Quantifying higher-order entropy production in organized nonequilibrium states
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Abstract

The entropy production rate reflects the dissipation of free en-
ergy in a nonequilibrium state, and it is necessary for many
biological functions. Nevertheless, trivial systems can dis-
play large entropy production, and it is yet an open chal-
lenge to characterize the out-of-equilibrium states of living
systems and their operational meaning. We present a way
to decompose the entropy production rate of a system, cap-
turing how much of it is generated from higher-order in-
teractions between its components. Our method combines
recent information-geometric decompositions of the entropy
production rate with a hierarchical decomposition of forces
into k-body stochastic interactions.

Introduction Living systems maintain themselves in or-
ganized nonequilibrium states by continually harvesting and
dissipating free energy from their environment. The rate of
free energy dissipation is often termed the ‘entropy produc-
tion rate’ (EPR), as it quantifies how fast the entropy of a
system and its environment grows (for example, it can quan-
tify the rate at which a biological motor burns ATP into
heat, increasing the entropy of the environment). For molec-
ular systems, the EPR can be expressed in a remarkable
information-theoretic way as the Kullback-Leibler (KL) di-
vergence between forward and backward fluxes, Eq. (2) be-
low. For coarse-grained systems, this expression can still be
meaningfully interpreted as the temporal irreversibility of a
stochastic process, reflecting a definite arrow of time.

The EPR has various operational consequences, in terms
of precision of fluctuating observables and speed of dynam-
ical evolution (Horowitz and Gingrich, 2020). More gener-
ally, positive EPR is necessary to display rich dynamical be-
havior like reproduction, homeostasis, and information pro-
cessing. Recently, EPR has been suggested as a useful indi-
cator for distinguishing organized states in macroscopic sys-
tems, such as brains involved in different tasks or states of
consciousness (Lynn et al., 2021; de la Fuente et al., 2023).

Nevertheless, the EPR presents limitations as an indica-
tor of organized nonequilibrium steady states in many-body
systems. In principle, steady-state EPR can be arbitrarily
large even in simple systems, such as well-mixed chemical

solutions or electrical resistors. In these cases, the EPR re-
flects the additive contribution of many independent compo-
nents (molecules, heating elements, etc.). This is different
from EPR in systems with interactions and large-scale or-
ganization, such as active matter (Ro et al., 2022), nonequi-
librium spin glasses (Aguilera et al., 2022), and biological
systems. In such cases, we expect EPR to also arise from
higher-order effects generated by interaction in the driv-
ing forces, as well as entropic forces that reflect emergent
higher-order correlations in steady-state.

Here we investigate how to capture the contribution to
EPR corresponding to interactions between components, not
only pairwise but also of higher orders. We investigate this
question in using a standard model of a nonequilibrium spin
model, the kinetic Ising model, which displays a rich phe-
nomenology under asymmetric couplings (Aguilera et al.,
2022). Our goal is to investigate the relationship between
higher order EPR and the organization of the nonequilib-
rium states of the spin glass. Understanding of this higher-
order EPR could lead to an understanding of the operational
meaning of this decomposition in terms of bounds on statis-
tical fluctuations, and to understand how these contributions
can be measured in real-world experiments.

Method We consider a discrete-state system described
by a probability distribution p(x,t) over states x =
{z1,...,zN} at time ¢ and a stochastic process with transi-
tion rates R(y|x). The system evolves according to a master
equation

ply,t) = > (Rlyx)p(x,t) — R(xly)p(y,t). (1)
xixty

The change of system’s Shannon entropy S =
— Y p(x. ) logp(x,t) is S = =7, p(x,t)logp(x,1).
Thermodynamics can be introduced when the condition
of ‘local detailed balance’ (LDB) holds, meaning that the

entropy increase of the environment (e.g., due to heat flow)
. R(y|x

can be written as iny R(y|x)p(x,t) log Rgl‘yg (Van den

Broeck and Esposito, 2015). The combination of system

and environment entropy increase is called the entropy
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Actual fluxes

