rate matrices. We show that in some
cases, this bound can be determined numerically using stan-
dard convex optimization techniques.

We briefly mention some possible directions for future
work. First, in deriving our first result, we do not prove
that Eq. (16) is a necessary condition for carrying out the
transformation p → p′ with vanishing EP while using energy
functions in E , only that it is a sufficient condition. An in-

teresting research direction for future work would investigate
sufficient and necessary conditions for carrying out such a
transformation.

Second, in deriving our first result, we constructed a pro-
tocol that carries out p → p′ without restricting how the
protocol behaves on other initial distributions besides p.
Future work may consider the related, but more difficult, prob-
lem of carrying out a logical map (a conditional probability
distribution) Ti j from initial states j to final states i while using
a limited set of energy functions. In other words, this research
direction would analyze driving protocols which (1) imple-
ment some desired logical map Ti j , (2) achieve vanishing EP
on some particular initial distribution p [46], and (3) only use
energy functions from some limited set E . It is possible that
this problem can be tackled by combining the “transfer” pro-
tocol used in Proposition 1 with the constructions developed
in [18,19], which show how to implement a given logical map
with continuous-time master equations (while possibly using
some number of auxiliary “hidden” states).

Third, in this paper we considered finite-state master equa-
tion dynamics. Future work may investigate whether our
results can be extended to continuous-state dynamics, such as
Fokker-Planck dynamics over probability densities. Such an
extension would be far from trivial, as our first result relies on
the ability to set arbitrary transition rates to zero or nonzero
values (which is inappropriate for Fokker-Planck dynamics,
even when discretized). On the other hand, our second result
can be formally generalized to continuous-state dynamics, but
it is not clear when the corresponding infinite-dimensional
optimization problem (as defined in Appendix E) can be
solved in practice. We note that in previous work [13], we
investigated bounds on EP for Fokker-Planck dynamics under
highly structured constraints on the energy functions, such as
symmetry, modularity, and coarse-graining constraints.

Finally, future work may consider whether the methods de-
veloped here can be extended to Markovian quantum systems.
This research direction would analyze an open quantum sys-
tem evolving according to time-inhomogeneous Lindbladian
dynamics [47], and investigate how constraints on the avail-
able Hamiltonians and Lindbladian operators translate into
bounds on the quantum EP involved in bringing the system
from some initial mixed state ρ to some final mixed state ρ ′.
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APPENDIX A: PROOF OF PROPOSITION 1

We prove the result by construction. In particular, we first
construct a family of protocols �τ = {(E τ (t ),W τ (t )) : t ∈
[0, τ ]} parametrized by temporal duration τ (where τ → ∞
corresponds to the quasistatic limit). We then show that if Eqs.
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(9) and (11) hold, then for any ε > 0, there is some τ such that
the protocol �τ satisfies the following three conditions.

(I) The protocol maps the initial distribution p at time t = 0
to the final distribution p′ at time t = τ , where

p′
i = pi + 
(δb,i − δa,i ). (A1)

(II) The EP obeys �(p, �τ ) � ε.
(III) The energy functions obey E τ (t ) ∈ E at all t .
We assume below that 
 � 0 in Eq. (A1), so that p′

a � pa.
Note that this is done without loss of generality (if 
 < 0, one
can swap the roles of states a and b).

We begin with a few definitions. First, for any τ > 0, define
the function fτ : [0, τ ] → R:

fτ (t ) := pa + t

τ − 1 + e−τ
(p′

a − pa). (A2)

Second, let C = pa + pb = p′
a + p′

b refer to the sum of the
probability in states a and b. Third, define a time-dependent
rate matrix W τ with the following entries for i �= j:

W τ
i j (t ) =

⎧⎨
⎩

fτ (t )/C if i = a, j = b
1 − fτ (t )/C if i = b, j = a
0 otherwise

. (A3)

Given Eq. (A2) and the inequality τ − 1 + e−τ > 0, as
well as the assumption that p′

a � pa, it can be verified that
fτ (t ) is monotonically decreasing in t , so

pa + τ

τ − 1 + e−τ
(p′

a − pa) = fτ (τ ) � fτ (t ) � fτ (0) = pa.

(A4)
Observe that the lower bound above converges to p′

a as τ →
∞ and that p′

a > 0, which follows Eq. (11). In the following,
we will assume that τ is large enough so that

fτ (τ ) � p′
a/2 > 0 ∀t ∈ [0, τ ]. (A5)

Note that given Eqs. (A3) and (A4), this implies that the
transition rates in W τ are always bounded between 0 and 1.

