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This paper explores the idea that information is an essential and distinctive feature of living systems. Unlike
nonliving systems, living systems actively acquire, process, and use information about their environments to
respond to changing conditions, sustain themselves, and achieve other intrinsic goals. We discuss relevant
theoretical frameworks such as semantic information and fitness value of information. We also highlight the
broader implications of our perspective for fields such as origin-of-life research and astrobiology. In particular,
we touch on the transition to information-driven systems as a key step in abiogenesis, informational constraints
as determinants of planetary habitability, and informational biosignatures for detecting life beyond Earth. We
briefly discuss experimental platforms which offer opportunities to investigate these theoretical concepts in
controlled environments. By integrating theoretical and experimental approaches, this perspective advances our
understanding of life’s informational dynamics and its universal principles across diverse scientific domains.
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I. INTRODUCTION

Living systems actively sustain and renew themselves de-
spite the natural tendency toward decay, a process sometimes
termed autopoiesis in the literature [1–3]. Recent research
has investigated this concept within broader frameworks of
cognition and adaptive behavior [4–9]. Central to this research
is the idea that living systems are agents that possess intrinsic
goals [10], such as viability (maintenance of the living state),
growth, and replication. In fact, the presence of goals that are
intrinsic, rather than externally assigned, distinguish organ-
isms from most nonliving systems considered in the natural
sciences [11,12].

One important way that organisms achieve intrinsic goals
is by changing their behavior in response to different
environments [13,14]. In this way, organisms acquire, process,
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and use information about environmental states for functional
purposes. This kind of information usage has been variously
termed functional [15,16], meaningful [17], and semantic [14]
information in the literature (with subtle differences).

In this paper, we argue that the use of semantic information
(SI) is one of the most distinctive and important features
of living and protoliving systems [18–23]. In other words,
although many nonliving systems are usefully described by
information-theoretic measures, organisms are distinguished
by actively using information to sustain viability. We term this
the “informational perspective”.

Existing research in biology and biophysics has shown the
power of information-theoretic ideas for studying modern or-
ganisms [22,24–28]. Among other achievements, this research
has uncovered informational constraints on biomolecular pro-
cesses at multiple scales, ranging from the genetic code [29]
and regulation [30–32] to developmental signaling [33] and
chemotactic navigation [34].

Our perspective builds on existing work while highlight-
ing additional research directions. These include developing
agnostic signatures for goal-directed information process-
ing in physical systems, understanding its emergence in
origin-of-life contexts, and identifying it in astrobiological
environments. Our aim is not to propose a novel definition
of life but to draw attention to a fundamental and pervasive
dimension of living matter [21,26,35–37], complementary
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to other well-studied features such as compartmentalization
[38], natural selection [39], and thermodynamic organization,
including metabolic cycles and nonequilibrium maintenance
[40–44]. These dimensions are in principle distinguishable;
for instance, certain physical systems, e.g., hurricanes, can
sustain stable nonequilibrium dynamics without acquiring or
using environmental information.

Rather than serving as a definition of life, SI offers a metric
for a particular kind of organization, one in which internal dy-
namics is tuned to extract and use meaningful environmental
structure. This framing may help identify transitional regimes
between nonlife and life and can guide experimental investi-
gations in marginal systems, such as autocatalytic chemistries
or protocellular assemblies.

The framework is empirically grounded: The viability-
contributing role of environmental information is already
evident across diverse biological domains. In bacterial chemo-
taxis, for example, cells modulate their movement in response
to chemical gradients, directly influencing functional out-
comes like survival [34,45]. Neural systems leverage sensory
representations to guide decisions under uncertainty, with
consequences for organismal fitness [46]. Genetic regula-
tory networks respond dynamically to environmental signals,
modulating gene expression in ways that shape growth and
adaptation [24,30]. Even molecular systems, such as ri-
bozymes interacting with peptides, may display emergent
information-processing that supports self-organization and
persistence [47,48]. These examples demonstrate that the
information-viability relationship central to SI is empirically
accessible in well-characterized biological settings.