R(y|x)p(x)
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Projected fluxes
Ro(x[y)p(y)
Tilted backward rates
Ro(y|x) = R(y|x) explea(y, x)]

Figure 1: Ilustration of the EPR decomposition in Eq. 3.

production rate (EPR), written as

N P 10y BOPOPED
U_E:yR(y' Pl )1 & R(xly)p(y,t)

=D(R(y[x)p(x,1) | R(x|y)p(y,t)), 2)

where D(p(x)||p(x)) = 32, (p(x)In 533 — p(x) + ¢(x))
is the generalized KL divergence. EPR is nonnegative in
consistency with the Second Law, and it strictly positive for
nonequilibrium irreversible processes. EPR is a measure of
breaking of time irreversibility, even in the absence of LDB.

We decompose EPR by extending a recent framework that
integrates nonequilibrium thermodynamics and information
geometry (Kolchinsky et al., 2022). We combine this frame-
work with a hierarchical decomposition of many-body inter-
actions into a sequence of k-body terms (independent, pair-
wise, triplets, etc., Amari, 2001). Our approach provides
a decomposition of EPR that is more general (Horowitz
and Gingrich, 2020; Lynn et al., 2022) and interpretable (Ito
et al., 2020) than previous approaches, because it does not
require special dynamics, and because it has simple opera-
tional meaning in terms of uncertainty relations and fluctua-
tions.

To apply this framework, we define a manifold of
backward stochastic processes under a tilted rate matrix
Ro(x|ly) = R(x|y)expleo(x,y)], where eg(x,y) is a
function parametrized by 6. Each such manifold will
represent forces represented by k-body interactions. We
then find the parameters in terms of the projection 8% =
argming D (R(y|x)p(x,t) || Re(x|y)p(y,t)), resulting in
a Pythagorean relation (Amari, 2001)

& =D (Re- (x|y)p(y,t) | R(x[y)p(y,1))
lower-order EPR

+ D (R(y|x)p(x,t) || Ro~(x|y)p(y,t))  (3)

higher-order EPR, 6101

Results We study the EPR decomposition in a nonequi-
librium spin model of two homogeneous populations a €
{1,2} of N = 100 spins z,; = 1 with asymmetric pop-
ulation couplings J = [ 1} 1] (see Fig. 2). Spins are up-
dated following a simoid rate applied asynchronously, i.e.

Figure 2: a) Excitatory-inhibitory spin model. b) NESS
probability distribution for aggregated variables ), s¢ for
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Figure 3: EPR and higher-order EPR of the two oscillatory
population in Fig. 2 for different values of 5. Higher-order
ERP is close to zero for the disordered phase (8 < 1) and
peaks around S = 2 where the system displays stochastic
self-sustained oscillations. As the behaviour of the system
becomes more deterministic for larger /3, high-order ERP
decreases, while ERP remains high.

assuming y = x!»% ([-9] being a spin-flip operator applied
to xa,i)’

1
R(ylx) = O
1+ exp [—23%,1‘ > Jabn
otherwise R(y|x) = 0. The system resembles simple

models of excitatory and inhibitory neuron populations. In
steady state, if 3 is sufficiently high (8 > 1 in the large size
limit), the system undergoes an Andronov-Hopf bifurcation
bifurcation from a disordered state to self-sustained stochas-
tic oscillations. For larger values of 8 oscillations become
more deterministic.

We measure the decomposition of the EPR that can-
not be reduced to pairwise interactions, using €g(X,y) =
explb; a0+ 0ia,0Tia + ijb 0:5,0%i,ay;,p ] (assuming y =
x[»el). Fig. 3 shows that, while EPR grows as oscillations
emerge, a small fraction of ERP higher-order terms peak
around S = 2, where oscillations emerge, but the system
maintains some level of stochasticity.
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