Let pτ (t ) indicate a time-dependent probability which
undergoes the Markovian evolution d

dt pτ (t ) = W τ (t )pτ (t )
starting from the initial condition pτ (0) = p. It is clear from
Eq. (A3) that d

dt pτ
i (t ) = 0 for any i �∈ {a, b}, therefore the sum

of the probability of states a, b is conserved over time:

pτ
a(t ) + pτ

b(t ) = C ∀t ∈ [0, τ ]. (A6)

Next, write the temporal derivative of pτ
a(t ) as

d

dt
pτ

a(t ) = W τ
ab(t )pτ

b(t ) − W τ
ba(t )pτ

a(t )

= [ fτ (t )/C]
[
C − pτ

a(t )
] − [1 − fτ (t )/C]pτ

a(t )

= fτ (t ) − pτ
a(t ), (A7)

where we used Eqs. (A3) and (A6). The differential equation
in Eq. (A7) can be solved using some calculus (or a symbolic
computation package such as MATHEMATICA) to give

pτ
a(t ) =

(
1 − t − 1 + e−t

τ − 1 + e−τ

)
pa + t − 1 + e−t

τ − 1 + e−τ
p′

a. (A8)

We now demonstrate that the protocol constructed above
satisfies conditions I–III.

We begin with condition I. From Eq. (A8), it can be verified
by inspection that pτ

a(t ) evolves from the initial probability
pτ

a(0) = pa to the final probability pτ
a(τ ) = p′

a. In combina-
tion with Eqs. (A6) and (A1), this means that pτ

b(t ) evolves
from the initial probability pτ

b(0) = pb to the final probability
pτ

b(τ ) = pb + (pa − p′
a) = p′

b. Meanwhile, the probability of
all states i �∈ {a, b} stays constant.

Next, we prove that condition II is satisfied by showing that

lim
τ→∞ �(p, �τ ) = 0, (A9)

which means that EP can be made arbitrarily small by choos-
ing a sufficiently large τ . First, plug Eqs. (A2) and (A8) into
Eq. (A7) and simplify to give

d

dt
pτ

a(t ) = W τ
ab(t )pτ

b(t ) − W τ
ba(t )pτ

a(t )

= 1 − e−t

τ − 1 + e−τ
(p′

a − pa) � 0. (A10)

where the last inequality follows from p′
a � pa. Next, given

Eq. (7), the EP rate incurred by protocol �τ at time t is

�̇(pτ (t ),W τ (t )) = [
W τ

ba(t )pτ
a(t ) − W τ

ab(t )pτ
b(t )

]
× ln

W τ
ba(t )pτ

a(t )

W τ
ab(t )pτ

b(t )
. (A11)

Since W τ
ba(t )pτ

a(t ) � W τ
ab(t )pτ

b(t ) from Eq. (A10), Eq. (A11) is
the product of two positive terms. We then use the inequality
ln x � (x − 1) to bound the EP rate as

�̇(pτ (t ),W τ (t )) �
[
W τ

ba(t )pτ
a(t ) − W τ

ab(t )pτ
b(t )

]2

W τ
ab(t )pτ

b(t )

= (p′
a − pa)2

W τ
ab(t )pτ

b(t )

( 1 − e−t

τ − 1 + e−τ

)2
, (A12)

where in the second line we used Eq. (A10). Observe that

W τ
ab(t ) = fτ (t )/C � p′

a/(2C)

from Eqs. (A3)–(A5), and that pτ
b(t ) is increasing in t , since

d
dt pτ

b(t ) = − d
dt pτ

a(t ) � 0 from Eq. (A10). Thus,

pτ
b(t ) � pτ

b(0) = pb > 0,

where the last inequality is implied by Eq. (11). Plugging
these bounds into Eq. (A12) gives

�̇(pτ (t ),W τ (t )) � 2C(p′
a − pa)2

p′
a pb

( 1 − e−t

τ − 1 + e−τ

)2

� 2C(p′
a − pa)2

p′
a pb

1

(τ − 1 + e−τ )2
.