In what follows, we outline emerging information-theoretic
approaches for investigating the informational perspective,
along with their implications for origin-of-life research, as-
trobiology, and related fields. The ideas presented here build
on discussions from Ref. [49]. The workshop brought together
more than 20 researchers across disciplines, spanning artificial
life, biophysics, prebiotic chemistry, and planetary science,
to explore how the informational perspective might reveal
unifying principles of living systems.

II. THEORETICAL FRAMEWORKS

A. Semantic information

The informational perspective calls for a mathematically
precise and scientifically applicable theory of semantic in-
formation. One such theory was introduced in Ref. [14].
The approach begins by defining state spaces and probability
distributions for an agent X and its environment Y , possi-
bly at some coarse-grained level of description. Correlations
between agent and environment may be quantified by the
mutual information I (X ;Y ), as usual in information-theoretic
treatments. The agent’s ability to maintain its own existence
is quantified by a viability function. By scrambling some of
the correlations between the agent and its environment, the
viability function quantifies which part of the overall mutual
information is essential for survival. Semantic information
refers to that part of the overall correlated randomness that
influences the agent’s viability.

Importantly, the viability function is usually not an ex-
ternally imposed utility function, but rather it is defined an
emergent property of the intrinsic dynamics of an agent cou-
pled to an environment [14,50]. For instance, viability may be
defined in terms of the agent’s ability to resist equilibration
(maintain low entropy) or to avoid absorption into a deathlike
dynamical attractor [51]. The functional correlations detected
by SI may also be considered as intrinsic to the system under
study, as long as the statistical ensemble over X and Y cap-
tures actual statistics of agent and environment states. Such
ensembles may be constructed from trajectory measurements,
e.g., from steady-state dynamics, repeated experiments, pop-
ulations of agents, or models informed by domain knowledge
[30,52,53].

Semantic information is inherently environment-
dependent, since the same agent may exploit different corre-
lations in different environments. Furthermore, unlike regular
mutual information, SI is an asymmetric measure of coupling,
because the correlations that are causally relevant to the main-
tenance of agent X are not necessarily relevant to the main-
tenance of environment Y . However, the distinction between
agent and environment is not fixed, but defined operationally:
an agent can be any subsystem whose long-term persistence
(viability) can be meaningfully measured and perturbed.

This operational view accommodates nested structures: An
agent could be a single cell, a population, or even a planetary-
scale biosphere, so long as viability can be meaningfully
defined. This flexibility is especially relevant in ecological
and astrobiological settings, where clear-cut boundaries may
be absent but informational dependencies remain measurable.
An interesting direction for future research is to study whether
natural agent-environment distinctions can be identified auto-
matically from data.

An important example of SI is provided by the functional
information stored in the genome. Here we may consider
correlations in an ensemble of genetic sequences X and dif-
ferent environments Y , given some way of quantifying the
viability of different genomes in different environments. In
practice, viability in different environments is often measured
using knockout experiments, which quantify the effect of
genetic perturbations on growth and survival [54,55]. Other
approaches exploit statistical measures, such as conserved
sequences and genome-environment correlations, as proxies
[26,56,57]; such observational studies exploit natural knock-
out experiments performed by mutation and selection in past
populations.

