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Abstract

The entropy production rate reflects the dissipation of free en-
ergy in a nonequilibrium state, and it is necessary for many
biological functions. Nevertheless, trivial systems can dis-
play large entropy production, and it is yet an open chal-
lenge to characterize the out-of-equilibrium states of living
systems and their operational meaning. We present a way
to decompose the entropy production rate of a system, cap-
turing how much of it is generated from higher-order in-
teractions between its components. Our method combines
recent information-geometric decompositions of the entropy
production rate with a hierarchical decomposition of forces
into k-body stochastic interactions.

Introduction Living systems maintain themselves in or-
ganized nonequilibrium states by continually harvesting and
dissipating free energy from their environment. The rate of
free energy dissipation is often termed the ‘entropy produc-
tion rate’ (EPR), as it quantifies how fast the entropy of a
system and its environment grows (for example, it can quan-
tify the rate at which a biological motor burns ATP into
heat, increasing the entropy of the environment). For molec-
ular systems, the EPR can be expressed in a remarkable
information-theoretic way as the Kullback-Leibler (KL) di-
vergence between forward and backward fluxes, Eq. (2) be-
low. For coarse-grained systems, this expression can still be
meaningfully interpreted as the temporal irreversibility of a
stochastic process, reflecting a definite arrow of time.

The EPR has various operational consequences, in terms
of precision of fluctuating observables and speed of dynam-
ical evolution (Horowitz and Gingrich, 2020). More gener-
ally, positive EPR is necessary to display rich dynamical be-
havior like reproduction, homeostasis, and information pro-
cessing. Recently, EPR has been suggested as a useful indi-
cator for distinguishing organized states in macroscopic sys-
tems, such as brains involved in different tasks or states of
consciousness (Lynn et al., 2021; de la Fuente et al., 2023).

Nevertheless, the EPR presents limitations as an indica-
tor of organized nonequilibrium steady states in many-body
systems. In principle, steady-state EPR can be arbitrarily
large even in simple systems, such as well-mixed chemical

solutions or electrical resistors. In these cases, the EPR re-
flects the additive contribution of many independent compo-
nents (molecules, heating elements, etc.). This is different
from EPR in systems with interactions and large-scale or-
ganization, such as active matter (Ro et al., 2022), nonequi-
librium spin glasses (Aguilera et al., 2022), and biological
systems. In such cases, we expect EPR to also arise from
higher-order effects generated by interaction in the driv-
ing forces, as well as entropic forces that reflect emergent
higher-order correlations in steady-state.

Here we investigate how to capture the contribution to
EPR corresponding to interactions between components, not
only pairwise but also of higher orders. We investigate this
question in using a standard model of a nonequilibrium spin
model, the kinetic Ising model, which displays a rich phe-
nomenology under asymmetric couplings (Aguilera et al.,
2022). Our goal is to investigate the relationship between
higher order EPR and the organization of the nonequilib-
rium states of the spin glass. Understanding of this higher-
order EPR could lead to an understanding of the operational
meaning of this decomposition in terms of bounds on statis-
tical fluctuations, and to understand how these contributions
can be measured in real-world experiments.

Method We consider a discrete-state system described
by a probability distribution p(x, t) over states x =
{x1, . . . , xN} at time t and a stochastic process with transi-
tion rates R(y|x). The system evolves according to a master
equation

ṗ(y, t) =
∑

x:x̸=y

(R(y|x)p(x, t)−R(x|y)p(y, t)) . (1)

The change of system’s Shannon entropy S =
−
∑

x p(x, t) log p(x, t) is Ṡ = −
∑

x ṗ(x, t) log p(x, t).
Thermodynamics can be introduced when the condition
of ‘local detailed balance’ (LDB) holds, meaning that the
entropy increase of the environment (e.g., due to heat flow)
can be written as

∑
x̸=y R(y|x)p(x, t) log R(y|x)

R(x|y) (Van den
Broeck and Esposito, 2015). The combination of system
and environment entropy increase is called the entropy
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Figure 1: Illustration of the EPR decomposition in Eq. 3.