Using Eq. (6) and integrating, we can bound total EP as

�(p, �τ ) � 2C(p′
a − pa)2

p′
a pb

τ

(τ − 1 + e−τ )2
. (A13)

Since limτ→∞ τ/(τ − 1 + e−τ )2 = 0, Eq. (A13) implies that
limτ→∞ �(p, �τ ) � 0. Since �(p, �τ ) � 0 by the non-
negativity of the EP rate, this proves condition II.

Finally, we show that condition III is satisfied. In particular,
we show that at all t ∈ [0, τ ], W τ satisfies LDB, Eq. (3), for
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some energy function E τ (t ) ∈ E [and some arbitrary symmet-
ric activity function ψ (t )]. Clearly, W τ satisfies LDB for all
i, j �∈ {a, b}, which follows by taking ψi j (t ) = 0. It remains to
show that the following conditions hold at all times for some
E τ (t ) ∈ E :

W τ
ab(t ) = fτ (t )/C = ψab(t )eβ[E τ

a (t )−E τ
b (t )]/2,

W τ
ba(t ) = 1 − fτ (t )/C = ψba(t )eβ[E τ

b (t )−E τ
a (t )]/2

= ψab(t )eβ[E τ
b (t )−E τ

a (t )]/2,

where we used Eq. (A3) as well as the symmetry ψab(t ) =
ψba(t ). Since ψ (t ) can be chosen arbitrarily, the above condi-
tions can be restated in terms of the following single equality:

β−1 ln
fτ (t )

C − fτ (t )
= E τ

b (t ) − E τ
a (t ). (A14)

We now demonstrate that it is possible to choose a sufficiently
large τ such that Eq. (A14) holds at all times t ∈ [0, τ ].

Recall that fτ (t ) is monotonically decreasing in t , so

β−1 ln
fτ (t )

C − fτ (t )
� β−1 ln

fτ (0)

C − fτ (0)

= β−1 ln
pa

pb
< gab(E ), (A15)

where the last inequality follows from Eq. (11). Similarly,

β−1 ln
fτ (t )

C − fτ (t )
� β−1 ln

fτ (τ )

C − fτ (τ )
. (A16)

Since limτ→∞ fτ (t ) = pa, it follows that

lim
τ→∞ β−1 ln

fτ (τ )

C − fτ (τ )
= β−1 ln

p′
a

p′
b

> −gab(E ), (A17)

where the last inequality follows from Eq. (11). Combining
Eqs. (A15)–(A17) implies that for some sufficiently large τ ,

−gab(E ) < β−1 ln
fτ (t )

C − fτ (t )
< gab(E ) (A18)

for all t ∈ [0, τ ]. Recall from the definition of gab(E ) in Eq. (8)
that there must be some E (0), E (1) ∈ E such that

gab(E ) � E (0)
b − E (0)

a , gab(E ) � E (1)
a − E (1)

b . (A19)

Combined with Eq. (A18), this means that for all t ∈ [0, τ ],

E (1)
b − E (1)

a < β−1 ln
fτ (t )

C − fτ (t )
< E (0)

b − E (0)
a . (A20)

Finally, since E is a path-connected set, there is a continuous
curve of energy functions that connects E (0) and E (1). Given
Eq. (A20) and the intermediate value theorem, there is some
E τ (t ) ∈ E such that Eq. (A14) is satisfied for every t ∈ [0, τ ].

APPENDIX B: GENERALIZATION OF PROPOSITION 1
AND THEOREM 1 TO NONCONSERVATIVE FORCES

In this Appendix, we discuss how Proposition 1 and Theo-
rem 1 can be generalized to the case when there are constraints
both on the energy functions and the nonconservative forces
that can be applied to a system.

In the presence of nonconservative forces, transitions rates
can be parametrized via a generalized version of Eq. (3),

Wji = ψ jie
β[Ei−Ej+Nji]/2, (B1)

where Nji = −Ni j is an antisymmetric function that reflects
a nonconservative force that biases transitions from state i to
state j. (As above, E is the energy function and ψ ji = ψi j �
0 is a symmetric positive function that controls the overall
timescale of transitions between states i and j.) Now suppose
there are constraints on both the energy functions and the
nonconservative forces that can be applied to a system. For
notational convenience, we define an antisymmetric matrix
F such that Fji = −Fi j is the drop of the potential energy
plus the nonconservative bias in going from i to j, Fji :=
Ei − Ej + Nji. Equation (B1) can then be written as

Wji = ψ jie
β[Fji]/2. (B2)

The presence of constraints on the energy functions and non-
conservative driving forces can be stated formally as follows:
there is some set F ⊂ Rn×n of antisymmetric matrices such
that for any possible driving protocol � = {(E (t ),W (t )) : t ∈
[0, τ ]}, the rate matrix W (t ) at all t ∈ [0, τ ] satisfies Eq. (B2)
for some F ∈ F .