At the same time, the framework of SI goes beyond func-
tional genetic information. For one, it can be applied to
systems that do not possess genomes and may not undergo
replication or Darwinian evolution, e.g., minimal protocells.
Moreover, by appropriate choices of statistical ensemble, SI
can be used to study information encoded in the fluctua-
tion of a single agent and environment over time. In this, it
differs from genetic information, which is typically defined
in relation to an (actual or possible) ensemble of differ-
ent genomes in different organisms, i.e., a population of
agents. Distinguishing these concepts has practical implica-
tions: While genetic information is defined over ensembles of
replicating systems, semantic information can be evaluated for
the trajectory-level dynamics of single agents as they maintain
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FIG. 1. Semantic thresholds. The SI identifies semantic thresholds where only specific mutual information between an agent and its
environment impacts viability. (a) The foundational study [14] introduced this concept through counterfactual simulations assessing viability
as information is scrambled. (b) Forager models [58] demonstrated such thresholds by adding noise to food detection sensors, revealing a peak
in viability per bit of information at the threshold. (c) Similar thresholds appear in biosphere models like Daisy World, responding to stellar
forcing [59].

viability through real-time interactions with their environ-
ments, thus encompassing artificial cells, neural systems, and
novel biosignatures.

Finally, SI can be used in an agnostic fashion to study
information stored not only in genetic sequences, but in a
wide variety of substrates, both internal (e.g., epigenetic, al-
losteric, compositional, and neural information) and external
(e.g., niche construction and collective constraints).

At a high level, SI may be considered as a kind of “in-
formation knockout” that can detect functional correlations
in a wide variety of systems, without knowledge of the pre-
cise mechanism by which these correlations affect viability
or which precise degrees of freedom encode these corre-
lations. For deeper insights, mechanism identification and
localizations of SI can be done by testing different types
of perturbations and by integrating with knowledge of the
underlying causal architecture.

Recently, this framework has been explored in several
modeling studies (see Fig. 1). In a foraging model [58], vi-
ability was quantified as the expected lifetime of a forager.
By introducing noise into the forager’s sensory inputs, SI was
quantified as the subset of environmental correlations critical
for maintaining viability. One of the key insights from [58]
is the discovery of a viability threshold, a plateau in the via-
bility curve where certain correlations between an agent and
its environment do not influence survival. Below this thresh-
old, some of the information is purely syntactic, devoid of
semantic value. Above the threshold, survival declines mono-
tonically as noise increases, indicating that only a subset of
environmental correlations holds semantic significance. The
mechanistic cause of the viability threshold was shown to

be the geometry of the forager; in particular, its finite size
imposes a resolution limit on the useful information that can
be extracted from sensory input.

Similar thresholds have also been identified in other con-
texts. In the Daisy World model [59], such thresholds emerged
within the biosphere-planet feedback mechanisms that regu-
late planetary conditions, relating SI to ecological stability.
In networks of coupled Kuramoto-style oscillators [60], the
emergence of semantic thresholds was shown to depend on the
underlying network topology, emphasizing how both struc-
tural and dynamical aspects shape SI.

Recent work has proposed extending these theoretical in-
sights into experimental domains. Synthetic cells have been
proposed as a novel platform to investigate SI [61]. Synthetic
biology and molecular communication techniques enable the
construction of programmable systems that encode specific
chemical signals capable of inducing functional changes in
a receiver system [32,62,63]; such systems provide a way to
study SI (goal-oriented changes triggered by a message) by
observing controlled self-organization and adaptive responses
in synthetic cells. Active matter provides another promising
platform for experimental investigation of SI theory, given re-
cent work on minimal nonbiological particles that can acquire
and process information [64–67].

B. Fitness value of information

As mentioned, organisms gather and process information
to adapt their features and behaviors, enhancing viability and
reproduction in dynamic conditions. One way in which this
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FIG. 2. SI in a flow reactor: a proposed experiment for studying SI inspired by the fitness value of information, from Ref. [72]. (a) The
system consists of a population of simple replicators, such as the photocatalytic molecular replicators synthesized by Liu et al. [83]. (b) The
replicators are placed in a flow reactor and subjected to fluctuating environments which favor different replicators, e.g., weak (green) light or
strong (orange) light. The population is also allowed to reequilibrate during inactive periods (no growth). (c) Productivity (replicator production
per time) depends on environmental statistics as well as internal parameters, such as exchange reactions and reequilibration timescale λ. At
intermediate timescales, the system’s memory may provide a source of side information, increasing productivity in proportion to the mutual
information between successive environments [72].

can occur is when populations deploy different phenotypes in
order to ensure survival in fluctuating environments [68].