production rate (EPR), written as

σ̇ =
∑

x̸=y

R(y|x)p(x, t) log R(y|x)p(x, t)
R(x|y)p(y, t)

=D(R(y|x)p(x, t) ∥R(x|y)p(y, t)), (2)

where D(p(x)∥p(x)) =
∑

x(p(x) ln
p(x)
q(x) − p(x) + q(x))

is the generalized KL divergence. EPR is nonnegative in
consistency with the Second Law, and it strictly positive for
nonequilibrium irreversible processes. EPR is a measure of
breaking of time irreversibility, even in the absence of LDB.

We decompose EPR by extending a recent framework that
integrates nonequilibrium thermodynamics and information
geometry (Kolchinsky et al., 2022). We combine this frame-
work with a hierarchical decomposition of many-body inter-
actions into a sequence of k-body terms (independent, pair-
wise, triplets, etc., Amari, 2001). Our approach provides
a decomposition of EPR that is more general (Horowitz
and Gingrich, 2020; Lynn et al., 2022) and interpretable (Ito
et al., 2020) than previous approaches, because it does not
require special dynamics, and because it has simple opera-
tional meaning in terms of uncertainty relations and fluctua-
tions.

To apply this framework, we define a manifold of
backward stochastic processes under a tilted rate matrix
Rθ(x|y) = R(x|y) exp [ϵθ(x,y)], where ϵθ(x,y) is a
function parametrized by θ. Each such manifold will
represent forces represented by k-body interactions. We
then find the parameters in terms of the projection θ∗ =
argminθ D (R(y|x)p(x, t) ||Rθ(x|y)p(y, t)), resulting in
a Pythagorean relation (Amari, 2001)

σ̇ =D (Rθ∗(x|y)p(y, t) ∥R(x|y)p(y, t))︸ ︷︷ ︸
lower-order EPR

+D (R(y|x)p(x, t) ∥Rθ∗(x|y)p(y, t))︸ ︷︷ ︸
higher-order EPR, σ̇HOI

(3)

Results We study the EPR decomposition in a nonequi-
librium spin model of two homogeneous populations a ∈
{1, 2} of N = 100 spins xa,i = ±1 with asymmetric pop-
ulation couplings J =

[
1 1
−1 1

]
(see Fig. 2). Spins are up-

dated following a simoid rate applied asynchronously, i.e.
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Figure 2: a) Excitatory-inhibitory spin model. b) NESS
probability distribution for aggregated variables

∑
i s

a
i for

β = 2.

0 2 4 6 8
β

0.0

0.2

0.4

0.6
1
β σ̇

0.000

0.002

0.004

1
β σ̇HOI

Figure 3: EPR and higher-order EPR of the two oscillatory
population in Fig. 2 for different values ofβ. Higher-order
ERP is close to zero for the disordered phase (β < 1) and
peaks around β = 2 where the system displays stochastic
self-sustained oscillations. As the behaviour of the system
becomes more deterministic for larger β, high-order ERP
decreases, while ERP remains high.

assuming y = x[i,a] ([i,a] being a spin-flip operator applied
to xa,i),

R(y|x) = 1

1 + exp
[
−2βya,i

∑
b,j Jabxb,j

] , (4)

otherwise R(y|x) = 0. The system resembles simple
models of excitatory and inhibitory neuron populations. In
steady state, if β is sufficiently high (β > 1 in the large size
limit), the system undergoes an Andronov-Hopf bifurcation
bifurcation from a disordered state to self-sustained stochas-
tic oscillations. For larger values of β oscillations become
more deterministic.

We measure the decomposition of the EPR that can-
not be reduced to pairwise interactions, using ϵθ(x,y) =
exp[ θi,a,∅ + θi,a,0xi,a +

∑
j,b θij,bxi,ayj,b ] (assuming y =

x[i,a]). Fig. 3 shows that, while EPR grows as oscillations
emerge, a small fraction of ERP higher-order terms peak
around β = 2, where oscillations emerge, but the system
maintains some level of stochasticity.
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