We now consider how Proposition 1, which constructs a
protocol that we call a transfer, can be generalized to this more
general type of constraint. To begin, define the controllable
energy gap in terms of F [rather than in terms of E , as in
Eq. (8)] in the following manner:

g′
i j (F ) := min

{
max
F∈F

Fi j, max
F∈F

Fji
}
. (B3)

Then, in the presence of constraints on both the energy func-
tions and the nonconservative driving forces, Proposition 1
continues to hold under this new definition. In particular,
consider any initial distribution p and final distribution p′
which involve transferring 
 probability from state a to state
b, as in Eq. (9). Assume that Eq. (11) holds for this pair of
distributions, where gab(E ) is replaced by g′

ab(F ) as defined
in Eq. (B3). Then, for any ε > 0, there is a protocol � with a
time-dependent rate matrix W (t ) over t ∈ [0, τ ] such that (I) p
is transformed to p′, (II) �(p, �) � ε, and (III) W (t ) satisfies
Eq. (B2) for some F ∈ F at all t . The proof of statements I and
II is exactly the same as appears in Appendix A. The proof of
statement III is also the same as appears in Appendix A, as
long as the following replacements are made.

(1) gi j (E ) should be replaced by g′
i j (F ).

(2) Statements like “E (t ) ∈ E” should be replaced by state-
ments like “W (t ) obeys Eq. (B2) for some F ∈ F .”

(3) Expressions like Eb − Ea in Eqs. (A14), (A19), and
(A20) should be replaced by corresponding versions with Fba.

Finally, note that Theorem 2 is proved (informally in the
main text) by an explicit construction that shows how the
initial distribution p can be transformed to a final distribu-
tion p′ via an appropriate sequence of transfers. The same
construction also works for transfers defined under constraints
on both energy functions and nonconservative driving forces
(as discussed above), as long as the capacity term C which
appears in Eqs. (13), (14), and (16) is defined in terms of
controllable energy gaps g′

i j (F ) from Eq. (B3), rather than
gi j (E ).
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APPENDIX C: DERIVATION OF EQ. (17)

Suppose that E contains a one-dimensional curve of energy
functions that connects E∅ and −E∅. Consider some pair of
states i, j, and first assume that E∅

i � E∅

j . Then, using the
definition of gi j (E ) in Eq. (8),

gi j (E ) � min
{
E∅

i −E∅

j ,
( − E∅

j

)−( − E∅

i

)} = E∅

i − E∅

j .

Conversely, if E∅

i � E∅

j , then gi j (E ) � E∅

j − E∅

i . Combin-
ing these results implies

gi j (E ) �
∣∣E∅

i − E∅

j

∣∣. (C1)

Next, for any state i, let m(i) indicate the state with the largest
energy difference from i under E∅:

m(i) ∈ arg maxk

∣∣E∅

i − E∅

k

∣∣. (C2)

Given a pair of states i, j, we consider two possibilities. Un-
der the first possibility, E∅

m(i) = E∅

m( j) and the path 	x = (i →
m(i) → j) obeys

c(	x) = min{gim(i)(E ), gm(i) j (E )}
� min

{∣∣E∅

i − E∅

m(i)

∣∣, ∣∣E∅

m(i) − E∅

j

∣∣}
= min

{∣∣E∅

i − E∅

m(i)

∣∣, ∣∣E∅

m( j) − E∅

j

∣∣}, (C3)

where in the second line we used Eq. (C1). Under the second
possibility, E∅

m(i) �= E∅

m( j) and capacity of the path 	x = (i →
m(i) → m( j) → j) obeys

c(	x) = min{gim(i)(E ), gm(i)m( j)(E ), gm( j) j (E )}
� min

{∣∣E∅

i − E∅

m(i)

∣∣, ∣∣E∅

m(i) − E∅

m( j)

∣∣, ∣∣E∅

m( j) − E∅

j

∣∣}.
(C4)

Observe that for any i, the state m(i) defined in Eq. (C2) either
obeys m(i) ∈ arg min jE