When the fit between phenotypes and environments affects
the multiplicative growth rate, the optimal population strategy
in uncertain environments is bet hedging, which was first
derived information theoretically by Kelly [69]. Furthermore,
when the phenotypic response can depend on an external sig-
nal or cue Z [70,71], the mutual information I (Z;Y ) between
environment states Y and cues Z controls the increase of max-
imal growth rate. In such cases, which sometimes go under
the name of “fitness value of information” in the literature
[70,71], there is a direct quantitative relationship between
information and functional outcomes (growth) [72–74]. In this
sense, the fitness value of information can be seen as a special
kind of SI.

This approach is further generalized by rate-distortion the-
ory [75], which introduces a distortion function d (x, z) to
quantify the cost of mapping environment x to cue z. For
example, d (x, z) might represent the negative logarithmic
growth rate when an organism observes cue z in environ-
ment x. While bet hedging directly maximizes the growth
rate [70], rate-distortion theory provides a broader framework
for analyzing diverse strategies. For instance, an organism
requiring multiple essential but noninterchangeable nutrients
assigns different values to sensing each nutrient based on
its current state [76,77]. This framework has been consid-
ered in both information-theoretic and biophysical contexts
[71,78,79] and it suggests that living systems optimize rate-
distortion limits [27,80]. Organisms near these limits exhibit
efficient trade-offs, using limited resources to harvest SI that
most contributes to increasing growth [27].

Promising experimental tools include chemostats (contin-
uous flow reactors), which measure growth rates in controlled
environments [81,82]. Such systems could be adapted to study
the fitness value of information in synthetic and biological
systems. In this setting, a recent work [72] proposed a theoret-

ical and experimental framework for studying the trade-offs
between information and replicator production (see Fig. 2
for the experimental setup). The framework is applicable to
modern microbial organisms as well as minimal molecular
replicators.

III. IMPLICATIONS FOR ORIGIN-OF-LIFE RESEARCH

The informational perspective shifts the focus of origin-
of-life research. Rather than emphasizing the emergence
of specific molecules or structures, e.g., RNA, ribosomes,
or metabolic pathways, it emphasizes the transition from
information-neutral systems to systems with SI, that is, sys-
tems that maintain their viability by sensing and responding
to their environments and acting as agents in service of their
own self-maintenance [5,13]. Identifying the necessary and
sufficient conditions for such transitions suggests new possi-
bilities for understanding abiogenesis, not only on Earth [84]
but also on Mars, subsurface ocean worlds, exoplanets, and
even in artificial systems [42,85].

In fact, models of emergent learning and adaptive behav-
ior in protocells or chemical systems illustrate how simple
systems may leverage information for functional purposes.
In other words, even simple systems can exhibit minimal
SI, responding to environmental perturbations in ways that
prolong their existence [13], thereby suggesting that SI may
have emerged during the early stages of life, potentially facili-
tating other critical transitions in abiogenesis [42,86]. If extant
life on Earth is one of many possible instantiations of living
systems [84], then extraterrestrial life and even digital life
could represent additional members of this category [42,85]
and could evince similar features.

Recent proposals suggest that origins experiments could
focus on detecting complexity and information processing
rather than specific molecules or replication [87]. This could
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FIG. 3. Example schematic for an origin-of-life experiment focusing on information measures. Consult the text for full details. (Figure was
reproduced with permission from [87].)

involve testing whether a system adapts to changing condi-
tions by increasing its statistical complexity [88], indicating
the ability to process and learn from information. Such learn-
ing has been observed in diverse systems [89,90], and this
information-driven approach could guide experimental and
computational investigations into origins [91,92].