∅

j or m(i) ∈ arg max jE
∅

j . Since we

assumed that E∅

m(i) �= E∅

m( j), it must be that the set {m(i), m( j)}
includes both lowest and highest energy states. This in turn
implies that |E∅

m(i) − E∅

m( j)| is larger than both |E∅

m(i) − E∅

i |
and |E∅

m( j) − E∅

j |, allowing us to rewrite Eq. (C4) as

c(	x) � min
{∣∣E∅

i − E∅

m(i)

∣∣, ∣∣E∅

m( j) − E∅

j

∣∣}, (C5)

which is the same as Eq. (C3).
To summarize, above we showed that for any pair of states

i, j, there exists a path 	x from i to j such that

c(	x) � min
{∣∣E∅

i − E∅

m(i)

∣∣, ∣∣E∅

m( j) − E∅

j

∣∣}
= min

{
max

k

∣∣E∅

i − E∅

k

∣∣, max
k

∣∣E∅

j − E∅

k

∣∣}
� min

l
max

k

∣∣E∅

l − E∅

k

∣∣, (C6)

where we used Eqs. (C3) and (C5) and the definition in
Eq. (C2). The first inequality in Eq. (17) then follows imme-
diately from Eq. (C6) and the definition of C(E ) in Eq. (13):

C(E ) = min
i �= j

max
	x∈P (i, j)

c(	x) (C7)

� min
i

max
j

∣∣E∅

i − E∅

j

∣∣. (C8)

To derive the second inequality in Eq. (17), we consider two

cases. First, for any i such that E∅

i � max j E∅

j +min j E∅

j

2 ,

max
j

∣∣E∅

i − E∅

j

∣∣ = max
j

E∅

j − E∅

i �
max j E∅

j − min j E∅

j

2
.

Second, for any i such that E∅

i >
max j E∅

j +min j E∅

j

2 ,

max
j

∣∣E∅

i − E∅

j

∣∣ = E∅

i − min
j

E∅

j �
max j E∅

j − min j E∅

j

2
.

We finish by showing that equality is achieved in Eq. (C8)
if the set of energy functions is a one-dimensional line seg-
ment:

E = {λE∅ : λ ∈ [−1, 1]}.
In that case, it is easy to verify from the definition of gi j (E )
that gi j (E ) = |E∅

i − E∅

j |, so equality is achieved in Eq. (C1).
Next, note that for any path 	x that starts or ends on state i, it
must be that

c(	x) � max
j

gi j (E ) = max
j

∣∣E∅

i − E∅

j

∣∣.
Plugging into the definition of C(E ) [see Eq. (C7)] and sim-
plifying gives

C(E ) � min
i

max
j

∣∣E∅

i − E∅

j

∣∣,
which implies equality in Eq. (C8).

APPENDIX D: DERIVATION OF EQ. (22)

Assume that Eq. (21) holds for all p and W ∈ W . Then,
it must hold for the distribution and rate matrix at all times
t ∈ [0, τ ], p(t ) and W (t ). The right side of Eq. (21) can be
written in terms of the following time derivative:

− η
∑
i, j

pi(t )Wji(t ) ln
p j (t )

{(p(t ))} j

= −η
d

dt
D[p(t )‖q]

∣∣
q=(p(t )). (D1)

The total derivative rule from calculus then gives

− d

dt
D[p(t )‖q]|q=(p(t )) = − d

dt
D[p(t )‖(p(t ))]

+ d

dt
D[q‖(p(t ))]|q=p(t ). (D2)

The second term above can be bounded as

d

dt
D[q‖(p(t ))]|q=p(t )

= lim
s→0

1

s
(D[p(t )‖(esW (t ) p(t ))] − D[p(t )‖(p(t ))]) � 0,

where the inequality follows from the definition of the KL
projection in Eq. (20). Combining with Eq. (D2) gives

− d

dt
D[p(t )‖q]|q=(p(t )) � − d

dt
D[p(t )‖(p(t ))],

which can be combined with Eqs. (21) and (D1) to give
Eq. (22).
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APPENDIX E: FINDING η IN THEOREM 2
WITH CONVEX OPTIMIZATION

In this Appendix, we show how to identify the optimal
value of η for the EP bound in Theorem 2 using convex
optimization techniques. We use P to indicate the set of all
probability distributions over the state space of the system. In
addition, we use the general definition of the KL projection to
some set of distributions �:

(p) := arg minq∈�D(p‖q). (E1)