For example, Fig. 3 presents a potential origin-of-life ex-
periment, which focuses on information and complexity. In
this setup, a growing chemical garden is driven away from
equilibrium by electrodes, which produce a time-varying
electrochemical gradient across the system; note that such
gradients may have been crucial in facilitating the origin of
life [93,94]. The variability of this electrochemical potential is
controlled automatically according to an “epsilon machine”.
An epsilon machine is a hidden-variable dynamical model
with associated measures of dynamical complexity, such as
statistical complexity and entropy rate [88]. Measurements
of internal state variables are taken, producing a time series.
This time series also has an associated statistical complexity
and entropy rate, derived through the algorithm of epsilon
machine reconstruction.

Note that epsilon machines are employed here as controlled
and tunable generators of structured temporal correlations.
This allows the modulation of the informational complexity
of environmental inputs in a precise and quantifiable way
command such that the complexity of the environment and
the emergent information processing systems within the ex-
perimental system, if any, can be compared.

The premise of this experiment is to see whether the system
can transition to being information driven, if we incrementally
increase the complexity of the external driving force, and
observe whether the internal complexity changes as well. If
no such information transition happens, there will be little
to no mutual information between the system’s response and
the driving force (the electrochemical gradient). On the other
hand, if information, or perhaps SI, becomes a determining
factor in this system, then the internal statistical complexity
will track the external statistical complexity in some way (the
system will learn) [90]. This learning may be approximately
linear (internal statistical complexity is a linear function of
time, if the external statistical complexity increases linearly
with time) or it might exhibit more exotic dynamics, such as
starting out slow and then exhibiting exponential behavior,
before saturating into an overall sigmoid. This could be due
to the system learning as much as is feasible, reaching the
so-called limit of requisite variety [95].

In this experiment, information may be said to drive a
system’s dynamics once certain conditions are met: (a) The
environment presents learnable features, (b) the system is
capable of information processing (e.g., protocells with basic
learning capabilities [92]), and (c) feedback mechanisms (se-
lection pressures) connect information processing to increased
viability. These mechanisms could enhance access to free
energy [96] or other resources for maintaining a nonequilib-
rium state, such as recognizing temporal patterns in energy
availability or avoiding adverse conditions.
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The primary goal of this experimental setup is to ex-
plore whether physical or chemical systems can exhibit
information-driven behavior in response to structured external
stimuli. Real abiotic environments may indeed contain rich
statistical patterns, such as day-night cycles, oscillating chem-
ical gradients, correlations that constitute associative learning
tasks, or redox fluctuations. The epsilon machine serves as
a way to explore how increasing environmental complexity
affects the internal dynamics and possible learning behaviors
of a candidate prebiotic system. In this sense, the epsilon
machine acts as an abstraction of environmental structure,
enabling experimental tests of SI acquisition and response
without requiring a fully specified planetary model.

The informational perspective could also bring new in-
sights to classic origins experiments command such as the
RNA world and ribozyme replicator systems. These exper-
iments normally comprise strands of RNA that are capable
of some function, such as the catalysis of their own repli-
cation (ligation of smaller RNA fragments to form a new
generation of copies). Additional environmental challenges or
selective forces can be introduced, such as the need to bind
with certain proteins to form complexes (protoribosomes), or
coevolution with primitive protocellular compartments, such
as microdroplet coacervates [97,98]. The products of these
experiments are typically assessed by comparison with known
cellular functions, primarily the minimal conditions for Dar-
winian evolution (replication, heredity, selection, or other
required functions) [16,99,100]. However, this bias carries a
significant risk of missing key emergent entities or phenomena
that could have been essential to life’s origins, but bore little
to no resemblance to life as we know it (or even a simplified
form of life as we know it).

We can instead screen such primordial systems for SI. For
example, we can take a system of RNA strands with a source
of peptides, such as might be used to explore the emergence
of the ribosome. Normally, one would seek structures similar
to the ancient core of the known ribosome [101]. However,
the experimental system may exhibit a range of self-organized
structures, including many that are unfamiliar from the per-
spective of known biology. In this case, the informational
perspective offers a new lens: The system could be analyzed
through a range of information-scrambling interventions. The
interventions would erase the information within different
length segments of the RNA molecules (randomize their se-
quences of bases).

Additionally, one could scramble the sequences of amino
acids in the encoded peptide molecules. The resulting inter-
vened system could then be assessed to determine whether
disrupting informational sequences at this stage of the sys-
tem’s protolife cycle is critical for maintaining the viability of
its replicators or collectives of replicators. In the case of high
SI content, such interventions would disrupt self-replication,
information retention, or other viability-supporting behaviors,
leading to a general breakdown of structure toward equilib-
rium. Interventions targeting different RNA subsequences or
peptide segments would reveal which regions are most critical
to the system’s integrity and function.

In these experiments, SI would be estimated by system-
atically perturbing the system’s structured components (e.g.,
RNA or peptide domains) and quantifying the resulting loss

in viability, such as diminished self-replication or irreversible
loss of cooperation between replicators. The more severe and
specific the loss under particular scrambling operations, the
more semantically meaningful those components are to the
system’s persistence.

Conversely, if the system exhibits low SI, such scram-
bling interventions would have little discernible effect on its
structure or dynamics, suggesting that any observed function-
ality is driven by simpler, lower-level physical or chemical
constraints. Large-scale experimental programs of this kind,
deemphasizing predetermined biological targets and instead
probing the informational relevance of system components,
could uncover alternative pathways from molecules to life
[102].

Given the huge combinatorial space of prebiotic chemistry
and the deep challenges of taking a direct path from abiotic
processes to a primitive cell, SI could be a powerful guiding
beacon, highlighting unorthodox routes from nonlife to life
as we know it and even to alternative forms that could have
formed on Earth but did not or forms that could emerge on
other worlds.

IV. IMPLICATIONS FOR ASTROBIOLOGY

Astrobiology is a rapidly emerging field dedicated to ad-
dressing the following profound question: Are we alone?
[103–105]. Defined by NASA as the study of the “origin, evo-
lution, distribution, and future of life in the Universe” [106],
the field aims to uncover life’s potential elsewhere. Two main
areas of research include understanding planetary habitability,
that is, the potential of different extraterrestrial environments
to support life [42,103,107–109], and developing reliable
methods for identifying biosignatures, the indicators of extant
or extinct life [42,110–112].

In the astrobiological context, the informational per-
spective elucidates the constraints and possibilities for the
existence (habitability) and detection (biosignatures) of life,
thereby adumbrating a unifying framework that may apply
both on Earth and in extraterrestrial settings.

A. Informational constraints on habitability

Two central facets of information processing involve sens-
ing [113–115] and transmitting [63,116,117] information.
Microorganisms, due to their simplicity and ubiquity, offer
a key case study for understanding these processes. Mech-
anisms like chemotaxis, phototaxis, and thermotaxis allow
microbes to detect gradients of chemicals, light, and tempera-
ture, respectively, offering critical insights into their environ-
ments [118–120]. These sensory capabilities enable behaviors
such as nutrient acquisition, toxin avoidance, biofilm for-
mation, and symbiosis [120–123]. In parallel, molecular
communication through signaling molecules [32,62,124] fos-
ters cooperation, cognition, and multicellularity [7,9,117,125–
128].