Here we assume that � is a finite set.
For notational convenience, define the following function:

f (p, q,W, η) = (1 − η)

[
−

∑
i, j

piWji ln p j

]

+
∑
i, j

piWji

[
ln

Wji

Wi j
− η ln q j

]
, (E2)

where p ∈ P and q ∈ P are probability distributions, W is a
rate matrix, and η ∈ [0, 1] is some scalar. Note that the first
bracketed term on the right hand side of Eq. (E2) is the rate of
increase of the Shannon entropy of distribution p under rate
matrix W . This term is convex in p, since it differs from the
EP rate by a linear function of p [see Eq. (E3) below], and the
EP rate is convex in p [49]. Thus, for a fixed W , E , and η, f is
a weighted sum of a convex function of p and a linear function
of p, meaning that it is a convex function of p.

For any distribution p and rate matrix W , rewrite the left
hand side of Eq. (21) (the EP rate incurred by distribution p
under rate matrix W ) as

−
∑
i, j

piWji ln p j +
∑
i, j

piWji ln
Wji

Wi j
, (E3)

where we used

∑
i, j

piWji ln pi =
∑

i

pi

( ∑
j

Wji

)
ln pi = 0.

Next, rewrite the right hand side of Eq. (21) as

−η
∑
i, j

piWji ln p j + η
∑
i, j

piWji ln[(p)] j . (E4)

We can now use Eqs. (E2)–(E4) to restate Eq. (21) in the
following way: Eq. (21) holds for a given η ∈ [0, 1] if for all
distributions p, W ∈ W , and q ∈ � such that (p) = q,

f (p, q,W, η) � 0. (E5)

Observe that (p) = q is equivalent to the condition

D(p‖q) � D(p‖q′) ∀q′ ∈ �, (E6)

which, with some simple rearranging, is equivalent to the
following set of linear constraints on p:

∀q′ ∈ � :
∑

i

pi ln
qi

q′
i

� 0.

To summarize, Eq. (21) holds for a given η when the
following inequality is satisfied for each W ∈ W and q ∈ �:

0 � min
p∈P

f (p, q,W, η)

s.t. ∀q′ ∈ � :
∑

i

pi ln
qi

q′
i

� 0.
(E7)

For each W and q, Eq. (E7) can be verified for a given η

by solving a convex minimization problem subject to linear
constraints, which can be done efficiently using standard nu-
merical techniques. For a finite set of rate matrices W and
distributions �, one can solve |W| × |�| such problems to
verify whether Eq. (21) holds for a given η. Finally, to find the
largest such η ∈ [0, 1] [thereby making Eq. (21) as tight as
possible], one can use the bisection method on the interval
η ∈ [0, 1]. Code for doing this optimization is available in
[45].

APPENDIX F: GENERALIZATION OF THEOREM 2 TO
MULTIPLE RESERVOIRS AND/OR

NONCONSERVATIVE FORCES

Our derivation Theorem 2 makes no assumptions about the
structure of the rate matrices in W , including whether or not
local detailed balance is obeyed. For this reason, the results
derived in Sec. V can be generalized to consider systems
coupled to multiple reservoirs and/or subject to nonconser-
vative forces. In this more general situation, (·) should be
defined as the projection to the set of nonequilibrium station-
ary distributions of the rate matrices in W (or alternatively,
as mentioned in Sec. V, to any other set of distributions).
Theorem 2 then applies for any η ∈ [0, 1] which satisfies
Eq. (21) for this (·).

In addition, the bound in Theorem 2 can be strengthened
for systems coupled to multiple reservoirs, as long as each rate
matrix in W ∈ W can be decomposed into separate contribu-
tions from each reservoir r as W = ∑

r W (r) [35]. In that case,
the EP rate [which appears on the left hand side of Eq. (21)]
can defined as [35]

�̇(p,W ) = 1

2

∑
i, j,r

(
piW

(r)
ji − p jW

(r)
i j

)
ln

piW
(r)
ji

p jW
(r)

i j

. (F1)

[Compare to Eq. (7) in the main text, which applies in the
presence of a single reservoir.] The expression in Eq. (F1)
is an upper bound on the expression in Eq. (7) [35], so the
largest η which satisfies the implicit inequality Eq. (21) for �̇

as defined in Eq. (F1) will be no smaller than (and possibly
larger than) the largest η which satisfies that inequality for �̇

as defined in Eq. (7).
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