Potential habitats for the origins, evolution, and sustenance
of life span diverse physicochemical conditions, ranging
from hydrothermal vents to soda lakes and pumice rafts
[42,129–132] on Earth. Understanding how environmental pa-
rameters (e.g., temperature and viscosity) shape informational
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FIG. 4. Basic SNR achievable for chemosensing plotted as a
function of cell radius for Earth’s oceans (blue) and the hydrocarbon
lakes of Saturn’s moon Titan (red); the dotted and solid (bold) lines
correspond to spatial and temporal modes of sensing, respectively
[134]. A heuristic minimum cell radius may be inferred by determin-
ing when the SNR exceeds the value of unity (horizontal black line).

constraints is crucial for discerning which settings are con-
ducive to the existence and sustenance of information-driven
life.

This intersection of biophysics and astrobiology, with
explicit connections to planetary environments [105,133], re-
mains distinctly underexplored [42]. For instance, Ref. [134]
modeled heuristic lower bounds on cell sizes capable of
gradient sensing and motility in various environments. By
performing simple signal-to-noise ratio (SNR) calculations,
which can be further extended to include memory effects [26],
a rough cell-radius limit of Rmin ∼ 0.3–0.4 µm for chemosens-
ing in Earth’s oceans was estimated, consistent with empirical
bounds of approximately 0.4 µm [135]. Similar calculations
for Titan’s hydrocarbon lakes revealed comparable thresholds,
despite the extreme conditions. Figure 4 depicts these size
limits for Earth and Titan.

Another study [136] estimated data rates I for molecular
communication via signaling molecules between microbes
across habitats. The I and its dependence on intercellular
distances d were demonstrated to be broadly consistent with
certain laboratory experiments [137] and numerical simu-
lations [138]. The findings of this work, spanning Earth’s
upper oceans (I ∼ 4.7×10−2 bits/s) to Titan’s lakes (I ∼
2.6×10−1 bits/s), illustrated how intracellular distances and
environmental variables influence informational dynamics
and were subsequently harnessed to explore ramifications for
Earth’s biosphere [139].

These sample studies highlight the putative major role of
informational constraints in shaping habitability.

B. Information-centric biosignatures

Agnostic biosignatures, which are designed in princi-
ple to transcend Earth-centric assumptions, have emerged

as a promising tool [105,140,141]. These approaches pri-
oritize universal features of life over specific molecular
markers, addressing the challenges of abiotic false positives
[111,142,143]. For instance, abiotic processes can mimic
cell-like morphologies [144,145], complicating microfossil
identification. Agnostic biosignatures aim to avoid such pit-
falls by focusing on life’s core characteristics, making them
particularly valuable for detecting non-Earth-like biomarkers
[85,105].

Proposals for agnostic biosignatures encompass both in
situ analyses and remote sensing. These include binding pat-
tern analysis of nucleic acid molecules [146], abundance
distribution of monomers (e.g., amino acids) [147], assembly
theory for molecular construction steps [148], and machine
learning for distinguishing abiotic and biological materials
[149]. Information-centric approaches, such as epsilon ma-
chine reconstruction [150] and Jensen-Shannon divergence
for spectral analysis [151], have likewise shown promise in
identifying biosignatures through time series data and atmo-
spheric spectra.

Moreover, in situ strategies, such as the “poke it and look
for a response” method, could leverage dynamic responses to
stimuli to differentiate living systems from abiotic materials.
Possible measures in this context include information flow
[152,153] and information efficiency [154,155], each of which
can perhaps distinguish living organisms from dead ones or
abiotic materials.

We emphasize that the biosignature approaches discussed
here differ significantly in their experimental tractability
and theoretical grounding. While some rely on general
information-theoretic metrics (e.g., compressibility, redun-
dancy), others—particularly machine learning classifiers, may
depend on specific training datasets or biochemical priors.
This heterogeneity reflects the current exploratory state of the
field. Our aim in surveying these methods is not to endorse any
particular one, but to highlight a growing interest in moving
beyond narrow biochemical definitions of life toward more
abstract, information-based criteria.

By integrating such approaches with informational con-
straints on habitability, astrobiologists can refine their
methods to account for the unique challenges posed by ex-
traterrestrial environments. For example, cell size thresholds
derived from information sensing models can serve as heuris-
tic filters in biosignature evaluation.

V. SUMMARY AND FUTURE DIRECTIONS

This paper explored the informational perspective, which
posits that life’s unique ability to acquire, process, and
utilize information is a fundamental dimension that dis-
tinguishes it from non-life. This perspective complements
existing approaches by emphasizing underlying principles
rather than specific functions or mechanisms. We reviewed
several emerging formalisms, such as SI and the fitness
value of information, that provide quantitative method for
studying the relationship between information, function, and
self-maintenance. We also discussed implications for ongoing
research in fields such as origin-of-life, astrobiology, and arti-
ficial life.
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We acknowledge that different perspectives exist regard-
ing the relationship between semantic information and more
established information-theoretic constructs such as mutual
information, as well as biologically grounded notions like
fitness and genetic encoding. While our framework builds
upon and intersects with these concepts, it is intended to
extend them by tying information to function in a system-
specific, coarse-grain-sensitive, and viability-dependent man-
ner. Rather than offering a replacement, we aim to provide
a complementary and operational tool kit that can clarify the
role of information in contexts where traditional notions may
prove insufficient, particularly in origins-of-life and agnostic
biosignature settings.

Further progress may exploit recent advances in fields
like active matter, synthetic biology, and molecular-
communication systems. These developments offer powerful
test beds for constructing experimental systems that acquire
and use information for functional purposes, while exhibiting
simple forms of adaptation, learning, and feedback control in
complex environments. Such work may provide experimental
measurements of functional information flow and reveal novel
forms of information-driven nonequilibrium organization.

A promising direction for future work is to extend the
information-theoretic frameworks discussed in this paper to
evolving and open-ended systems, where the relevant state
space may change dynamically due to the emergence (or de-
struction) of new agents, niches, and evolutionary transitions.
Another theoretical avenue would explore deeper connec-
tions to information-theoretic fundamentals, including the
formulation of SI and fitness value of information using algo-
rithmic (Kolmogorov) information theory [156]. Algorithmic
measures may allow for the data-driven quantification of func-
tional information in individual trajectories, without requiring
the definition statistical ensembles, and they may uncover
connections to existing measures of complexity [157]. We
note that, although most measures of algorithmic information
are uncomputable, in practice, useful estimates can be calcu-
lated using real-world compression algorithms [158,159].

As with many information-theoretic measures, quantifying
semantic information presents methodological challenges that
are also opportunities for future work. For instance, calculat-
ing SI depends on how the system is coarse grained: Different
choices in data collection, labeling, or state representation
can yield substantially different results. In experimental or
observational settings, this dependence on modeling decisions
poses limitations, but also points to an avenue for progress.

Given an accurate model, the effects of coarse graining can
in principle be bounded or estimated, and this could be inte-
grated into experimental design protocols.

Quantifying a system’s viability may also depend on ex-
tended temporal dynamics. In such cases, the semantics of the
information may themselves depend on the evolving internal
state of the system, making the functional relevance of struc-
ture time dependent. This raises further questions about how
best to define and measure viability in systems where environ-
mental or internal fluctuations occur on long timescales [51].

Finally, calculating SI can become computationally ex-
pensive or even intractable when the state space or the set
of perturbations is large. Addressing these challenges will
require careful methodological choices, potentially involving
heuristics, approximations, or surrogate metrics. Developing
such tools is an important direction for advancing the practical
utility and empirical grounding of semantic information.

In the context of astrobiology, an important open challenge
is to adapt the frameworks of SI and fitness value of infor-
mation to remote sensing, such as the detection of planetary
biosignatures. For instance, while the original definition of
SI is based on causal interventions, future work may develop
observation measures that serve as useful proxies for detecting
information-driven systems at the planetary scale. This could
inform mission-design strategies and support the search for
life in nonterrestrial and unconventional forms.
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